21.1-21.2二次根式习题

合集下载

新人教版九年级上册数学书练习册的答案作业本答案课本习题答案

新人教版九年级上册数学书练习册的答案作业本答案课本习题答案
新人教版九年级上册数学书练习册的答 案作业本答案课本习题答案
《新课程课堂同步练习册•数学(人教版九年级上册)》 参考答案 第二十一章二次根式 §21.1 二次根式(一) 一、1. C 2. D 3. D 二、1. ,9 2. , 3. 4. 1 三、1.50m 2.(1) (2) >-1 (3) (4) §21.1 二次根式(二) 一、1. C 2.B 3.D 4. D 二、1. , 2.1 3.; 三、1. 或-3 2.(1) ;(2)5;(3) ;(4) ;(5) ;(6) ; 3.原式= §21.2 二次根式的乘除(一) 一、1.C 2. D 3.B 二、1.< 2. ( 为整数)3.12s 4. 三、1.(1)(2)(3)(4)–108 2.10cm23、 cm §21.2 二次根式的乘除(二) 一、1.C ; 4.6
看着他们那幸福的样子,你一定想为锦上添花吧?给与众不同祝~温暖朋友心灵作者举了三个“送”事例:先批古董到巴黎去展览知后如何即有无回这是媚外可耻行径;还几位大师捧张画和新
看着他们那幸福的样子,你一定想为锦上添花吧?给与众不同祝~温暖朋友心灵作者举了三个“送”事例:先批古董到巴黎去展览知后如何即有无回这是媚外可耻行径;还几位大师捧张画和新
三、1.(1) (2) (3)5 2.(1) (2) (3) 3. ,因此是 倍. §21.2 二次根式的乘除(三) 一、1.D 2.A 3.B 二、1. 2. , , 3.1 4. 三、1.(1) (2)10 2. 3.( ,0) (0, ); §21.3 二次根式的加减(一) 一、1.C 2.A 3.C 二、1.(答案不唯一,如: 、 )2. < < 3.1 三、1.(1) (2) (3)2 (4) 2. §21.3 二次根式的加减(二) 一、1.A 2.A 3.B 4.A 二、1.1 2. , 3. 三、1.(1) (2) (3)4 (4)2 2.因为 >45 所以王师傅的钢材不够用.

二次根式知识点总结及练习题大全

二次根式知识点总结及练习题大全

二次根式知识点总结及练习题大全1.二次根式:式子(≥0)叫做二次根式。

2.最简二次根式:必须同时满足下列条件:⑴被开方数中不含开方开的尽的因数或因式;⑵被开方数中不含分母;⑶分母中不含根式。

3.同类二次根式:二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。

4.二次根式的性质:(1)()2= (≥0);(2)5.二次根式的运算:(1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,•变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式.(3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.=·(a≥0,b≥0);(b≥0,a>0).(4)有理数的加法交换律、结合律,乘法交换律及结合律,•乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算.【典型例题】(2)、平方法当时,①如果,则;②如果,则。

例1、比较与的大小。

例2、比较与的大小。

(3)、分母有理化法通过分母有理化,利用分子的大小来比较。

例3、比较与的大小。

(4)、分子有理化法通过分子有理化,利用分母的大小来比较。

例4、比较与的大小。

(5)、倒数法例5、比较与的大小。

(6)、媒介传递法适当选择介于两个数之间的媒介值,利用传递性进行比较。

例6、比较与的大小。

(7)、作差比较法在对两数比较大小时,经常运用如下性质:①;②例7、比较与的大小。

(8)、求商比较法它运用如下性质:当a>0,b>0时,则:①;②例8、比较与的大小。

二次根式的概念和性质1.判断题(对的打“∨”,错的打“×”)(1)()2=- ();(2)=- ()(3)(-)2=- ();(4)(2)2=2×=1 ()2.下面的计算中,错误..的是()A.=±0.03 B.±=±0.07C.=0.15 D.-=-0.133.下列各式中一定成立的是()A.=+=3+4=7 B.=-C.(-)2= D.=1-=4.()2-=________; 5.+(-)2=________.6.[-]·-6;7.数a在数轴上的位置如图所示,化简:-│1-a│=_______.8.计算:+=_______.9.--()2 10、-|-|11.+ 12.+ 13.二次根式的乘除练习题1、填空:(1)二次根式的乘法法则用式子表示为__________(2)二次根式的除法法则用式子表示为__________(3)把分母中的___化去,叫做分母有理化. 将式子分母有理化后等于_________ (4)成立的条件是_________(5)成立的条件是_________(6)(6)成立的条件是_________(7)化简:(8)计算:1.下列运算正确的是()A.()2=-5 B.(-)2=-5 C.-=5 D.=5a -2-12102.下面的计算中,正确的是( )A .=0.1;B .-=-0.03;C .±=±13;D .=-43.下列命题中,错误..的是( ) A .如果=5,则x=5;B .若a (a ≥0)为有理数,则是它的算术平方根C .化简的结果是-3D .在直角三角形中,若两条直角边分别是,2,那么斜边长为54.计算+|-11|-,正确的结果是( )A .-11B .11C .22D .-225.(-)2-+=________; 6.=________.7.-(2)2=__________.8.比较大小6______7.(填“>”,“=”,“<”号)9.数a 在数轴上的位置如图所示,化简:│-a-1│-2=________.10.=________.11.计算:+++…+=______.12.如果+│b-2│=0,求以a 、b 为边长的等腰三角形的周长.1、判断题:下列运算是否正确.( )(1)( )(2)( )(3)( )(4)( )(5)( )(6)( )(7)( )(8)1、运用乘法分配律进行简单的根式运算.例1 计算 (1) (2)(1) (2)(3)2、比较两个实数的大小.例2 比较下列两个数的大小(1)与(2)与1、与2、与3、与4、与3、二次根式的乘除混合运算.(1)(2)(1)(2)4、运用分母有理化进行计算.例3 化简分析:当分母里二次根式的被开方数都相差1时,如果分母有理化后则变为1或-1,就可将原式变为不含分母的二次根式.思考题:计算二次根式的加减1.若与是同类二次根式,则a=_______,b=_______.2.在,,,中能与进行加减合并的根式有_________.3.计算: +=_________.4.已知长方形的长和宽分别为,,则它的周长是________.5.在实数范围内分解因式:a2-4=_________.6. +与+大小关系是_________.7.下列根式中与其他三个不同类的是()A. B. C. D.8.下列各组二次根式中,可以进行加减合并的一组是()A.与 B.与 C.与2 D.18与9.下列根式合并过程正确的是()A.2--=2 B.a+b=a+bC.5+=a+ D. -=10.计算: ++-的值是()A. +5 B. +8 C.6+ D.12+11.若5+=6,则y值为()A. B.1 C.2 D.312.一个等腰三角形的两边分别为2,3,则这个三角形的周长为()A.3+4 B.6+2C.6+4 D.3+4或6+213.计算:(1)2+3 (2)5+-7(3)++-+ (4)+6a-3a214.如果△ABC的三边a=7,b=4,c=2,求周长P.巩固练习1. 下列根式中,与是同类二次根式的是()A. B. C. D.2. 下面说法正确的是()A. 被开方数相同的二次根式一定是同类二次根式B.与是同类二次根式C.与不是同类二次根式D. 同类二次根式是根指数为2的根式3. 与不是同类二次根式的是()A. B. C. D.4. 下列根式中,是最简二次根式的是()A. B. C. D.★5. 若,则化简的结果是()A. B. C. 3 D. -3★6. 若的整数部分为,小数部分为,则的值是()A. B. C. 1 D. 37. 下列式子中正确的是()A. B.C. D.8. 在中,与是同类二次根式的是。

(2021年整理)二次根式经典提高练习习题(含答案)

(2021年整理)二次根式经典提高练习习题(含答案)

(完整)二次根式经典提高练习习题(含答案)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)二次根式经典提高练习习题(含答案))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)二次根式经典提高练习习题(含答案)的全部内容。

《二次根式》(一)判断题:1.ab 2)2(-=-2ab .……………( ) 2.3-2的倒数是3+2.( ) 3.2)1(-x =2)1(-x .…( ) 4.ab 、31b a 3、ba x 2-是同类二次根式( )5.x 8,31,29x +都不是最简二次根式.( ) (二)填空题:6.当x __________时,式子31-x 有意义. 7.化简-81527102÷31225a= . 8.a -12-a 的有理化因式是____________.9.当1<x <4时,|x -4|+122+-x x =________________.10.方程2(x -1)=x +1的解是____________.11.已知a 、b 、c 为正数,d 为负数,化简2222dc abd c ab +-=______. 12.比较大小:-721_________-341. 13.化简:(7-52)2000·(-7-52)2001=______________.14.若1+x +3-y =0,则(x -1)2+(y +3)2=____________.15.x ,y 分别为8-11的整数部分和小数部分,则2xy -y 2=____________.(三)选择题:16.已知233x x +=-x 3+x ,则………………( )(A)x ≤0 (B )x ≤-3 (C )x ≥-3 (D )-3≤x ≤017.若x <y <0,则222y xy x +-+222y xy x ++=………………………( )(A )2x (B)2y (C )-2x (D )-2y18.若0<x <1,则4)1(2+-x x -4)1(2-+xx 等于………………………( ) (A)x 2 (B )-x2 (C )-2x (D)2x 19.化简aa 3-(a <0)得( )(A)a - (B )-a (C)-a - (D)a 20.当a <0,b <0时,-a +2ab -b 可变形为………………………………………( )(A)2)(b a + (B )-2)(b a - (C)2)(b a -+- (D)2)(b a --- (四)比较大小 21(五)求值:22的整数部分为x ,小数部分为y ,试求2212x xy y ++的值.23。

第21章 二次根式练习题及答案

第21章 二次根式练习题及答案

第21章 二次根式练习题21.1二次根式一、填空题1. 有意义的条件是 。

2. 当__________3. 11m +有意义,则m 的取值范围是 。

4. 当__________x 是二次根式。

5. 在实数范围内分解因式:429__________,2__________x x -=-+=。

6. 2x =,则x 的取值范围是 。

7. 2x =-,则x 的取值范围是 。

8. )1x的结果是 。

9. 当15x ≤5_____________x -=。

10. 把的根号外的因式移到根号内等于 。

11. 11x =+成立的条件是 。

12. 若1a b -+与()2005_____________a b -=。

二、选择题13. )()()230,2,12,20,3,1,x y y x x x x y +=--++中,二次根式有( )A. 2个B. 3个C. 4个D. 5个 14. 下列各式一定是二次根式的是( )A. B.C.D.15. 若23a,则等于( )A. 52a -B. 12a -C. 25a -D. 21a -A. 24a +B. 22a + C. ()222a + D. ()224a + 17. 若1a ≤)A. (1a -B. (1a -C. (1a -D. (1a -18.=成立的x 的取值范围是( ) A. 2x ≠ B. 0x ≥ C. 2x D. 2x ≥19.的值是( )A. 0B. 42a -C. 24a -D. 24a -或42a - 20. 下面的推导中开始出错的步骤是( )()()()()23123224==-==∴=-∴=- A. ()1B. ()2C. ()3D. ()4 三、解答题21. 2440y y -+=,求xy 的值。

22. 当a 1取值最小,并求出这个最小值。

23. 去掉下列各根式内的分母:())10x ())21x24. 已知2310x x -+=25. 已知,a b (10b -=,求20112012a b -的值。

初中数学九上课本变式题

初中数学九上课本变式题

初中数学九上课本变式题实用文案九年级上册·课本亮题拾贝课本中的例、习题是经过编者反复琢磨,认真筛选后精心设置的,具有一定的探究性.在教学的过程中要立足课本,充分发挥课本例、习题的教学功能,可以有效地避免题海战术,不但有利于巩固基础知识,而且还能增强同学们的应变能力,发展创新思维,提高数学素养.21.1二次根式题目计算:.(人教课本P82(4)题)解原式=.点评大家知道,当a≥0时,有意义,且.而当a<0时,也有意义,此时,进一步的,则等于-a(-a>0).为了预防解题粗心出错(如),通常是根据平方(或立方)的意义,先处理掉(好)符号,再按有关顺序和规定运算.演变变式1填空:(1)=;(2)=.(答案:(1)(2))变式2当某时,式子在实数范围内有意义?(答案:>)变式3若是整数,求正整数n的值(至少写出3个).(答案:n=1,2,9,17等.)变式4是否存在正整数n,使得是有理数?若存在,求出一个n的值;若不存在,请说明理由.解假设存在正整数n,使是有理数,则因为3n+2是正整数,所以3n+2应该是一个完全平方数.假设3n+2等于k(k≥3,k是正整数)的平方,则k=3p或者3p+1或者3p+2,也就是说k除以3余0或者1或者2,而(3p)2除以3余0,(3p+1)2=9p2+6p+1,(3p+2)2=9p2+12p+4除以3都余1,所以没有数的平方除以3余2.表明3n+2不是完全平方数,从而假设不成立,因此,不存在正整数n,使是有理数.21.2二次根式的乘除题目计算:.(人教课本P156(4)题)解原式==15.另法原式=.点评进行二次根式的乘除运算时,根据乘法、除法规定((a、b≥0),(a≥0,b>0)),可以从左往右正向使用(如另法),也可以从右往左逆向使用(法一),往往可视其具体题目的数字特点和结构特征,灵活选用.一般情况是尽可能先把根式化简,大数化小,遇到字母开平方时,必须注意字母的正、负性(或讨论).演变变式1填空:(1)=;(2)=.(答案:(1)(2))因为原式=,2+3=5,所以设2=a,3=b,则5=a+b,题目可演变成如下形式:变式2化简:.解原式==b(a+b)=ab+b2.若赋予a一些不同的值(相应的可得到b的值),则可得到一组二次根式的乘法除法试题.变式3甲、乙两同学在化简时,采用了不同的方法:甲:因为某,y是二次根式的被开方数,且在分母上,所以某>0,y >0,于是令某=1,y=1,代入可得,原式=.乙:原式=.从而得出了不同的结果.请指出甲、乙同学的做法是否正确?说明理由.解甲,乙两同学的做法都不正确.甲同学犯了以特殊代替一般的错误,虽然最终结果是.乙同学对题目形式上的意义理解错误,通常是一个整体,是被除式.正确解法是:原式=.21.3二次根式的加减题目已知,,求下列各式的值:(1)某2+2某y+y2;(2)某2-y2.(人教课本P216题)解∵,,∴,某-y=2,某y=2.于是某2+2某y+y2=(某+y)2=,某2-y2=(某+y)(某-y)=.演变变式1已知,,求:(1),(2)的值.解由已知可得a+b=2,,ab=-1.(1)原式=.(2)原式=.变式2如果实数a,b满足a2+2ab+b2=12,,求的值.解显然b≠0,于是由已知,得,∴,即,有,因此.说明上述解法,既抓住了已知式的特征(两个等式的左边有公因式,约后能降次,但要注意是否为0啰!),又避免了解方程组的难点.本题还可以进一步求出a、b的值.∵,∴(某-1)2=3,得某2-2某=2,结合某≠0,两边除以某,得,注意到,则=,,得变式3若实数某满足,试求:(1);(2);(3)的值.(答案(1)8(2)(3))22.2降次——解一元二次方程题目无论p取何值时,方程(某-3)(某-2)-p2=0总有两个不等的实数根吗?给出答案并说明理由.(人教课本P4612题)解原方程可化为某2-5某+6-p2=0.方程根的判别式为△=(-5)2-4(6-p2)=1+4p2,对任何实数值p,有1+4p2>0,∴方程有两个实数根某1=,某2=,且两个根不相等.另法由p2=(某-3)(某-2)=某2-5某+6=,得,无论p取何值≥,因此.点评解一元二次方程有配方法,公式法或因式分解法.一般来说,公式法对于解任何一元二次方程都适用,是解一元二次方程的主要方法,但在具体解题时,应具体分析方程的特点,选择适当的方法.(1)要判定某个二次方程是否有实数解及有几个解时,常常只须考查方程根的判别式.(2)见到含字母系数的二次方程,在实数范围内,首先应有△≥0;若字母在二次项系数中,则还应考虑其是否为0.(3)关于一元二次方程有实数根问题,一般有三种处理方式(何时选择那种方式要根据具体题目的特点来确定):①利用求根公式求出根来;②利用根与系数的关系将这两个根的和与积表达出来:某1+某2=某1某2=,以便后继作整体代换;③将根代入方程中进行整体处理.演变变式1分别对p赋值0,2,等,可得如下确定的方程:解方程:(1)某2-5某+6=0;(2)某2-5某+1=0;(3)4某2-20某+21=0.变式2当某取什么范围内的值时,由方程(某-3)(某-2)-p2=0确定的实数p存在?请说明理由.解对任意实数p,有p2≥0,所以只需p2=(某-3)(某-2)≥0,利用同号相乘得正的原理,得某应满足或解得某≥3或某≤2.表明,当某取某≤2或某≥3范围内的实数时,由方程(某-3)(某-2)-p2=0确定的实数p存在.变式3指出方程(某-3)(某-2)-p2=0的实数根所在的范围?解∵方程有两个不相等的实数根某1=,某2=,且对任意实数p,有1+4p2≥1,∴有某1≥,某2≤,即方程的实数根所在的范围是某≤2或某≥3.变式4试求y=(某-3)(某-2)的最小值.解由y=(某-3)(某-2)=某2-5某+6=,得y的最小值为,当时取得.22.3实际问题与一元二次方程题目如图,要设计一幅宽20cm,长30cm的图案,其中有两横两竖的彩条,横、竖彩条的宽度比为3:2,如果要使彩条所占面积是图案面积的四分之一,应如何设计彩条的宽度(精确到0.1cm)?(人教课本P5310题)分析结合图形,阅读理解题意(数形结合).矩形图案中,长30cm,宽20cm.现设计了横、竖彩条各2条,且其宽度比为3:2,于是设横彩条宽为3某cm,则竖彩条的宽就为2某cm,其长与矩形图案的长宽相关.等量关系式为“使彩条所占面积是图案面积的四分之一”.解根据题意,设横向彩条的宽为3某,则竖向彩条的宽为2某,于是,2某2某2某2某3某3某3020化简,得12某2-130某+75=0.解得.因此横向彩条宽1.8cm,竖向彩条宽1.2cm.另法如图,建立方程,得.法三如图,建立方程,得.点评列一元二次方程解应用题的一般步骤为:(1)设:即设好未知数(直接设未知数,间接设未知数),不要漏写单位;(2)列:根据题意,列出含有未知数的等式,注意等号两边量的单位必须一致;(3)解:解所列方程;(4)验:一是检验是否为方程的解,二是检验是否为应用题的解;(5)答:即答题,怎么问就怎么答,注意不要漏写单位.演变变式1矩形图案的长、宽不变,但设计的两横两竖彩条的宽度相同,如果彩条的面积是图案面积的四分之一,求彩条的宽.(答案:)变式2矩形图案的长、宽不变,现设计一个正中央是与整个矩形长宽比例相同的矩形,其面积是整个矩形面积的四分之三,上下边等宽,左右等宽,应如何设计四周的宽度?解因为矩形图案的长、宽比为30:20=3:2,所以中央矩形的长、宽之比也应为3:2,设其长为3某,则宽为2某,所以,得,从而上、下边宽为,左、右宽为.某某变式3如图,一边长为30cm,宽20cm的长方形铁皮,四角各截去一个大小相同的正方形,将四边折起,可以做成一个无盖长方体容器.求所得容器的容积V关于截去的小正方形的边长某的函数关系式,并指出某某解根据题意可得,V关于某的函数关系式为:某V=(30-2某)(20-2某)某.某即V=4某3-100某2+600某,某的取值范围是0<某<10.变式4在一块长30m、宽20m的矩形荒地上,要建造一个花园,并使花园所占的面积为荒地面积的一半.小明的设计方案如图甲所示,其中花园四周小路的宽度都相等.小明通过列方程,并解方程,得到小路的宽为2.5m或22.5m.小亮的设计方案如图乙所示,其中花园每个角上的扇形(四分之一圆弧)都相同.解答下列问题:(1)小明的结果对吗?为什么?(2)请你帮小亮求出图乙中的某?(3)你还有其他设计方案吗?2020m30m20m30m20m30m甲乙解(1)小明的设计方案:由于花园四周小路的宽度相等,设其宽为某米.则根据题意,列出方程,得,即某2-25某+75=0,解得某=或某=.由于矩形荒地的宽是20m,故舍去某=,得花园四周小路宽为m,所以小明的结果不对.(2)小亮的设计方案:由于其中花园的四个角上均为相同的扇形,所以设扇形的半径为某米,列方程得,所以m.(3)略.23.1图形的旋转题目如图,△ABD,△AEC都是等边三角形.BE与DC有什么关系?你能用旋转的性质说明上述关系成立的理由吗?(人教课本P679题)BCDAE解∵BCDE∴AB=AD,∠BAD=60.同理AE=AC,∠EAC=60.∴以点A为旋转中心将△ABE顺时针旋转60就得到△CAD,∴△ABE≌△ADC,从而BE=DC.另法∵△ABD,△AEC都是等边三角形,∴AB=AD,AE=AC,∠BAD=∠EAC=60,于是∠CAD=∠CAB+∠BAD=∠CAB+∠EAC=∠EAB.从而有△CAD≌△EAB,∴DC=BE.点评由于旋转是刚体运动,旋转前、后的图形全等,所以藉此可以在较复杂的图形中发现等量(或全等)关系,或通过旋转(割补)图形,把分散的已知量聚合起来,便于打通解题思路,疏通解题突破口.CBCBAE变式1如图,△ABC和△ECD都是等边三角形,△EBC可以看作是△DAC经过什么图形变换得到的?说明理由.(人教课本P805题)ACBED说明:如上题图,去掉BC,把D,ACBEDCACABED(1)△ABC与△CDE在BC的异侧.(2)点C在BD的延长线上.(3)C点在BD外.(4)△ACD与△BDE在BD的异侧,且D点在BC的延长线上.BCDAFEGACBEDCBAED(5)△ABC与△CDE都改为顶角相等的等腰三角形,即AB=ACBCDAFEGACBEDCBADCCBAEDBCAED变式2如图,四边形ABCDBCAED与CE有什么关系?说明理由.变式3如图,△ABD,△AEC都是等腰直角三角形,则BE与DC有什么关系?DEDBCAO题目如图,⊙O的直径AB为10cm,弦AC为6cm,∠ACB的平分线交⊙O于D,求BC,AD,BD的长.(人教课本P93例2)解∵AB是直径,∴∠ACB=∠ADB=90.在Rt△ABC中,BC2=AB2-AC2=102-62=82,即BC=8.∵CD平分∠ACB,∴eq\o(AD,\\up5(⌒))=eq\o(BD,\\up5(⌒)),于是AD=BD.又在Rt△ABD中,AD2+BD2=AB2,∴.点评在涉及圆中的有关弧,弦(直径),角(圆心角,圆周角)等问题中,垂径定理,同圆中的关系(在同圆或等圆中,圆心角相等弧相等弦相等弦心距相等圆周角相等)是转化已知,沟通结论的纽带.其中半圆(或直径)所对的圆周角是直角还联结了勾股定理(将出现代数等式).演变变式1在现有已知条件下,可进一步的,求四边形ACBD的面积等于多少?解由例题及解答可知,△ACB,△ADB都是直角三角形,于是四边形ACBD的面积等于cm2.变式2求内角平分线CE的长?抽取出图形中的基本图Rt△ABC,因为AC:BC:AB=3:4:5,于是,DEBCA斜边上的高DEBCA设∠ACB的平分线为CE,过E向两直角边作垂线,则其长相等,设为某,于是,由,得ACDBE,∴ACDB变式3如图,AD是△ABC外角∠EAC的平分线,AD与三角形的外接圆交于点D,求证:BD=CD.解因为圆内接四边形的对角互补,并且任何一个外角都等于它的内对角,所以有∠DAE=∠DCB,而∠DAC=∠DBC(同eq\o(CD,\\up5(⌒))所对的圆周角相等),结合题设AD是∠EAC的平分线,则有∠DCB=∠DBC,所以BD=CD.变式4如图,点A、B、C、D在同一个圆上,四边形ABCD的对角线把4个内角分成8个角,这些角中哪些是相等的角?(课本P93练习第1题)解∠1=∠4,∠2=∠7,∠3=∠6,∠5=∠8.ODBODBCAEOCAB5432178ACDB6变式5如图,A、P、B、C是⊙O上的四点,∠APC=∠CPB=60,判断△ABC的形状并证明你的结论.(课本P95第11题)解∵∠BAC=∠BPC=60,∴∠ABC=∠APC=60,因而△ABC是等边三角形.变式6(托勒密定理)AC·BD=AB·CD+AD·BC(见上图).24.2与圆有关的位置关系题目如图,△ABC中,∠ABC=50,∠ACB=75,点O是内心,求∠BOC的度数.(人教课本P1061题)解∵O是△ABC内切圆的圆心(内心),BCOA∴OB,OC分别是∠ABC和∠ACB的平分线.BCOA∵∠ABC=50,∠ACB=75,∴∠OBC=25,∠OCB=37.5,因此∠BOC=180-25-37.5=117.5.点评抓住“内心与各顶点连线平分每一个内角,且到三条边的距离相等”这些事实,很容易促进角或线段的转化,突破关键,解决问题.演变变式1已知周长为l的△ABC的内切圆半径等于r,求△ABC的面积.解设内心为O,连接OA,OB,OC,则OA、OB、OC把△ABC分割成三个易求的小三角形,其面积的和为:=.BCOA变式2如图,点O是△ABCBCOA解∵=,∴.DBCOA说明变式2有多种不同的解法,如连结AO并延长,或延长BO 交DBCOA变式3如图,△ABC中,∠B<∠C,O在∠A的平分线上,求证:AB+OC>AC+OB.证明∵∠B<∠C,∴AB>AC,于是在AB上取点D,使AD=AC,连结OD,则由已知和作图,可得△AOC≌△AOD,进而OC=OD.在△OBD中,有BD+OD>OB,DBCOAE∴(AB+OC)-(AC+OB)=(AB-AD)+OD-OB=BDDBCOAE故AB+OC>AC+OB.变式4如图,△ABC中,∠B,∠C的平分线相交于点O,过O的直线DE∥BC,DE分别交AB、AC于D、E,求证:DE=BD+CE.解由已知DE∥BC,BD、CO分别平分∠B、∠C,可以发现△BDO和△CEO是等腰三角形,于是有BD=DO,CE=OE,因此BD+CE=DO+OE=DE.变式5如图,B、C在射线AD、AE上,BO、CO分别是∠DBC和∠ECB 的角平分线.ABDOEC4321ABDOEC4321(2)若∠A=90,120时,∠O分别是多少度?(3)求∠A与∠O的关系式.解∵BO、CO是∠DBC和∠ECB的平分线,∴∠DBC=2∠2,∠ECB=2∠3,∴∠ABC=180-2∠2,∠ACB=180-2∠3.在△ABC中,∠A+∠ABC+∠ACB=180,∴∠A+180-2∠2+180-2∠3=180,即∠2+∠3=90+∠A.在△BOC中,∠2+∠3+∠O=180,∴∠O=90-∠A.(1)当∠A=60时,∠O=90-某60=60.(2)当∠A=90时,∠O=90-某90=45.当∠A=120时,∠O=90-某120=30.CBADE(3)∠A与∠O的关系式为∠O+∠A=90CBADE24.3正多边形与圆题目画一个正五边形,再作出它的对角线,得到如图所示的五角星.(人教课本P1172题)解先画一个圆,将圆五等分,分点依次为A,B,C,D,E,顺次连结这些点,得正五边形ABCDE,再作出正五边形的对角线AC,AD,BD,BE,CE,即得如图所示的五角星.点评正多边形与圆的关系非常密切,只要把一个圆分成相等的一些弧(或把圆心角分成一些相等的角),就可以作出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆,如上所示作出的是一个正五角星.CBACBADEMN变式1求五角星中五个角的和.解∵∠AMN=∠B+∠D,∠ANM=∠C+∠E,∴∠A+∠B+∠C+∠D+∠E=∠A+∠AMN+∠ANM=180.表明正五角星中五个角的和为180.另法连结CD,则在△AEF和△CDF中,FCBADE有∠B+∠E=180-∠BFE=180-∠CFD=∠FCBADE在△ACD中,∠A+∠ACD+∠ADC=180,即∠A+∠ACE+∠DCF+∠ADB+∠CDF=180.∴∠A+∠B+∠C+∠D+∠E=180.说明正五角星中每个角都是36.变式2如变式1的图,在正五角星中存在黄金分割数,CBADE可以证明(参见人教版课本46页“阅读与思考——CBADE变式3如图,是将不规则的五角星改为退化的五角星,则其五个角的和等于多少?解如图,将其转化为不规则的五角星,问题立即获解,五个角的和等于180,或连结两个顶点后利用三角形内角和定理即可解决.变式4六角星,七角星,甚至n角星的各个顶角之和等于多少?解都等于180.说明解答星型n边形顶角和的问题关键是根据“三角形的内角和为180及其推论”,设法将分散的角归结到某个三角形或四边形中,这是解答此类题目的金钥匙.24.4弧长和扇形面积CABO题目如图,从一个直径是1m的圆形铁皮中剪出一个圆心角为90的扇形,求被剪掉的部分的面积;如果将剪下来的扇形围成一个圆锥,圆锥的底面圆的半径是多少?(人教课本CABO解连结BC,因为扇形的圆心角为90,所以BC过圆心O(即BC是直径),于是在等腰直角三角形ABC中,,扇形的面积为,扇形的弧长为,因此被剪掉的部分的面积为(m2).将剪下来的扇形围成一个圆锥,圆锥的底面圆的半径r满足,得(m).点评求解图形(阴影部分)的面积时,通常是利用等积变换,分割、重叠等,把求图形(阴影部分)的面积转化为求圆,扇形,弓形,三角形或多边形等基本图形的面积.CDCDABOElrh变式1求所围成的圆锥的高h和体积lrh解,.变式2如图,AC,BD是⊙O中两条互相垂直的直径,以A为圆心AB为半径画弧eq\o(BD,\\up5(⌒)),求证:月牙形阴影部分的面积等于△ABD的面积.解设圆的半径为R,则.以A为圆心,AD为半径画出的扇形ABED的面积,弓形BED的面积为,所以月牙形阴影部分的面积等于,即与△ABD的面积相等.变式3如图,从一个半径是r的圆形铁皮中剪出一个圆心角为的扇形,求扇形的面积;如果将剪下来的扇形围成一个圆锥,求圆锥底面圆的半径.解连结OA,OB,OC,则OA=OB=OC=r,∠BOC=2∠BAC,OA平分∠BAC,即,∠BOC=2.过O作OD⊥AB于D,则OD平分AB,于是AB=2AD.OCABD在Rt△ADO中,,OCABD因此,扇形ABC的面积为,BC弧长为.∵eq\o(BC,\\up5(⌒))所对的圆心角为2,∴将扇形围成圆锥,则圆锥底面圆的半径r1满足2r1=eq\o(BC,\\up5(⌒))=,得.25.1概率解落在海洋里的可能性更大.点评可能性是指能成为事实的属性.然而世界上有很多事情具有偶然性,人们不能事先判断这些事情是否会发生.概率就是从数量上用来描述(刻画)随机事件发生的可能性的大小.对这一问题,需要充分把陨石抽象成随机地散落,地球也是必须抽象成平辅的面,与生活中通常所看到的质点只能正面地落在面上(不可能弯曲行进而落在背面上).我们生活的地球,脚下大地的形状并不是无边无际的辽阔平面,而是大致接近于球面.演变变式1已知地球表面陆地面积与海洋面积的比约为3:7.如果宇宙中飞来一块陨石落在地球上,则“落在海洋里”与“落在陆地上”的概率各是多大?解落在海洋里的概率为,落在陆地上的概率为.变式2小明随机地在如图所示的正三角形及其内部区域投针,则针扎到正三角形的内切圆(即阴影部分)区域的概率为().A.B.C.D.解设正三角形的边长为单位1,则正三角形的面积为,正三角形的内切圆半径,内切圆的面积为,针扎到正三角形的内切圆(即阴影部分)区域的概率为,选C.60某yO601515变式3甲60某yO601515解以某和y分别表示甲、乙两人到达约会地点的时间,则两人能够会面的条件是∣某-y∣≤15.在平面直角坐标系中,点(某,y)的所有可能结果是边长为60的正方形,而可能会面的时间由图中的阴影部分所表示,所以两人能会面的概率为.说明把上述问题抽象成如下模型是:设在面积为S的区域中有任意一个小区域A,小区域的面积为SA,则任意投点,点落入A中的可能性大小与SA成正比,而与A的位置及形状无关,为.注意,如果是在一个线段上投点,那么面积则改为长度;如果是一个立方体内投点,则面积就改为体积.25.2用列举法求概率题目在6张卡片上分别写有1-6的整数.随机地抽取一张放回,再随机地抽取一张,那么第二次取出的数字能够整除第一次取出的数字的概率是多少?(P154练习第1题)解设第一次随机地取出的数字为a,第二次随机地取出的数字为b,则(b,a)共有36种情况.ab1234561(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)2(2,1)(2,2)(2,3)(2,4)(2,5)(2,6)3(3,1)(3,2)(3,3)(3,5)(3,6)4(4,1)(4,2)(4,3)(4,4)(4,5)(4,6)5(5,1)(5,2)(5,3)(5,4)(5,5)(5,6)6(6,1)(6,3)(6,4)(6,5)(6,6)从上表可知,b能够整除a的情况有(1,1),(2,1),(3,1),(4,1),(5,1),(6,1),(2,2),(4,2),(6,2),(3,3),(6,3),(4,4),(5,5),(6,6),共14种.因此,所求的概率为.点评用列表或画树状图的方法,可以不重不漏的列举事件发生的所有结果,我们把这两种方法统称为列举法;列举法只适用于等可能事件;等可能事件的特点是:出现的结果是有限多个,各结果发生的可能性相等.用列举法求概率的一般步骤是:(1)用列表或画树状图的方法,列举出事件所有可能出现的结果,并判断每个结果发生的可能性是否相等;(2)如果都相等,再确定所有可能出现的结果个数n及所求事件出现的结果个数m;(3)利用公式计算所求事件A的概率,即.列表或画树状图都可以清晰地、不重不漏的表示出某个事件发生的所有可能结果,从而很方便地求出某些事件发生的概率.当试验包含两步时,列表法比较方便,也可以用画树状图法;当试验在三步或三步以上时,用画树形图的方法方便.演变变式1求第二次取出的数字小于第一次取出的数字的概率是多少?(答案:)变式2把第一次取出的数字作分母,第二次取出的数字做分母,所求得分数是真分数的概率?(答案:)变式3求两次取出的数字和大于8的概率?(答案:)变式4同时抛掷两枚均匀的正方体骰子.求:(1)掷得两个6的概率;(2)两枚骰子的点数之和为奇数的概率;(3)两枚骰子的点数之积为奇数的概率;(4)所得两个点数之和大于9的概率.(答案:(1)(2)(3)(4))变式5已知关于某的不等式a某-3<0(其中a≠0).(1)当a=2时,求此不等式的解,并在数轴上表示此不等式的解集;(2)在6张卡片上分别写有1-6的整数,从中任意抽取一张,以卡片上的数作为不等式中的系数a,求使该不等式没有正整数解的概率.(答案:(1),在数轴上的表示略(2))变式6小明和小颖做抽取卡片(6张卡片上分别写有1-6的整数)游戏,规则如下:①游戏前,每人选一个数字;②每次各抽取1张卡片;③如果同时抽取的1张卡片点数之和,与谁所选数字相同,那么谁就获胜.(1)列出同时抽取的卡片数字所有可能出现的结果;(2)已知小明选的数字是5,小颖选的数字是6.如果你也加入游戏,你会选什么数字,使自己获胜的概率比他们大?请说明理由.(答案:(1)略(2)同时抽取两张卡片,可能出现的结果有36种,它们出现的可能性相同.所有的结果中,满足两张卡片点数和为5(记为事件A)的结果有4种,即(1,4),(2,3),(3,2),(4,1),所以小明获胜的概率为.满足两张卡片点数和为6(记为事件B)的结果有5种,即(1,5),(2,4),(3,3),(4,2),(5,1),所以小颖获胜的概率为.要想使自己获胜的概率比他们大,必须满足两张卡片点数和出现的结果多于5种,由所列表格可知,只有两张卡片点数和为7(记为事件C)的结果多于5种,有6种,即(1,6),(2,5),(3,4),(4,3),(5,2),(6,1),所以.因此,要想使自己获胜的概率比他们大,所选数字应为7.)变式7A箱中装有3张相同的卡片,它们分别写有数字1,2,4;B箱中也装有3张相同的卡片,它们分别写有数字2,4,5.现从A箱、B箱中各随机地取出1张卡片,请你用列表或画树状图的方法求:(1)取出的两张卡片数字恰好相同的概率;(2)如果取出A箱中卡片上的数字作为十位上的数字,取出B箱中卡片上的数字作为个位上的数字,求两张卡片组成的两位数能被3整除的概率.(答案:(1)(2))说明由于两次取出来的数字互有较强的关系,所以可以据此编出有关这两次数字的加法、减法、乘法、除法、乘方、开平方、不等式、指数、对数,甚至函数的概率问题.。

九年级数学上册第21章二次根式21.1二次根式ppt作业课件新版华东师大版

九年级数学上册第21章二次根式21.1二次根式ppt作业课件新版华东师大版

B.14
C.19
D.以上都不对
11.若 (a-2)2+a-2=0,则 a 的取值范围是____a_≤__2____.
12.若|a+b+1|与 a+2b+4互为相反数,则(a+b)2018=__1____.
13.若 x、y 是实数,且 y= x2-9+x-93-x2+7,则 5x+6y=_-___2_2___.
A. (-3)2=-3 B.- 32=-3 C. (±3)2=±3 D. 32=±3
6. (2a-1)2=1-2a,则(
7.当 m<0 时,化简 mm2的结果是__-__1____.
8.化简: (1) (-412)2;
解:412
(2) (3.14-π)2.
解:π-3.14
9.(绍兴期中)若实数 x 满足|x-3|+ x2+8x+16=7,化简 2|x+4|
- (2x-6)2的结果是( A )
A.4x+2
B.-4x-2
C.-2
D.2
10.已知实数 x,y 满足|x-3|+x y-8=0,则以 x,y 的值为两边长
的等腰三角形的周长是( C )
A.14 或 19
18.已知非零实数 a,b 满足 a2-8a+16+|b-3|+ (a-5)(b2+1) +4=a,求 ab-1 的值
解:由题意得:(a-5)(b2+1)≥0,∴a≥5, ∴ a2-8a+16= (a-4)2=|a-4|=a-4, ∴ a2-8a+16+|b-3|+ (a-5)(b2+1)+4=a-4+|b-3|+ (a-5)(b2+1)+4 =a,∴|b-3|+ (a-5)(b2+1)=0. 又∵|b-3|≥0, (a-5)(b2+1)≥0, ∴|b-3|= (a-5)(b2+2)=0,∴b=3,a=5, ∴ab-1=52=25.

【练闯考】华师版九年级数学上册全章学案:第21章%E3%80%80二次根式

第21章 二次根式21.1 二次根式1.a (a ≥0)表示非负数a 的算术平方根,也就是说,a (a ≥0)是一个非负数,它的平方等于a ,即有:(1)a __≥__0(a ≥0);(2)(a )2=__a __(a ≥0). 2.形如a __(a ≥0)__的式子叫做二次根式.3.a 2=|a |=⎩⎨⎧ a (a ≥0)-a (a <0)知识点1:(a )2=a (a ≥0) 1.计算:(2015)2=__2015__;(53)2=__53__. 2.把下列非负数写成一个非负数的平方的形式:(1)7=;(2)8.3=;(3)112=;(4)t =t ≥0). 知识点2:二次根式的概念3.下列式子:①4;②12;③-5;④38;⑤(-1)2.其中二次根式的个数有( C ) A .1个 B .2个 C .3个 D .4个 4.在下列式子中,一定是二次根式的有( C ) a ,-22,-x 2+1,(-13)2,3-2,32x 2,π.A .2个B .3个C .4个D .5个 知识点3:二次根式有意义的条件5.(2014·武汉)若x -3在实数范围内有意义,则x 的取值范围是( C ) A .x >0 B .x >3 C .x ≥3 D .x ≤3 6.(2014·巴中)要使式子m +1m -1有意义,则m 的取值范围是( D ) A .m >-1 B .m ≥-1C .m >-1且m ≠1D .m ≥-1且m ≠17.下列四个式子中,x 的取值范围为x ≥2的是( C )A.x -2x -2 B.1x -2C.x -2D.2-x8.使二次根式-(x -1)2有意义的x 的取值范围是__x =1__. 知识点4:二次根式的性质 9.计算(-3)2的结果是( B ) A .-3 B .3 C .-9 D .9 10.如果(3a -2)2=2-3a ,则( B ) A .a <23 B .a ≤23C .a >23D .a ≥2311.化简下列各式: (1)4; 解:2 (2)49; 解:7(3)2025; 解:45(4)(-5)2; 解:5 (5)-(13)2; 解:-13(6)4×10-4. 解:2×10-212.已知-1≤a ≤1,下列是二次根式的为( C ) A.a -12B.1-1aC.1-a 2D.a13.文文设计了一个关于实数运算的程序,按此程序,输入一个数后,输出的数比输入的数的平方小1,若输入7,则输出的结果为( B )A .5B .6C .7D .814.实数a 在数轴上的位置如图所示,则(a -4)2+(a -11)2化简后为( A )A .7B .-7C .2a -15D .无法确定15.已知点P (x ,y )在函数y =1x 2+-x 的图象上,那么点P 应在平面直角坐标系中的( B )A .第一象限B .第二象限C .第三象限D .第四象限16.(2014·张家界)若x -1+(y +2)2=0,则(x +y)2014等于( B ) A .-1 B .1 C .2014 D .-2014 17.使代数式2x -13-x有意义的x 的取值范围是__x ≥12且x ≠3__.18.(2014·德州)若y =x -4+4-x 2-2,则(x +y)y =__14__.19.x 取怎样的实数时,下列各式在实数范围内有意义? (1)x +1-2-x ; 解:-1≤x ≤2 (2)53-2x; 解:x<32(3)41-x . 解:x ≥0且x ≠120.(1)已知x ,y 为实数,且满足1+x -(y -1)1-y =0,试求x 2015-y 2015的值.(2)若a ,b 为实数,且a =b -7+14-2b +2,求a +b 的平方根.解:(1)由已知得1+x +(1-y )1-y =0,由于1+x ≥0,1-y ≥0,故根据非负数的性质可得:1+x =0,1-y =0,解得x =-1,y =1,代入则有x 2015-y 2015=(-1)2015-12015=-1-1=-2 (2)由于b -7≥0,14-2b ≥0,则有b ≥7,b ≤7,故b =7,所以a =2,所以a +b 的平方根为±321.甲、乙两位同学做一道相同的题目: 化简求值:1a +1a 2+a 2-2,其中a =15. 甲同学的解法是:原式=1a +(1a -a )2=1a +1a -a =2a -a =10-15=495. 乙同学的解法是:原式=1a+(a -1a )2=1a +a -1a =a =15.请问哪位同学的解法正确?请说明理由. 解:甲同学的解法是正确的,理由如下:∵1a2+a 2-2=(a -1a )2=|1a-a|,且a=15,即1a =5.∴1a >a.∴1a -a>0.∴|1a -a|=1a -a.乙同学在去绝对值时忽略了1a 与a 的大小关系,导致错误21.2 二次根式的乘除21.2.1 二次根式的乘法 21.2.2 积的算术平方根1.a ·b =a __≥__0,b __≥__0).即:两个算术平方根的积,等于它们被开方数的__积__的算术平方根.2.ab =a __≥__0,b __≥__0).即:积的算术平方根,等于各因式算术平方根的__积__.知识点1:二次根式的乘法 1.计算:(2014·河北)8×12=__2__;2×18=__6__;35×16920=__34__. 2.等式x +1·x -1=x 2-1成立的条件是( C ) A .x >1 B .x <-1C .x ≥1D .x ≤-13.下列各等式成立的是( D )A .45×25=8 5B .53×42=20 5C .43×32=7 5D .53×42=20 6 4.计算: (1)98×2; 解:14(2)52×10; 解:5(3)36×167;解:1242(4)6a 3×3a2(a ≥0). 解:3a 25.王老师想设计一个长方形的实验基地,便于同学们进行实地考察,为了考查一下同学们的数学应用能力,他把长方形的基地设计长为8020米,宽为345米,请同学们算出这块实验基地的面积.解:这块实验基地的面积为8020×345=240900=240×30=7 200(平方米)知识点2:积的算术平方根6.化简二次根式(-3)2×6得( B ) A .-3 6 B .3 6 C .±3 6 D .67.若等式9-x2=3-x·3+x成立,则x的取值范围是( A )A.-3≤x≤3 B.x>-3C.x<3 D.-3<x<38.化简:(1)48=;(2)-72=;(3)-135=.9.化简:(1)108;解:63(2)(-5)×(-90);解:152(3)292-212;解:20(4)18x2yz3(x≥0,y≥0,z≥0).解:3xz2yz10.下列化简正确的是( B )A.(-4)×(-9)=-4×-9=6B.12×27=4×81=18C.16+4=16+4=4+2=6D.414=4×14=2×12=111.若直角三角形两条直角边的边长分别为15 cm和12 cm,那么此直角三角形斜边长是( B )A.3 2 cm B.3 3 cmC .9 cmD .27 cm12.设2=a ,3=b ,用含a ,b 的式子表示54,则下列正确的是( A ) A .3ab B .2ab C .ab 2 D .a 2b 13.已知m =(-33)×(-221),则有( A ) A .5<m <6 B .4<m <5C .-5<m <-4D .-6<m <-514.若点P (x ,y )在第二象限内,化简x 2y 的结果是. 15.比较大小:(1)23__<__32;(2)-211__>__-3 5. 16.将根号外面的因数移到根号内:35=,212=;-656=,a -1a=. 17.若20n 是整数,则正整数n 的最小值是__5__. 18.计算: (1)15×60; 解:23 (2)6×1218; 解:33(3)3220×(-1215)×(-1324). 解:15219.化简: (1)3200;解:402 (2)-21×(-28); 解:143(3)43×92×5;解:725 (4)1327x 2y 3z 4(xy ≥0).解:xyz 23y20.小强在计算机课上设计了一幅长140π cm ,宽35π cm 的矩形图片,他还想设计一个面积与其相等的圆,请你帮助他求出该圆的半径.解:设圆的半径为r cm ,则140π×35π=πr 2,35×4×35π2=πr 2,∴70π=πr 2,∴r 2=70,∴r =70,即圆的半径为70 cm21.探究过程:观察下列各式及其验证过程. 338=3+38. 验证: 338=32×38=338=33-3+332-1=3(32-1)+332-1=3(32-1)32-1+332-1=3+38 同理可得:4415=4+415,5524=5+524,……通过上述探究你能猜测出:a aa 2-1=a >1),并验证你的结论. 解:a aa 2-1=a +a a 2-1,验证:a aa 2-1=a 2·a a 2-1=a 3a 2-1=a 3-a +aa 2-1=a 3-a a 2-1+aa 2-1=a (a 2-1)a 2-1+aa 2-1=a +aa 2-121.2.3 二次根式的除法1.a b=a __≥__0,b __>__0).即:两个算术平方根的商,等于它们被开方数的__商__的算术平方根.2.a b =a __≥__,b __>__0).即:商的算术平方根,等于被除式的算术平方根与除式的算术平方根的__商__.3.被开方数中不含__分母__,并且被开方数中所有因数(或因式)的幂的指数都小于__2__的二次根式称为最简二次根式.4.二次根式的除法,要化去分母中的根号,只要将分子,分母同乘以一个__恰当的二次根式__就可以了,这种化简过程称为分母有理化.知识点1:二次根式的除法 1.计算:10÷2=( A ) A.5 B .5 C.52 D.1022.菱形ABCD 的面积为27,对角线AC 的长为23,则对角线BD 的长为( D ) A.92 B .9 C.32D .3 3.等式x x -2=xx -2成立的条件为__x>2__.4.计算下列各题: (1)60÷5;解:23 (2)2423;解:2 (3)45÷215; 解:6 (4)2a 2bb(a ≥0).解:2a知识点2:商的算术平方根5.下列各式计算正确的是( C )A.-4-9=-4-9=-2-3=23B.429=213 2C.4×225=25 2D.1249=7126.(2014·济宁)如果ab>0,a+b<0,那么下面各式:①ab=ab,②ab·ba=1,③ab÷ab=-b,其中正确的是( B )A.①②B.②③C.①③D.①②③7.化简:(1)11549;(2)6316;(3)25a481b2(b>0).解:(1)87(2)374(3)5a29b知识点3:最简二次根式8.下列式子中,属于最简二次根式的是( B )A.9B.7C.20D.139.把下列各个二次根式化为最简二次根式.(1)8a2b3(a≥0);解:2ab2b(2)83;解:236(3) 4.8;解:2305(4)3y32x2(x>0).解:y 2x6y10.下列各式计算正确的是( C ) A.483=16 B.326=13C.3663=22D.698=27 11.下列二次根式中:12,12a ,30, 1.6,a 2-b 2,5a 3,a 2,a2,9x +18y ,最简二次根式有( B )A .2个B .3个C .4个D .5个12.在化简323时,甲、乙、丙三位同学化简的方法分别是:甲:原式=3×23=3×2×33×3=6;乙:原式=3×69=3×69=6;丙:原式=32×23= 6.其中解答正确的是( D )A .甲B .乙C .丙D .都正确13.设2=a ,3=b ,用含a ,b 的式子表示0.24,则下列表示正确的是( B ) A .2ab B .0.2ab C .0.1ab 2 D .0.1a 2b14.计算:(1)3850=__65__;(2)26315=15;(3)-3227=__3;(4)12+13=6.15.已知点A (x 1,-3),B (22,y 2)都在反比例函数y =-32x的图象上,则x 1=__,y 2=__-32__.16.把(a -b )1b -a的根号外的因式移到根号内的结果是. 17.计算: (1)18÷8×272;解:946(2)30×32223÷2212; 解:32 (3)945÷212×32223. 解:54318.先化简,再求值:xx 3-2x 2÷x -2x -2,其中x =8. 解:原式=1x,当x =8时,原式=2419.进行二次根式化简时,有时会碰到像53,23+1这样的式子,其实还可以将其进一步化简:53=5×33×3=533;23+1=2×(3-1)(3+1)(3-1)=2(3-1)(3)2-12=3-1. 以上这种化简的步骤叫做分母有理化.23+1还可以这样化简:23+1=3-13+1=(3)2-123+1=(3+1)(3-1)3+1=3-1.请选择适当的方法化简:(1)13-1;(2)25+3;(3)143-7.解:(1)13-1=3+1(3-1)(3+1)=3+12(2)25+3=(5)2-(3)25+3=(5+3)(5-3)5+3=5-3(3)143-7=43+7(43-7)(43+7)=43+7-1=-43-721.3二次根式的加减1.几个二次根式化成最简二次根式后,如果__被开方数相同__,这几个二次根式就叫做同类二次根式.2.二次根式相加减时,先把各个二次根式__化简__,再将__同类二次根式__合并.知识点1:同类二次根式1.(2014·孝感)下列二次根式中,不能与2合并的是( C )A.12 B.8 C.12 D.182.下列各式中与3是同类二次根式的是( C )A.24B.23 C.27 D.0.33.如果最简二次根式3a-8和17-2a是同类二次根式,那么a=__5__.知识点2:二次根式的加减4.下列计算正确的是( C )A.43-33=1 B.2+3= 5C.212= 2 D.3+22=5 25.(2014·哈尔滨)计算:12-3=.6.计算:(1)45-1480+515-53145;解:25(2)(30.5-613)-(218-20-2927). 解:2-433+25知识点3:二次根式的运算与乘法公式7.若x =a -b ,y =a +b ,则xy 的值是( D ) A .2a B .2b C .a +b D .a -b8.已知a =22+3,b =22-3,则:(1)a +b =; (2)a -b =__6__; (3)ab =__-1__; (4)a 2+b 2=__34__;(5)a 2-2ab +b 2=__36__. 9.计算:(1)(2+3)(2-3); 解:-1 (2)(2-12)2; 解:12(3)(5+32)2. 解:23+610知识点4:二次根式的混合运算 10.(2014·台湾)算式(6+10×15)×3之值为何?( D ) A .242 B .12 5 C .1213 D .18 211.计算:24-18×13=.12.计算:(1)(54-12+1)÷3; 解:32-2+33(2)45×35+3(5-2). 解:3+1513.计算412+313-8的结果是( B ) A.3+2 B.3 C.33D.3- 2 14.下列计算正确的是( D ) A .(22-3)(2+3)=-1 B .(2+5)(2-5)=1 C.6÷(2-3)=3- 2D.27-123=9-4=115.计算32×12+2×5的结果估计在( A ) A .7到8之间 B .8到9之间 C .9到10之间 D .10到11之间16.已知a =5+2,b =5-2,则a 2+b 2+7的值为( C ) A .3 B .4 C .5 D .617.计算:(26+5)2015×(26-5)2016=.18.工厂因实际需要,用钢材焊制三个面积分别为2 m 2,18 m 2,32 m 2的正方形铁框,则焊工师傅需用钢材的总长度为19.计算:(1)(212-6118+348)×52;解:806-10(2)(318+1550-412)÷32; 解:2(3)(2014·荆门)24×13-4×18×(1-2)0. 解:220.已知a =7+2,b =7-2,求下列代数式的值: (1)ab 2+a 2b ;解:原式=ab (b +a ).当a =7+2,b =7-2时,原式=67(2)a 2-2ab +b 2;解:原式=(a -b )2.当a =7+2,b =7-2时,原式=16(3)a 2-b 2.解:原式=(a +b )(a -b ).当a =7+2,b =7-2时,原式=8721.阅读下列解题过程:12+1=1×(2-1)(2+1)(2-1)=2-1, 13+2=1×(3-2)(3+2)(3-2)=3- 2.请回答下面的问题:(1)观察上面的解题过程,请直接写出1n +n -1的值;(2)利用上面的规律计算: (11+2+12+3+13+4+…+12013+2014+12014+2015)×(1+2015). 解:(1)1n +n -1=n -n -1 (2)原式=(2-1+3-2+4-3+…2014-2013+2015-2014)×(1+2015)=(2015-1)(2015+1)=(2015)2-12=2014综合练习 二次根式的化简与运算1.(2014·徐州)下列运算中错误的是( A ) A.2+3=5 B.2×3= 6 C.8÷2=2 D .(-3)2=3 2.计算48-913的结果是( B ) A .- 3 B. 3 C .-113 3 D.11333.估算50+232的值在( C ) A .5和6之间 B .6和7之间 C .7和8之间 D .8和9之间 4.已知m =1+2,n =1-2,则代数式m 2+n 2-3mn 的值为( C ) A .9 B .±3 C .3 D .55.等式(4-x )2(6-x )=(x -4)6-x 成立的条件是( B ) A .x ≥4 B .4≤x ≤6 C .x ≥6 D .x ≤4或x ≥66.如果(2+2)2=a +b 2(a ,b 为有理数),那么a +b 等于( D ) A .2 B .3 C .8 D .107.若a =3-10,则代数式a 2-6a -2的值为( C ) A .0 B .1 C .-1 D.108.(2014·黔南州)实数a 在数轴上的位置如图,化简(a -1)2+a =__1__.9.化简:3×(2-3)-24-|6-3|=__-6__.10.已知等腰三角形的两边长为32和45,则此等腰三角形的周长为. 11.观察下列各式:32-1=2×4,42-1=3×5,52-1=4×6,…,请写出满足上述规律的用n (n 为任意自然数,且n ≥3)表示的等式:__.12.计算:(1)32-212-418+348; 解:22+83(2)(0.5-213)-(132-75); 解:382+1333(3)212÷1550×1234; 解:322(4)(548+12-627)÷3; 解:4(5)(3+2-5)(3-2-5). 解:6-21513.化简:18-92-3+63+(3-2)0+(1-2)2.解:原式=32-322-(1+2)+1+|1-2|=32-322-1-2+1+2-1=322-114.对于任意不相等的两个实数a,b,定义运算※如下:a※b=a+ba-b,如3※2=3+23-2=5.求8※12的值.解:8※12=8+128-12=20-4=25-4=-5215.已知x-1=3,求代数式(x+1)2-4(x+1)+4的值.解:原式=(x+1-2)2=(x-1)2,当x-1=3时,原式=(3)2=316.已知x,y为实数,且y=3-x+4x-12+1,化简(5-x)2|y-3|-y2-8y+16.解:∵3-x≥0,4x-12≥0,∴x=3,y=1,∴原式=(5-x)(3-y)-(y-4)2=(5-x)(3-y)-(4-y)=(5-3)×(3-1)-(4-1)=2×2-3=4-3=117.如图,在▱ABCD中,DE⊥AB,E点在AB上,DE=AE=EB= 5.求▱ABCD的周长和面积.解:∵DE ⊥AB ,DE =AE =5,∴AD =AE 2+ED 2=(5)2+(5)2=10.∵四边形ABCD 为平行四边形,∴BC =AD =10,DC =AB =2 5.∴▱ABCD 的周长为AD +DC +CB +AB =2(10+25)=210+4 5.▱ABCD 的面积为AB ×DE =25×5=1018.已知a -b =5+3,b -c =5- 3. (1)求a -c 的值;解:a -c =(a -b )+(b -c )=25(2)求a 2+b 2+c 2-ab -bc -ac 的值.解:a 2+b 2+c 2-ab -bc -ac =12[(a -b )2+(b -c )2+(a -c )2]=1819.已知等式|a -2014|+a -2015=a 成立,求a -20142的值. 解:∵a -2015≥0,∴a ≥2015.∴|a -2014|=a -2014.∴a -2014+a -2015=a.∴a -2015=2014.∴a -2015=20142.∴a -20142=201520.已知11-1的整数部分是a ,小数部分是b ,试求(11+a )(b +1)的值. 解:∵3<11<4,∴2<11-1<3,故11-1的整数部分是2,即a =2,∴11-1的小数部分是11-1-2=11-3,即b =11-3.∴(11+a )(b +1)=(11+2)(11-3+1)=第21页 (11+2)(11-2)=(11)2-22=721.观察下列等式及验证过程: 12-13=1223;12(13-14)=1338; 13(14-15)=14415. 验证:12-13=222×3=1223; 12(13-14)=12×3×4=32×32×4=1338. (1)请按照上述等式及验证过程的基本思想,猜想14(15-16)的变形结果及验证过程; (2)针对上述各式反映的规律,写出用n 表示的等式,并验证.(n 为自然数) 解:(1)14(15-16)=15524 验证:14(15-16)=14×5×6=54×52×6=15524(2)1n (1n +1-1n +2)=1n +1n +1(n +1)2-1 验证:1n (1n +1-1n +2)=1n ·(n +1)(n +2)=n +1n (n +1)2(n +2)=1n +1n +1n (n +2)=1n +1n +1(n +1)2-1。

思维新观察答案-九年级数学全一册答案-2013年6月版(课时讲练)-智能一对一

思维新观察答案-九年级数学全一册答案-2013年6月版(课时讲练)-智能一对一教材目录第二十一章二次根式21.1 二次根式21.2 二次根式的乘除21.3 二次根式的加减阅读与思考海伦-秦九韶公式数学活动小结复习题21第二十二章一元二次方程22.1 一元二次方程22.2 降次——解一元二次方程阅读与思考黄金分割数22.3 实际问题与一元二次方程实验与探究三角点阵中前n行的点数计算数学活动小结复习题22第二十三章旋转23.1 图形的旋转23.2 中心对称信息技术应用探索旋转的性质23.3 课题学习图案设计阅读与思考旋转对称性数学活动小结复习题23第二十四章圆24.1 圆24.2 点、直线、圆和圆的位置关系24.3 正多边形和圆阅读与思考圆周率Π24.4 弧长和扇形面积实验与探究设计跑道数学活动小结复习题24第二十五章概率初步25.1 随机事件与概率25.2 用列举法求概率阅读与思考概率与中奖25.3 用频率估计概率实验与探究П的估计25.4 课题学习键盘上字母的排列规律数学活动小结复习题25智能一对一 (新思维新观察视频答案-九年级数学全一册答案) 智能一对一简介:智能学习系统就是无人值守的学习系统,从此解放家长,方便老师,帮助学生;智能一对一系统是一个解决学生作业难题的智能学习系统;一个老师一个学生一道习题一个视频,做到全方位辅导孩子写作业,帮助解决家庭作业难题;智能一对一,做到无人值守也能有老师指导学习的情况下,还做到了随时随地学习,随时随地解决作业难题,让学生的难题无处可躲,发现一个解决一个。

针对学生学习的教辅作业本,每个习题都配有老师讲解视频,只要有网络可随时随地解决不会的作业问题,精准查找方便学习。

同步人教版教材章节,题目内容丰富,每章每节都有对应的练习题,每道练习题下都附有详细的解题过程、提示、答案。

适合中学生课后知识巩固,期中、期末考前强化。

同时有错题本方便查阅复习。

新思维新观察视频答案app安卓应用图标,在各大应用平台搜索“智能一对一”下载安卓手机应用。

21.1二次根式(1)学案

第二十一章二次根式教材内容1.本单元教学的主要内容:二次根式的概念;二次根式的加减;二次根式的乘除;最简二次根式.2.本单元在教材中的地位和作用:二次根式是在学完了八年级下册第十七章《反比例正函数》、第十八章《勾股定理及其应用》等内容的基础之上继续学习的,它也是今后学习其他数学知识的基础.教学目标1.知识与技能(1)理解二次根式的概念.(2a≥0)是一个非负数,2=a(a≥0)(a≥0).(3a≥0,b≥0)a≥0,b>0)a≥0,b>0).(4)了解最简二次根式的概念并灵活运用它们对二次根式进行加减.2.过程与方法(1)先提出问题,让学生探讨、分析问题,师生共同归纳,得出概念.•再对概念的内涵进行分析,得出几个重要结论,并运用这些重要结论进行二次根式的计算和化简.(2)用具体数据探究规律,用不完全归纳法得出二次根式的乘(除)法规定,•并运用规定进行计算.(3)利用逆向思维,•得出二次根式的乘(除)法规定的逆向等式并运用它进行化简.(4)通过分析前面的计算和化简结果,抓住它们的共同特点,•给出最简二次根式的概念.利用最简二次根式的概念,来对相同的二次根式进行合并,达到对二次根式进行计算和化简的目的.3.情感、态度与价值观通过本单元的学习培养学生:利用规定准确计算和化简的严谨的科学精神,经过探索二次根式的重要结论,二次根式的乘除规定,发展学生观察、分析、发现问题的能力.教学重点1.a≥0)a≥0)是一个非负数;2=a(a≥0)(a≥0)•及其运用.2.二次根式乘除法的规定及其运用.3.最简二次根式的概念.4.二次根式的加减运算.教学难点1a≥02=a(a≥0(a≥0)的理解及应用.2.二次根式的乘法、除法的条件限制.3.利用最简二次根式的概念把一个二次根式化成最简二次根式.单元课时划分本单元教学时间约需11课时,具体分配如下:21.1 二次根式3课时21.2 二次根式的乘法3课时21.3 二次根式的加减3课时教学活动、习题课、小结2课时章节测试讲评2课时21.1 《二次根式(1)》学案课型: 上课时间:课时:学习内容:二次根式的概念及其运用学习目标:1a≥0)的意义解答具体题目.2、提出问题,根据问题给出概念,应用概念解决实际问题.学习过程一、自主学习(一)、复习引入(学生活动)请同学们独立完成下列三个问题:问题1:已知反比例函数y=3x,那么它的图象在第一象限横、•纵坐标相等的点的坐标是___________.. 问题2:甲射击6次,各次击中的环数如下:8、7、9、9、7、8,那么甲这次射击的方差是S 2,那么S=_________.) (二)学生学习课本知识4、5页(三)、探索新知1、知识: 平方根的式子,我们就把它称二次根式.因此,一般地,我们把形如 •的式子叫做二次根式, .例如:形如 、 、 是二次根式。

新人教版八年级二次根式教案及练习

16.1.1 二次根式教学内容二次根式的概念及其运用 教学目标a ≥0)的意义解答具体题目. 提出问题,根据问题给出概念,应用概念解决实际问题. 教学重难点关键1a ≥0)的式子叫做二次根式的概念;2a ≥0)”解决具体问题. 教学过程 一、复习引入(学生活动)请同学们独立完成下列三个课本P2的三个思考题: 二、探索新知,都是一些正数的算术平方根.像这样一些正数的a≥0)•”称为二次根号.(学生活动)议一议: 1.-1有算术平方根吗? 2.0的算术平方根是多少?3.当a<0 老师点评:(略)例11x(x>0、、1x y+(x ≥0,y •≥0).分析方数是正数或0.x>0、(x ≥0,y ≥0);、1x、1x y +.例2.当x分析:由二次根式的定义可知,被开方数一定要大于或等于0,所以3x-1≥0,解:由3x-1≥0,得:x ≥13当x ≥13三、巩固练习教材P5练习1、2、3. 四、应用拓展例3.当x 11x +在实数范围内有意义?分析11x +≥0和11x +中的x+1≠0. 解:依题意,得23010x x +≥⎧⎨+≠⎩由①得:x ≥-32由②得:x ≠-1当x ≥-32且x ≠-111x +在实数范围内有意义.例4(1)已知,求xy的值.(答案:2)(2)若,求a 2004+b 2004的值.(答案:25)五、归纳小结(学生活动,老师点评) 本节课要掌握:1a ≥02.要使二次根式在实数范围内有意义,必须满足被开方数是非负数.六、布置作业1.教材P5 1,2,3,42.选用课时作业设计.第一课时作业设计一、选择题1.下列式子中,是二次根式的是()A.-B C D.x2.下列式子中,不是二次根式的是()A.B C D.1 x3.已知一个正方形的面积是5,那么它的边长是()A.5 B.C.15D.以上皆不对二、填空题1.形如________的式子叫做二次根式.2.面积为a的正方形的边长为________.3.负数________平方根.三、综合提高题1.某工厂要制作一批体积为1m3的产品包装盒,其高为0.2m,按设计需要,•底面应做成正方形,试问底面边长应是多少?2.当x是多少时,x+x2在实数范围内有意义?3.4.x有()个.A.0 B.1 C.2 D.无数5.已知a、b为实数,且=b+4,求a、b的值.第一课时作业设计答案: 一、1.A 2.D 3.B二、1a≥0)23.没有三、1.设底面边长为x,则0.2x2=1,解答:2.依题意得:230xx+≥⎧⎨≠⎩,32xx⎧≥-⎪⎨⎪≠⎩∴当x>-32且x≠0时,x+x2在实数范围内没有意义.3.1 34.B5.a=5,b=-416.1.2 二次根式(2) 教学内容1a≥0)是一个非负数;22=a(a≥0).教学目标a≥02=a(a≥0),并利用它们进行计算和化简.通过复习二次根式的概念,用逻辑推理的方法推出a≥0)是一个非负)2=a(a≥0);最后运用结论严谨解题.教学重难点关键1a ≥02=a (a ≥0)及其运用.2a ≥0)是一个非负数;•用探2=a (a ≥0). 教学过程 一、复习引入 (学生活动)口答 1.什么叫二次根式?2.当a ≥0a<0有意义吗? 老师点评(略). 二、探究新知议一议:(学生分组讨论,提问解答)a ≥0)是一个什么数呢?老师点评:根据学生讨论和上面的练习,我们可以得出做一做:根据算术平方根的意义填空:)2=_______;)2=_______;2=______;)2=_______;2=______)2=_______)2=_______.是4方等于4)2=4.)2=22=92=3)2=13)2=72)2=0,所以例1 计算1)2 2.(2 32 4)2分析2=a (a ≥0)的结论解题.)2 =32,(2 =322=32²5=45,2=56)274=.三、巩固练习 计算下列各式的值:2 )2 (4)2)2 ()222-四、应用拓展 例2 计算12(x ≥0) 22 324 2分析:(1)因为x ≥0,所以x+1>0;(2)a 2≥0;(3)a 2+2a+1=(a+1)≥0;(4)4x 2-12x+9=(2x )2-2²2x ²3+32=(2x-3)2≥0.所以上面的4)2=a (a ≥0)的重要结论解题. 解:(1)因为x ≥0,所以x+1>02=x+1(2)∵a 2≥02=a 2 (3)∵a 2+2a+1=(a+1)2又∵(a+1)2≥0,∴a 2+2a+1≥0 2+2a+1 (4)∵4x 2-12x+9=(2x )2-2²2x ²3+32=(2x-3)2 又∵(2x-3)2≥0∴4x 2-12x+9≥02=4x 2-12x+9 例3在实数范围内分解下列因式: (1)x 2-3 (2)x 4-4 (3) 2x 2-3分析:(略) 五、归纳小结 本节课应掌握:1a ≥0)是一个非负数;22=a (a ≥0);反之:a=2(a ≥0). 六、布置作业1.教材P5 5,6,7,82.选用课时作业设计. 第二课时作业设计 一、选择题1.下列各式中根式的个数是( ).A .4B .3C .2D .12.数a 没有算术平方根,则a 的取值范围是( ). A .a>0 B .a ≥0 C .a<0 D .a=0 二、填空题1.()2=________.2_______数. 三、综合提高题 1.计算(12 (2)-2 (3)(12)2 (4)()2(5)2.把下列非负数写成一个数的平方的形式:(1)5 (2)3.4 (3)16(4)x (x ≥0)3=0,求x y 的值. 4.在实数范围内分解下列因式: (1)x 2-2 (2)x 4-9 3x 2-5第二课时作业设计答案: 一、1.B 2.C 二、1.3 2.非负数三、1.(12=9 (2)-)2=-3 (3)(12)2=14³6=32(4)()2=9³23=6 (5)-62.(1)5=2 (2)3.4=2(3)16=2 (4)x=2(x ≥0)3.103304x y x x y -+==⎧⎧⎨⎨-==⎩⎩ x y =34=814.(1)x 2-2=()(2)x 4-9=(x 2+3)(x 2-3)=(x 2+3)( (3)略21.1 二次根式(3)教学内容a(a≥0)教学目标(a≥0)并利用它进行计算和化简.通过具体数据的解答,(a≥0),并利用这个结论解决具体问题.教学重难点关键1a(a≥0).2.难点:探究结论.3.关键:讲清a≥0时,a才成立.教学过程一、复习引入老师口述并板收上两节课的重要内容;1a≥0)的式子叫做二次根式;2a≥0)是一个非负数;3.2=a(a≥0).那么,我们猜想当a≥0是否也成立呢?下面我们就来探究这个问题.二、探究新知(学生活动)填空:=______;=_______.(老师点评):根据算术平方根的意义,我们可以得到:;1102337.例1 化简(1 (2 (3 (4分析:因为(1)9=-32,(2)(-4)2=42,(3)25=52,(4)(-3)2=32(a ≥0)•去化简.解:(1 (2(3 (4 三、巩固练习 教材P 7练习2. 四、应用拓展例2 填空:当a ≥0;当a<0,•并根据这一性质回答下列问题.(1,则a 可以是什么数?(2,则a 可以是什么数?(3,则a 可以是什么数?分析(a ≥0),∴要填第一个空格可以根据这个结论,第二空格就不行,应变形,使“( )2”中的数是正数,因为,当a ≤0那么-a ≥0.(1)根据结论求条件;(2)根据第二个填空的分析,逆向思想;(3)根据(1)、(2│a │,而│a │要大于a ,只有什么时候才能保证呢?a<0.解:(1,所以a ≥0;(2,所以a ≤0;(3)因为当a≥0,要使,即使a>a所以a不存在;当a<0,要使,即使-a>a,a<0综上,a<0例3当x>2分析:(略)五、归纳小结(a≥0)及其运用,同时理解当a<0a 的应用拓展.六、布置作业1.教材P5习题16.1 3、4、6、8.2.选作课时作业设计.第三课时作业设计一、选择题1).A.0 B.23C.423D.以上都不对2.a≥0确的是().A.BC D.二、填空题1..2是一个正整数,则正整数m的最小值是________.三、综合提高题1.先化简再求值:当a=9时,求甲乙两人的解答如下:甲的解答为:原式(1-a)=1;乙的解答为:原式=a+(a-1)=2a-1=17.两种解答中,_______的解答是错误的,错误的原因是__________.2.若│1995-a│,求a-19952的值.(提示:先由a-2000≥0,判断1995-a•的值是正数还是负数,去掉绝对值)3. 若-3≤x≤2时,试化简│x-2│答案:一、1.C 2.A二、1.-0.02 2.5三、1.甲甲没有先判定1-a是正数还是负数2.由已知得a-•2000•≥0,•a•≥2000所以,a-2000=19952,所以a-19952=2000.3. 10-x21.2 二次根式的乘除教学内容a≥0,b≥0),反之(a≥0,b≥0)及其运用.教学目标a≥0,b≥0a≥0,b≥0),并利用它们进行计算和化简由具体数据,发现规律,导出=a≥0,b≥0)并运用它进行计算;•(a≥0,b≥0)并运用它进行解题和化简.教学重难点关键a≥0,b≥0(a≥0,b≥0)及它们的运用.a≥0,b≥0).a<0,b<0)=教学过程一、复习引入(学生活动)请同学们完成下列各题.1.填空(1=______;(2=_______.(3.参考上面的结果,用“>、<或=”填空.³_____,³_____,³2.利用计算器计算填空(1,(2(34(5老师点评(纠正学生练习中的错误)二、探索新知(学生活动)让3、4个同学上台总结规律.老师点评:(1)被开方数都是正数;(2)两个二次根式的乘除等于一个二次根式,•并且把这两个二次根式中的数相乘,作为等号另一边二次根式中的被开方数.一般地,对二次根式的乘法规定为反过来:例1.计算(1(2(3(4分析:a≥0,b≥0)计算即可.解:(1(2(3=(4例2 化简(1(2(3(4(5(a≥0,b≥0)直接化简即可.解:(1³4=12(2³9=36(3³10=90(4(5三、巩固练习(1)计算(学生练习,老师点评)①②³(2) 化简:教材P11练习全部四、应用拓展例3.判断下列各式是否正确,不正确的请予以改正:(1=(2解:(1)不正确.³3=6(2)不正确.五、归纳小结本节课应掌握:(1(a≥0,b≥0a ≥0,b≥0)及其运用.六、布置作业1.课本P111,4,5,6.(1)(2).2.选用课时作业设计.第一课时作业设计一、选择题1.化简).A.B.C.D.2=)A.x≥1 B.x≥-1 C.-1≤x≤1 D.x≥1或x≤-1 3.下列各等式成立的是().A.B.³C.³D.二、填空题1.2.自由落体的公式为S=12gt2(g为重力加速度,它的值为10m/s2),若物体下落的高度为720m,则下落的时间是_________.三、综合提高题1.一个底面为30cm³30cm长方体玻璃容器中装满水,•现将一部分水例入一个底面为正方形、高为10cm铁桶中,当铁桶装满水时,容器中的水面下降了20cm,铁桶的底面边长是多少厘米?2.探究过程:观察下列各式及其验证过程.(1)验证:==(2)验证:=同理可得:==,……通过上述探究你能猜测出:(a>0),并验证你的结论.答案:一、1.B 2.C 3.A 4.D二、1.2.12s三、1.设:底面正方形铁桶的底面边长为x,则x2³10=30³30³20,x2=30³30³2,.2.验证:==21.2 二次根式的乘除(2)教案总序号:5教学内容=(a≥0,b>0(a≥0,b>0)及利用它们进行计算和化简.教学目标(a≥0,b>0(a≥0,b>0)及利用它们进行运算.利用具体数据,通过学生练习活动,发现规律,归纳出除法规定,并用逆向思维写出逆向等式及利用它们进行计算和化简.教学重难点关键(a≥0,b>0(a≥0,b>0)及利用它1们进行计算和化简.2.难点关键:发现规律,归纳出二次根式的除法规定.教学过程一、复习引入(学生活动)请同学们完成下列各题:1.写出二次根式的乘法规定及逆向等式.2.填空;(1(2;;(3(4.3.利用计算器计算填空:=_________,(2=_________,(3)=______,(4)(1=________.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
二次根式21.1—21.2习题
学习目标:
1.理解二次根式的概念,并利用a(a≥0)的意义解答具体题目.
2.提出问题,根据问题给出概念,应用概念解决实际问题.

3. 掌握二次根式的除法法则;理解商的算术平方根的性质,并能把二次根式化为最简二次根式.
学习重点: 二次根式的化简与乘除运算
学习难点: 利用二次根式对具体问题的解决
一复习历程
基础训练:
1、形如______________________的式子叫做二次根式

2、4的平方根是
3、使2x有意义的x的取值范围是 .
4、面积为a的正方形的边长为________.
5、负数________平方根.

6.如果3222aaaa,则实数a的取值范围是( )

(A)0a (B)02a (C)20a (D)2a
7.下列二次根式中,最简二次根式是( )

(A)12 (B)2x (C)32 (D)324ab
二、例题精选
例1 计算: (1)、 (2) (3)、
.

(4)、-2 (5)、 (6)、
2

(2)计算 =_____; =_____;÷=_____;=_____ ;=_____.
三、自我测试
1.已知一个正方形的面积是5,那么它的边长是( )
A.5 B.5 C.15 D.以上皆不对

2.若代数式1xx在实数范围内有意义,则x的取值范围是( )
A.0x B.10xx且 C.0x D.0x
3.代数式11x有意义时,字母x的取值范围是( )
A.0x B.0x C.10xx且 D.10xx且
4.把18a化简的结果应是( )

(A)32a(B)32aa (C)32aa (D)23aa

5.下列计算中,正确的是( )
(A)355344 (B)5539335777

(C)19131716254520 (D)224832(4832)(4832)165
6、下列根式中属最简二次根式的是( )
A.21a B.12 C.8 D.27
7.下列式子中,是二次根式的是( )
A.-7 B.37 C.x D.x

8、如果-3x+5 是二次根式,则x的取值范围是( )
A、x≠-5 B、x>-5 C、x<-5 D、x≤-5
9、等式x2-1 =x+1 ·x-1 成立的条件是( )
A、x>1 B、x<-1 C、x≥1 D、x≤-1
3

10、在下列根式中,不是最简二次根式的是( )
A、a2 +1 B、2x+1 C、2b 4 D、0.1y
11、下面的等式总能成立的是( )
A、a2 =a B、aa2 =a2 C、a ·b =ab D、ab =a ·b

12、要使x-1 3-x 有意义,则x的取值范围是
13、若1-a2 与a2-1 都是二次根式,那么1-a2 +a2-1 =
14.等式2111xxx成立的条件是 .

15.计算:(1)1625 ;(2)(15)(27) .
(3)5614 ; (4)1.530.17 .
16.化简:(1)3227ab= ;(2)32418aa .
17.计算:(1)23649yx= ;(2)3227 .

19.已知mnm1在实数范围内有意义,则nmP,在平面直角坐标系中的第_____象限.
20、计算:
(1) 、 (2)、÷( ) (3)、÷ ( 4)

21、计算:
(1)48300 (2)641449169 (3)11904032
4

(4)3515 (5)18(3222) (6)2.7331.1
22、化简:
(1)221917 (2)1834 (3)34yx (4)
3
1

18(2)2aa

四、应用与拓展
计算:1、3÷× = ________ ; x÷
x = _________.

2、在△ABC中,∠C= 90O,AC=8cm ,BC=4cm ,则AB边上的高CD是_______
3、若3x+3x有意义,则2x=_________.

4、若实数xy,满足22(3)0xy,则xy的值是
5、使式子2(5)x有意义的未知数x有( )个.
A.0 B.1 C.2 D.无数
6、已知a、b为实数,且5a+2102a=b+4,求a、b的值。

7、某工厂要制作一批体积为1m3的产品包装盒,其高为0.2m,按设计需要,•
底面应做成正方

形,试问底面边长应是多少?
5

8.当x是多少时,23xx+x2在实数范围内有意义?
学习体会
1、 本节课你有哪些收获?你还有哪些疑惑?

2、 你认为老师上齐课过程中还有哪些需要注意或改进的地方?
3、 预习时疑难解决了吗?

相关文档
最新文档