二次根式 基础知识详解+基本典型例题解析

合集下载

二次根式知识点及典型例题(含答案)

二次根式知识点及典型例题(含答案)

4、不会比较根式的大小5、不会利用二次根式的非负性6、对最简二次根式的条件掌握不牢八、经典例题例1、求下列各数的平方根与算术平方根( )A.36B.81121 C.2-(5) D.41【答案】A.2=36±(6)∴36的平方根为6±,即6± ∴36的算术平方根为6,即B.2981=11121±()∴81121的平方根为911±,即911±∴81121的算术平方根为911,即911 C.25=25±()∴2-(5)的平方根为5±,即5± ∴2-(5)的算术平方根为5,即D.()241=41±∴41的平方根为 ∴41【解析】一个正数的平方根有两个,它们互为相反数,解答本题注意解题步骤的规范书写,不是完全平方数的正数,它的平方根只能用含有根号的形式表示.练习1、计算:(1 (2)【答案】(1)211=121(2)20.9=0.810.9±表示121的算术平方根,表示0.81的平方根,、的意义是解答本题的关键例2、如果一个正数的平方根为3a-5和2a-10,求这个正数【答案】由题意得,3a-5+2a-10=0得a=3∴3a-5=4∴这个数为24=16【解析】一个正数的平方根有两个,它们互为相反数,而互为相反数的两个数相加为0,故(3a-5)+(2a-10)=0.求出a后,可知3a-5与2a-10的值,在考虑哪个正数的平方根是3a-5,2a-10的值即可。

练习1、x为何值时,下列各式有意义。

【答案】解:A.10x-≥,即1x≥有意义B.10x-≥且0x≥,即01x≤≤有意义C.10x+>,即1x>-D.230x+≥,即x都有意义【解析】a≥例3、【答案】解252736<<<<即56<<的整数部分是5【解析】处在哪两个完全平方数之间.例4、:x y【答案】解:33y-1和互为相反数3y-1∴和1-2x互为相反数3y-1+1-2x=0∴:=3:2x y∴互为相反数,则a和b互为相反数,所以本题中3y-1与1-2x 互为相反数例5、实数0.5的算术平方根等于().D.1 2【答案】C【解析】理解算术平方根的意义,把二次根式化成最简形式是解答本题的关键.例6、的算术平方根是()A. 4±B. 4C. 2±D. 2【答案】D【解析】4的算术平方根,4的算术平方根为2.例7、根据下列运算正确的是()3=2 C. (x+2y)2=x2+2xy+4y2 D. A.x6+x2=x3 B.√−8√18−√8=√2【答案】解:A、本选项不能合并,错误;3=-2,本选项错误;B、√-8C、((x+2y)2=x2+2xy+4y2,本选项错误;D、√18-√8=3√2-2√2=√2,本选项正确.故选D【解析】此题考查了完全平方公式,合并同类项,以及负指数幂,幂的乘方,熟练掌握公式及法则是解本题的关键.例8、)【答案】B综合练习简单1. 式子在实数范围内有意义,则x的取值范围是()A.<1 B.≥1 C.≤-1 D.<-1【答案】B【解析】由二次根式的意义,知:x-1≥0,所以x≥1.2.如果代数式有意义,那么x的取值范围是()A.x≥0 B.x≠1 C.x>0 D.x≥0且x≠1【答案】D解:根据题意得:x≥0且x﹣1≠0.解得:x≥0且x≠1.故选D.【解析】代数式√x有意义的条件为:x﹣1≠0,x≥0.即可求得x的范围.x-13.要使式子2-x有意义,则x的取值范围是()A.x>0 B.x≥﹣2 C.x≥2 D.x≤2【答案】D解:根据题意得,2﹣x≥0,解得x≤2.【解析】根据被开方数大于等于0列式计算即可得解.4. 下列计算正确的是()=√2 D.3+2√2=5√2 A.4√3-3√3=1 B.√2+√3=√5 C.2√12【答案】C【解析】 A、4√3-3√3=√3,原式计算错误,故本选项错误;B、√2与√3不是同类二次根式,不能直接合并,故本选项错误;=√2,计算正确,故本选项正确;C、2√12D、3+2√2≠5√2,原式计算错误,故本选项错误;根据二次根式的化简及同类二次根式的合并,分别进行各选项的判断即可.5. 若,则=【答案】6【解析】原方程变为:,所以,,由得:=3,两边平方,得:=7,所以,原式=7-1=6中等题1.结果是。

二次根式典型题

二次根式典型题

二次根式典型题一、二次根式有意义的条件1. 当x取何值时,二次根式√(x - 3)有意义?- 解析:对于二次根式√(a),被开方数a≥slant0时才有意义。

所以在√(x - 3)中,x-3≥slant0,解得x≥slant3。

2. 若√(2x + 1)+√(1 - 2x)有意义,则x的取值范围是多少?- 解析:要使√(2x + 1)和√(1 - 2x)都有意义,则<=ft{begin{array}{l}2x + 1≥slant01-2x≥slant0end{array}right.。

解2x+1≥slant0得x≥slant-(1)/(2),解1 - 2x ≥slant0得x≤slant(1)/(2)。

所以x的取值范围是x=(1)/(2)。

二、二次根式的性质3. 化简√((-5)^2)。

- 解析:根据二次根式的性质√(a^2)=| a|,所以√((-5)^2)=| - 5| = 5。

4. 已知a<0,化简√(4a^2)。

- 解析:因为a<0,根据√(a^2)=| a|=-a(当a<0时),所以√(4a^2)=√(4)×√(a^2) = 2| a|=-2a。

三、二次根式的运算5. 计算√(12)+√(27)。

- 解析:先将二次根式化为最简二次根式,√(12)=√(4×3)=2√(3),√(27)=√(9×3)=3√(3)。

所以√(12)+√(27)=2√(3)+3√(3)=5√(3)。

6. 计算√(8)-√(frac{1){2}}。

- 解析:√(8)=√(4×2)=2√(2),√(frac{1){2}}=(√(1))/(√(2))=(√(2))/(2)。

则√(8)-√(frac{1){2}}=2√(2)-(√(2))/(2)=(4√(2)-√(2))/(2)=(3√(2))/(2)。

7. 计算(√(3)+1)(√(3)-1)。

- 解析:根据平方差公式(a + b)(a - b)=a^2-b^2,这里a=√(3),b = 1,所以(√(3)+1)(√(3)-1)=(√(3))^2-1^2=3 - 1=2。

二次根式例题讲解

二次根式例题讲解

典例剖析
例 2 完成下列各个问题: (1)已知 ( x y 3)2 2 y 0, 1 则 x y ;
考点解析: 1.三种非负数:二次根式,绝对值,完全平方式; 2.几个非负数之和为 0,则每个非负数都为 0.
典例剖析
例 2 完成下列各个问题: (2)当 x 取何值时, 9 x 1 3 的值最小?
典例剖析
例 1 完成下列各个问题: (1)使二次根式 4x 1 有意义的 x 的取值范围 是 x≥0.25 ; (2)函数 y

x 3 的自变量 x 的取值范围 x 1
.
x≥-3 且 x≠1
考点解析: 1.二次根式有意义的条件:被开方数为非负数; 2.分式有意义的条件:分母不等于 0.
解:∵ 9x 1 ≥0 ∴当 9 x 1 0 时, 9 x 1 3 的值最小
1 解得 x 9 1 即当 x 时, 9 x 1 3 的值最小 9
考点解析: 二次根式的值为非负数.
典例剖析
例 2 完成下列各个问题: (3)若 a<1,化简式子 ( a 1) 2 1 的结果是( D ) A. a 2 B. 2 a C. a
x y (3 2 2 ) (3 2 2 )
3 2 2 3 2 2 4 2 ∴ x 2 y xy2 xy( x y) 4 2
王牌例题
例 2 二次根式的化简求值问题 已知 x 3 2 2,y 3 2 2 , 2 2 求式子 x y xy 的值. 考点解析: 化简求值步骤 先化简
二次根式的运算
知识梳理
知识点 1 与二次根式有关的概念: (1)二次根式的定义:一般地,我们把形如 a (a≥0) 的式子叫做二次根式,“ ”称为二次根号. (2)最简二次根式:满足下列两个条件的二次根式, 叫做最简二次根式. ①被开方数不含分母; ②被开方数不含能开得尽方的因数或因式. (3)同类二次根式:几个二次根式化简成最简二次根 式后,如果被开方数相同,这几个二次根式就叫 做同类二次根式.

二次根式知识点及例题

二次根式知识点及例题

二次根式知识点及例题(总19页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除第十六章二次根式知识点一、二次根式1.定义0)a≥a叫做被开方数.注意:(1)二次根号的定义是从形式上界定的,即必须含有二次根号.(2)二次根式的被开方数可以是一个数字,也可以是一个代数式,但必须满足被开方数大于等于0.(3)根指数是2,这里的2可以省略不写.(4)形如0)a≥的式子也是二次根式,它表示b例题:1.下列各式中,一定是二次根式的是.12x⎫<⎪⎭练习:1.下列各式中,一定是二次根式的是.0,0)x y≥≥知识点二、二次根式有意义的条件1.a≥a<2.从具体的情况总结,如下:(1)0A≥;(2)⋅⋅⋅有意义的条件:ABN≥⎧⎪≥⎪⎨⋅⋅⋅⎪⎪≥⎩;(3)0A>;(4)二次根式作为分式的分子如B A有意义的条件:00A B ≥⎧⎨≠⎩.例题:1.当x 是怎样的实数时,下列各式在实数范围内有意义.11x ++练习:知识点三、二次根式的性质(重点,难点)性质10)a ≥具有双重非负性,它即表示二次根式,又表示非负数a 的算式平方根,具体描述为:0;a 是非负数. 注意:几个非负数的和为0时,这几个非负数必须同时为0. 例题:练习:则2015)(yx 的值为________.3.已知a ,b 4b +,求a ,b的值.2210b b -+=,求221a ba +-的值.性质2:2(0)a a=≥,即一个非负数的算术平方根的平方等于它本身. 注意:不能忽略0a ≥这一限制条件,导致类似24=-的错误.性质3(0)(0)a a aa a ≥⎧=⎨-<⎩,即当一个数为非负数时,它的平方的算术平方根等于它本身,记为(0)a a =≥(0)a a -<.注意:不要认为a2-的错误. 2的区别与联系:联系 2a 与2()a 均为非负数,且当0a ≥时,22()a a =例题: 1.计算: (1) 23()5 (2)22(10)- (3) 22(3)3- (4)21(14)22.计算:(1)23()5(2)23()5- (3) 2(6)- (4)2(3.14)π-3.当m <3时,2(3)m -=_______.4.设三角形的三边长为a ,b ,c ,试化简:2222()()()()a b c a b c b a c c b a +++--+-----. 练习: 1.计算:(1) 2( 3.4) (2) 2( 3.4)- (3) 2(3)π- (4) 2(4)π-2.若23a <<,则22(2)(3)a a ---等于( ) A . 52a - B . 12a - C . 25a - D . 21a -3.已知实数a b 、在数轴上的位置如图所示,化简:222+()a b a b +-.4.已知a 2224a a a +--的值.知识点四、二次根式的乘除 1.二次根式的乘法法则0,0)ab ab a b =≥≥.提示:(1)在设计二次根式运算时没有特备说明,所有字母都表示正数;(2),a b 可以是数,也可以是代数式,但必须是非负的. 推广a bcd abcd =()0,0,0,0a b c d ≥≥≥≥.ab ab =a b (0,0a b ≥≥).例题: 1.计算:(1)62⨯ (2) )32(276-⨯ (3))196()121(-⨯-(4))33)(31(+-38xy y (6)8y y2.化简:(1)1259⨯ (2) 24323.(1)比较的大小__________, (2)比较3655与的大小__________. 练习:1.计算: (1) )196()121(-⨯- (2) )33)(31(+-329y (4) 9y xy2.化简:(1)12116⨯ (2) 96323.比较6456与的大小__________,(2)比较8338与的大小__________.3.分母有理化:把分母中的根号化去,叫做分母有理化。

专题01 二次根式(解析版)

专题01 二次根式(解析版)

专题01 二次根式【题型1】求二次根式的值例题.(2022春·广东惠州·八年级统考期末)下列各式是二次根式的是()A B C D键.【变式1-1】1.(2022秋·河南开封·)A.1到2之间B.2到3之间C.3到4之间D.4到5之间a=的值是__________.2.(2022秋·上海·八年级统考期末)当5【题型2】求二次根式中的参数例题.(2023春·全国·n的最小值为( )A.2B.3C.4D.5【变式2-1】1.(2022春·广西柳州·n为______.2.(2023春·全国·八年级专题练习)是二次根式,则a的取值范围是______;则正整数a的最小值是______.【题型3】二次根式有意义的条件例题.(2023秋·河北石家庄·x有()A.5个B.4个C.3个D.2个【变式3-1】1.(2022春·广东惠州·八年级统考期末)在函数y=中,自变量x的取值范围是()A .3x ³-B .3x ³-且0x ¹C .0x ¹D .3x >-2.(2023秋·广东深圳·有意义,则x 的取值范围是____________.【题型4】利用二次根式的性质化简例题.(2023秋·河北邢台· )A .B D .【变式4-1】1.(2023秋·河北石家庄·的结果是()A B.3C.D.9____________.【题型5】复合二次根式的化简例题.(2023春·0)m>所得结果相同的是()A.B.C.-D.-故选:D .【点睛】本题考查了二次根式有意义的条件,根据二次根式的性质化简,掌握二次根式的性质是解题的关键.【变式5-1】1.(2022春·上海杨浦·九年级校考阶段练习)当0a <=______.2.(2023春·浙江·m n 、,是22m n x +=且mn x ±变成2222()m n mn m n +±=±解:∵3+12=++(2222111+´=+=+1==请你仿照上面的方法,化简下列各式:;一.选择题1.(2023春·全国·八年级专题练习)下列各式中是二次根式的为( )A .a +bB .s tC .3x -D )0a ³A .1x ¹B .0x ³C .0x ³且1x ¹D .01x ££【答案】C【分析】根据二次根式有意义:被开方数为非负数;分式有意义:分母不为0直接求解即可.【详解】解:由题意得,0x ³且10x -¹,即0x ³且1x ¹.故选:C .【点睛】本题考查了二次根式及分式有意义的条件,二次根式有意义:被开方数为非负数;分式有意义:分母不为0.3.(2023春·全国·八年级专题练习)在下列代数式中,不是二次根式的是( )4.(2022·山东聊城·统考中考真题)射击时,子弹射出枪口时的速度可用公式=v a 为子弹的加速度,s 为枪筒的长.如果52510m /s a =´,0.64m s =,那么子弹射出枪口时的速度(用科学记数法表示)为( )A .20.410m /s´B .20.810m /s ´C .2410´m /sD .28s10m /´A2B2C.2D.2A.B.-2C.±2D.故选:A.【点睛】本题考查的是完全平方公式的变形式以及二次根式的化简运算,解题的关键是熟悉完全平方公式与二次根式的化简时注意正负值.7.(2023春·全国·八年级专题练习)若2m=+,则mn-=()A.425B.254C.254-D.425-8.(2023春·八年级课时练习)x的分式方程3211mx x+=--有正数解,则符合条件的整数m的和是( )A.﹣7B.﹣6C.﹣5D.﹣4二、填空题+的值是______. 9.(2023春·八年级课时练习)已知有理数满足52b a,则a b=+-【答案】30x -£<【分析】根据二次根式有意义的条件,分式有意义的条件列出不等式组,解不等式组即可求解.【详解】解:依题意26020x x +³ìí->î①②解不等式①得:3x ³-解不等式②得:0x <∴不等式组的解集为:30x -£<,故答案为:30x -£<【点睛】本题考查了二次根式有意义的条件,分式有意义的条件,求一元一次不等式组的解集,掌握以上知识是解题的关键.11.(2023春·八年级课时练习)已知a 、b 、c 在数轴上的位置如图所示.化简b ++c +-.14.(2023春·八年级课时练习)若两不等实数a,b满足8b+=a+=,8为_____.15.(2023春·八年级课时练习)已知n n的值为__________.三、解答题16.(2023春·全国·(1)2 (2)2(- (3))2(-(5)2 (6)2-17.(八年级课时练习)计算:(1)-(2))32.19.(2022·湖南长沙·统考中考真题)计算:1201|4|20353-æö-+-+ç÷èø.21.(2023春·全国·八年级专题练习)阅读下面的解题过程体会如何发现隐含条件并回答下面的问题化简∶21x--解∶隐含条件130x -³,解得:13x £∴10x ->∴原式()()1311312x x x x x =---=--+=-【启发应用】(12【类比迁移】(2)实数a ,b ||b a -.(3)已知a ,b ,c 为ABC +22.(2023春·八年级课时练习)当2022a =时,求a 的值.如图是小亮和小芳的解答过程:(1) 的解法是错误的;(2)错误的原因在于未能正确地运用二次根式的性质: ;(3)当3a >a -的值.。

《二次根式》知识点总结-题型分类-复习专用.doc

《二次根式》知识点总结-题型分类-复习专用.doc

《二次根式》题型分类知识点一:二次根式的概念 【知识要点】二次根式的定义:形如五的戎子叫二次根式,其中么叫被开 方数,只有当么是一个非负数时,石才有意义.【典型例题】题型一:二次根式的判定【例1】下列各式1)卫,2)底,3)-存714)扬,5)』(-A 6)举一反三:1、 使代数式有意义的X 的取值范围是x-4( )A 、x>3 B. x > 3C 、 x>4D 、 x 》3且XH 42、 若式子丁鼻有意义,则x 的取值范围\l x — 3是 _____________ .题型去二次根式定义的运用【例 31 若 y= Qx-5 +』5-x ,则 x+y= _______________7)J/著换三:若x 、y 都是实数,且yr 求xy 的值1、下列各式中,一定是二次根式的是( )A 、乔B 、V^IOC 、yfa + lD 、题型二:二次根式有意义【例2】J 兀-2有意义的x 的取值范围是 ---------已知a 是亦整数部分,b 是 亦的小数部分, 求a-b 的值。

V5V 3,其中是二次根式的是 ------------ (填序号). 举一反三: 2、在丽、Vl + x 2 、的中是二次根式的个数有 ------- 个3、当。

取什么值时,代数式血 + 1+1取值最小, 并求出这个最小值。

知识点二:二次根式的性质【知识要点】1.非负性:V^(a>0)是一个非负数.2. (V^)2 =a(a>0).注意:此性质既可正用,也可反用,反用的意义在于,可以把任意一个非负数或非负代数式写成完全 平方的形式:a = (7a)2(a>0)4.公式=\a\=l a^~^ 与(Va)2 =a(a>0)的区别与联系-a(a < 0)(1) 品表示求一个数的平方的算术根,a 的范围是一切实数. (2) (需尸表示一个数的算术平方根的平方,a 的范围是非负数. (3) Q 和(石尸的运算结果都是非负的.【典型例题】題型二:二次根式的牲廣2(公式(石)2二a(a > 0)的运用)注意:此性质可作公式记住,后面根式运算中经常用到.f 例5】化简:卜一1| + (丁^二5)2的结果为()A 、4-2aB 、0C 、2a —4D 、4举一反三:在实数范围内分解因式:才-3二 _________________ ; 題型去二次根式餉濒3(公式7^? = |a| = J a(a ~0)的应用)注意:(1)字母不一定是正数.-a(a < 0)(2) 能开得尽方的因式移到根号外时,必须用它的算术平方根代替.(3) 可移到根号内的因式,必须是非负因式,如果因式的值是负的,应把负号留在根号外.f 例6】已知x<2,则化简J(x —2)2的结果是A % x — 2B 、兀+ 2C. —X — 2D. 2 — x3.=|a|= <a(a > 0)-a(a < 0)举一反三:1、根式J(-3)2的值是()A. -3B. 3 或-3C. 3D. 9那么|疑-2a |可化简为()2、已知a<0,A. - aB. aC. 一3aD. 3a【例71如果表示a, b两个实数的点在数轴上的位置如图所示,那么化简| a-b | + J(a + b)2的结果等于() ---- ----- -- --- Ab a oA. -2bB. 2bC. -2aD. 2a举一反三:实数a在数轴上的位置如图所示:化简:0-1| +J(Q-2)2= ______________ . 寸—()j-*-I:例811、把二次根式agl化简,正确的结果是( )A. J—aB. — J-aC. — -VaD.2、__________________________________________________________ 把根号外的因式移到根号内:当b>0时,-V7 = ; (。

21二次根式知识点+典型例题+习题

21二次根式知识点+典型例题+习题

21.1 二次根式知识点1.二次根式的相关概念:像这样一些正数的算术平方根的式子,我们就把它称二次根式。

因此,一般地,我们把形如 a (a ≥0)的式子叫做二次根式,“ ”称为二次根号。

二次根式a 的特点:(1)在形式上含有二次根号 ,表示 a 的算术平方根。

(2)被开方数 a ≥0,即必须是非负数。

(3)a 可以是数,也可以是式。

(4)既可表示开方运算,也可表示运算的结果。

2.二次根式中字母的取值围的基本依据:(1)被开方数不小于零。

(2)分母中有字母时,要保证分母不为零。

3.二次根式的相关等式:a a =2(a ≥0) ⎩⎨⎧<-≥==)0()0(2a a a a a a 相关例题1.二次根式的概念例题一: 下列各式中144,20,,1,3,152222-++-m b a b a , 二次根式的个数是()考点: 二次根式的概念.分析: 二次根式的被开方数应为非负数,找到根号为非负数的根式即可. 解答: 解:3a ,12-b 有可能是负数,-144是负数不能作为二次根式的被开方数,所以二次根式的个数是3个。

点评: 本题考查二次根式的概念,注意利用一个数的平方一定是非负数这个知识点.变式一:下列各式中①,a ②,z y +③,6a ④,32+a ⑤,962++x x ⑥,12-x 一定是二次根式的有()个。

解:①被开方数a 有可能是负数,不一定是二次根式;②被开方数y+z 有可能是负数,不一定是二次根式;③被开方数6a 一定是非负数,所以③一定是二次根式;④被开方数32+a 一定是正数,所以④一定是二次根式;⑤被开方数22)3(96+=++x x x 一定是非负数,所以⑤一定是二次根式; ⑥被开方数12-x 有可能是负数,不一定是二次根式; 一定是二次根式的有3个,故选C .点评: 用到的知识点为:二次根式的被开方数为非负数;一个数的偶次幂一定是非负数,加上一个正数后一定是正数.2.二次根式中字母的取值围的基本依据例题二:函数y=31-x 中自变量x 的取值围是 _______ .考点: 函数自变量的取值围;分式有意义的条件;二次根式有意义的条件. 分析: 根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,列不等式即可求解. 解答: 解:依题意,得x ﹣3>0,解得x >3.点评: 本题考查的是函数自变量取值围的求法.函数自变量的围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数是非负数. 变式二:若式子x x 1+有意义,则x 的取值围是_______ .考点: 二次根式有意义的条件;分式有意义的条件.分析: 根据二次根式及分式有意义的条件解答即可.解答: 解:根据二次根式的性质可知:x+1≥0,即x ≥﹣1,又因为分式的分母不能为0,所以x 的取值围是x ≥﹣1且x ≠0.点评:此题主要考查了二次根式的意义和性质: 概念:式子a (a ≥0)叫二次根式;性质:二次根式中的被开方数必须是非负数,否则二次根式无意义; 当分母中含字母时,还要考虑分母不等于零.3.二次根式的相关等式例题三:对任意实数a ,则下列等式一定成立的是( )A .a a =B .a a -=2C . a a ±=2D . a a =2考点: 二次根式的性质与化简. 专题: 计算题.分析: 根据二次根式的化简、算术平方根等概念分别判断. 解答:解:A 、a 为负数时,没有意义,故本选项错误;B 、a 为正数时不成立,故本选项错误;C 、a a =2,故本选项错误.D 、故本选项正确. 故选D .点评: 本题考查了二次根式的化简与性质,正确理解二次根式有意义的条件、算术平方根的计算等知识点是解答问题的关键.练习题 11x x>0)、2、当x 在实数围有意义?3、当x 11x +在实数围有意义? 4、下列式子中,是二次根式的是( )A ..x5.下列式子中,不是二次根式的是( )A .1x6.已知一个正方形的面积是5,那么它的边长是( )A .5B .15D .以上皆不对 7.形如________的式子叫做二次根式.8.面积为a 的正方形的边长为________.9.负数________平方根.10、计算1.2(x ≥0) 2.2 3.24. 2课后作业1.某工厂要制作一批体积为1m 3的产品包装盒,其高为0.2m ,按设计需要,•底面应做成正方形,试问底面边长应是多少?2.当x 是多少时,x+x 2在实数围有意义?3.4.x 有( )个.A .0B .1C .2D .无数5.已知a 、b =b+4,求a 、b 的值.6、计算(1)2(2)-2(3)(122(4)()2(5)练习题与课后作业答案练习题1、x>0)x≥0,y≥0);不、1x1x y+.2、解:由3x-1≥0,得:x≥13,当x≥13在实数围有意义.3、解:依题意,得23010xx+≥⎧⎨+≠⎩由①得:x≥-3 2由②得:x≠-1当x≥-32且x≠-1+11x+在实数围有意义.4.A 5.D 6.B7a≥0) 8.没有10、解:(1)因为x≥0,所以x+1>02=x+1(2)∵a2≥02=a2(3)∵a2+2a+1=(a+1)2又∵(a+1)2≥0,∴a2+2a+1≥02+2a+1(4)∵4x2-12x+9=(2x)2-2·2x·3+32=(2x-3)2 又∵(2x-3)2≥0∴4x2-12x+9≥02=4x2-12x+9作业题1.设底面边长为x,则0.2x2=1,解答:2.依题意得:230xx+≥⎧⎨≠⎩,32xx⎧≥-⎪⎨⎪≠⎩∴当x>-32且x ≠0+x 2在实数围没有意义. 3.134.B5.a=5,b=-46、.(1)2=9 (2)-2=-3 (3)(122=14×6=32(4)(2=9×23=6 (5)-621.2二次根式的乘除法知识点1.二次根式的乘法 )0,0(≥≥=⋅b a ab b a),0(o b a b a ab ≥≥⋅=2.二次根式的除法有两种常用方法:(1)利用公式:)0,0(>≥=b a ba b a )0,0(>≥=b a ba b a (2)把除法先写成分式的形式,再进行分母有理化运算。

二次根式的知识点、典型例题、练习

二次根式的知识点、典型例题、练习

第十六章 二次根式的知识点、典型例题及相应的练习1、二次根式的概念:1、定义:一般地,形如a (a≥0)的代数式叫做二次根式。

当a≥0时,a 表示a 的算术平方根,当a 小于0时,非二次根式(在一元二次方程中,若根号下为负数,则无实数根)概念:式子a (a≥0)叫二次根式。

a (a≥0)是一个非负数。

题型一:判断二次根式(1)下列式子,哪些是二次根式,哪些不是二次根式:2、33、1x 、x (x>0)、0、42、-2、1x y+、x y +(x≥0,y ≥0). (2)在式子()()()230,2,12,20,3,1,2x x y y x x x x y+=--++中,二次根式有( )A. 2个B. 3个C. 4个D. 5个(3)下列各式一定是二次根式的是( )A. 7-B. 32mC. 21a +D. a b2、二次根式有意义的条件题型二:判断二次根式有没有意义1、写出下列各式有意义的条件:(1)43-x (2)a 831- (3)42+m (4)x 1- 2、21x x --有意义,则 ; 3、若x x x x --=--3232成立,则x 满足_______________。

典型练习题:1、当x 是多少时, 23x ++11x +在实数范围内有意义?2、当x 是多少时,23x x++x 2在实数范围内有意义? 3、当__________时,212x x ++-有意义。

4、使式子2(5)x --有意义的未知数x 有( )个.A .0B .1C .2D .无数 5、已知y=2x -+2x -+5,求x y的值. 6、若3x -+3x -有意义,则2x -=_______.7、若11m m -++有意义,则m 的取值范围是 。

8、已知()222x x -=-,则x 的取值范围是 。

9、使等式()()1111x x x x +-=-+成立的条件是 。

10、已知233x x +=-x 3+x ,则( )(A )x ≤0 (B )x ≤-3 (C )x ≥-3 (D )-3≤x ≤011、若x <y <0,则222y xy x +-+222y xy x ++=( )(A )2x (B )2y (C )-2x (D )-2y12、若0<x <1,则4)1(2+-x x -4)1(2-+xx 等( ) (A )x 2 (B )-x2 (C )-2x (D )2x 13、化简aa 3-(a <0)得( ) (A )a - (B )-a (C )-a - (D )a3、最简二次根式的化简最简二次根式是特殊的二次根式,他需要满足:(1)被开方数的因数是整数,字母因式是整式;(2)被开方数中不含能开的尽方的因数或因式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【总结升华】 a2 a 成立的条件是 a >0;若 a <0,则 a2 a .
【基本典型例题】(2) 类型一、二次根式的乘除
1. 计算:(1)(2014 秋•闵行区校级期中) ×(﹣2 )÷

(2)(2014 春·高安市期中) a 8a 2 a 2 1 2a 2a a
【答案与解析】 解:(1) ×(﹣2 )÷
举一反三: 【变式】下列式子中二次根式的个数有( ).
(1)
1 ;(2) 3
3 ;(3)
x2 1 ;(4)3 8 ;(5)
( 1)2 ;(6) 1 x( x 1 ) 3
A.2 B.3 C.4 D.5 【答案】B.
2. (2016•贵港)式子
在实数范围内有意义,则 x 的取值范围是( )
= ×(﹣2 )×
=﹣
=﹣
=﹣ .
(2)原式= a 8a2 a2 1 2a 2a a
2 2a2 a2 2 2a 2a 2a a
2
2a2
2a a2
2a a
4 2.
【总结升华】根据二次根式的乘除法则灵活运算,注意最终结果要化简.
举一反三:
【变式】 2
a2 b2 6x2
即原式= a b c a c b b c a = a b c
【总结升华】重点考查二次根式的性质:
的同时,复习了
三角形三边的性质.
二、二次根式的乘除基础知识讲解+基本典型例题解析
【学习目标】 1、 掌握二次根式的乘除法法则和化简二次根式的常用方法,熟练进行二次根式的 乘除运算. 2、 了解最简二次根式的概念,能运用二次根式的有关性质进行化简.

【思路点拨】做二次根式的乘除时要注意计算法则,根号外和根号内的因式分别相乘除, 最终计算结果要化为最简形式.
【答案与解析】解:(1)原式=﹣2 ÷ ×
=﹣ ×
= 4. 3
(2)原式 ÷ × =
=. 【总结升华】掌握乘除运算的法则,并能灵活运用.
类型二、最简二次根式
3. (2016•自贡)下列根式中,不是最简二次根式的是( ) A. B. C. D. 【思路点拨】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式中 的两个条件(被开方数不含分母,也不含能开的尽方的因数或因式).是否同时满足,同时 满足的就是最简二次根式,否则就不是. 【答案】B.
二次根式的两个要素:①根指数为 2;②被开方数为非负数.
(a≥
”称为二次
2.代数式:形如 5,a,a+b,ab, ,x3,
这些式子,用基本的运算符号(基
本运算包括加、减、乘、除、乘方、开方)把数和表示数的字母连接起来的式子,我们 称这样的式子为代数式. 要点二、二次根式的性质
1. a ≥0,( a ≥0);
【答案】(1)原式= 22 a2ab2c4c = 2abc2 ac ;
(2) 原式= 4bc ac
4.已知 0< a < b ,化简 a b b2 2ab a2 . a b a3b2 a2b3
【答案与解析】原式= a b (b a)2 = a b b a 1 (a b) a b a2b2 (a b) a b ab (a b)(a b) = 1 ab ab
【解析】解:因为 =
=2 ,因此 不是最简二次根式.
故选 B. 【总结升华】规律总结:满足下列两个条件的二次根式,叫做最简二次根式.
(1)被开方数不含分母; (2)被开方数中不含能开得尽方的因数或因式. 举一反三: 【变式】化简
(1) (2)2 a3b2c5 (a 0, b 0)
(2) 16ab2c3
则|a|+
=﹣a﹣(a﹣b) =﹣2a+b.
故选:A. 【总结升华】此题主要考查了二次根式的性质以及实数与数轴,正确得出各项符号是解题
关键.
4. 已 知 a, b, c 为 三 角 形 的 三 边 , 则 (a b c)2 (b c a)2 (b c a)2 =

【答案】 a b c 【解析】 a, b, c 为三角形的三边, a b c 0,b c a 0,b c a 0
( a ≥0, b >0),即商的算术平方根等于被除式的算术平方根除以除
式的算术平方根. 要点诠释:
运用此性质也可以进行二次根式的化简,运用时仍要注意符号问题.
知识点三、最简二次根式
(1)被开方数不含有分母; (2)被开方数中不含能开得尽方的因数或因式.
满足这两个条件的二次根式叫最简二次根式. 要点诠释:二次根式化成最简二次根式主要有以下两种情况:
3. (2016•潍坊)实数 a,b 在数轴上对应点的位置如图所示,化简|a|+

结果是( )
A.﹣2a+b B.2a﹣b C.﹣b D.b 【思路点拨】直接利用数轴上 a,b 的位置,进而得出 a<0,a﹣b<0,再利用绝对值以及 二次根式的性质化简得出答案. 【答案】A. 【解析】 解:如图所示:a<0,a﹣b<0,
1 x
1

x 有意义,则实数 x 的取值范围是(

A.x≠1 【答案】D
B. x≥0
C. x≠0 D. x≥0 且 x≠1
提示:∵代数式 + 有意义,


解得 x≥0 且 x≠1. 类型二、二次根式的性质
2.根据下列条件,求字母 x 的取值范围:
(1)
; (2)
.
【答案与解析】 (1)
(2)
【总结升华】二次根式性质的运用.
2.
( a ≥0);
3.
.
要点诠释: 1.二次根式
(a≥0)的值是非负数。一个非负数可以写成它的算术平方根的形式,
即 a ( a )2 (a≥0).
2. a2 与 ( a )2 要注意区别与联系:1). a 的取值范围不同,( a )2 中 a ≥0, a2 中 a
为任意值。
2). a ≥0 时, ( a )2 = a2 = a ; a <0 时, ( a )2 无意义, a2 = a .
(2).该法则可以推广到多个二次根式相乘的运算:
≥0, ≥0,….. ≥
0).
(3).若二次根式相乘的结果能写成 的形式,则应化简,如
.
2.积的算术平方根:
( a ≥0,b ≥0),即积的算术平方根等于积中各因式的算术平方
根的积.
要点诠释:
(1)在这个性质中,a、b 可以是数,也可以是代数式,无论是数,还是代数式,都
二次根式 目录
一、二次根式 二、二次根式的乘除 三、二次根式的加减 四、《二次根式》全章复习与巩固
一、二次根式基础知识讲解+基本典型例题解析
【学习目标】 1、理解二次根式的概念,了解被开方数是非负数的理由.
2、理解并掌握下列结论: a ≥0,( a ≥0),
( a ≥0),
0),并利用它们进行计算和化简. 【要点梳理】 要点一、二次根式及代数式的概念 1.二次根式:一般地,我们把形如 (a≥0)的式子叫做二次根式,“ 根号. 要点诠释:
x2 4 3a 3b 5
ab b
【答案】原式= 2 1 5 4
a2 b2 x2 a b 6x2 3a 3b b
5 =2
(a b)(a b) x 2 b 5
6x2
3(a b) a b 2
b 5 18 12
举一反三:
【变式】x 取何值时,下列函数在实数范围内有意义?
( 1 ) y=
x

1 x 1
,___________________ ;( 2 ) y=
______________________;
x2 2x 2 ,
【答案】 (1)x≥0,x 1 0 x≤0且x 1
(2) x2 2x 2 (x 1)2 1 0, x为任意实数.
【总结升华】根据数轴判断出 a、b、c 的正负性,根据二次根式的性质与化简、绝对值 的性质,正确进行计算即可. 举一反三:
【变式】若整数 m 满足条件 (m 1)2 m 1, 且m 2 , 则 m 的值是___________. 5
【答案】 m =0 或 m =-1.
【基本典型例题】(2) 类型一、二次根式的概念
必须满足 a ≥0,b
≥0,才能用此式进行计算或化简,如果不满足这个条件,等
式右边就没有意义,等式也就不能成立了; (2)二次根式的化简关键是将被开方数分
解因数,把含有 形式的 a 移到根号外面.
知识点二、二次根式的除法及商的算术平方根
1.除法法则:
( a ≥0, b >0),即两个二次根式相除,根指数不变,把被
【变式】各式是否正确,不正确的请予以改正:
(1)

(2)
× =4× × =4 × =4 =8 .
【答案】(1)不正确.
改正:
=
(2)不正确.
= × =2×3=6;
改正:
×=
×=
=
=
=4 .
2.计算:(1)(2014 秋•门头沟区期末) 4 ÷(﹣ )×

(2)(2014 秋•松江区校级期中)计算: ÷ ×
(1) 被开方数是分数或分式;
(2)含有能开方的因数或因式.
【基本典型例题】(1)
类型一、二次根式的乘除法
1.(1) × ; (2) × ; (3) ; (4)

【答案与解析】(1) × = ;
(2) × =
=;
(3) = = =2;
(4)
=
= ×2=2 .
相关文档
最新文档