人教版七年级下册第8章8.4三元一次方程组的解法学案无答案
人教版数学七年级下册8.4 三元一次方程组的解法 导学案

第八章二元一次方程组8.4 三元一次方程组的解法.....,根本的方法是 .3222x yx y zx yx,那么得到关于、的二元一次方程组,解这个二元一次方程组,得,那么原方程组的解是 .3,1,6x yy zx y z的解是 .四、我的疑惑___________________________________________________________________________ ___________________________________________________________________________一、要点探究探究点1:三元一次方程〔组〕的概念问题1:题中有哪些未知量?你能找出哪些等量关系?可以列出几个方程?问题2:观察列出的三个方程,你有什么发现?问题3:由上述方程组的特点总结三元一次方程组的定义.练一练:以下方程组不是三元一次方程组的是 ( )A.1210x x y x z =⎧⎪-=⎨⎪+=⎩B.321240323x y z x y z x y z -+=⎧⎪--=⎨⎪-+=⎩ C.10215x y x z y z +=⎧⎪+=⎨⎪+=⎩D.134712x y z x y z xyz +-=⎧⎪-+=⎨⎪=⎩[注意] 组成三元一次方程组的三个一次方程中,不一定要求每一个一次方程都含有三个未知数.探究点2:解三元一次方程组 典例精析例1.解方程组问题1:你能把上面的方程组化成只含有两个未知数的方程组吗?问题2:问题3:类比二元一次方程组的解法总结解三元一次方程组的方法.课堂探究教学备注 配套PPT 讲授〔见幻灯片3〕〔见幻灯片4-9〕〔见幻灯片10-14〕23,1,220.x y z x y x y z ++=⎧⎪-=⎨⎪+-=⎩① ②③11,5,1,x y z y z x z x y +-=⎧⎪+-=⎨⎪+-=⎩那么x = ,y = ,z = . 2.假设x +2y +3z =10,4x +3y +2z =15,那么x +y +z 的值为〔 〕3.假设|a -b -1|+(b -2a +c)2+|2c -b|=0,求a ,b ,c 的值.4.一个三位数,十位上的数字是个位上的数字的34,百位上的数字与十位上的数字之和比个位上的数字大 1.将百位与个位上的数字对调后得到的新三位数比原三位数大495,求原三位数.温馨提示:配套课件及全册导学案WORD 版见光盘或网站下载:(无须注册,直接下载)。
七年级下册《8.4 三元一次方程组的解法》教案、导学案、同步练习

《8.4 三元一次方程组的解法》教案一【教学目标】1.理解三元一次方程组的含义.2.会解某个方程只有两元的简单的三元一次方程组.3.掌握解三元一次方程组过程中化三元为二元或一元的思路.【教学重点与难点】1.使学生会解简单的三元一次方程组.2.通过本节学习,进一步体会“消元”的基本思想.3. 针对方程组的特点,灵活使用代入法、加减法等重要方法.【教学过程】一、导入新课前面我们学习了二元一次方程组的解法.有些问题,可以设出两个未知数,列出二元一次方程组来求解.实际上,有不少问题中含有更多的未知数.大家看下面的问题.二、推进新课出示引入问题小明手头有12张面额分别为1元,2元,5元的纸币,共计22元,其中1元纸币的数量是2元纸币数量的4倍,求1元,2元,5元纸币各多少张.1.题目中有几个未知数,你如何去设?2.根据题意你能找到等量关系吗?3.根据等量关系你能列出方程组吗?请大家分组讨论上述问题.(教师对学生进行巡回指导)学生成果展示:1.设1元,2元,5元各x张,y张,z张.(共三个未知数)2.三种纸币共12张;三种纸币共22元;1元纸币的数量是2元纸币的4倍.3.上述三种条件都要满足,因此可得方程组师:这个方程组有三个相同的未知数,每个方程中含未知数的项的次数都是1,并且一共有三个方程,像这样的方程组叫做三元一次方程组.怎样解这个方程组呢?能不能类比二元一次方程组的解法,设法消去一个或两个未知数,把它化成二元一次方程组或一元一次方程呢?(学生小组交流,探索如何消元.)可以把③分别代入①②,便消去了x ,只包含y 和z 二元了:解此二元一次方程组得出y 、z ,进而代回原方程组可求x .教师对学生的想法给予肯定并总结解三元一次方程组的基本思路:通过“代入”或“加减”进行消元,把“三元”化为“二元”,使解三元一次方程组转化为解二元一次方程组,进而转化为解一元一次方程.即三元一次方程组 二元一次方程组一元一次方程三、例题讲解例1:解三元一次方程组(让学生独立分析、解题,方法不唯一,可分别让学生板演后比较.) 解:②×3+③,得11x+10z=35.①与④组成方程组 把x=5,z=-2代入②,得y=.因此,三元一次方程组的解为12,2522,4.x y z x y z x y ++=⎧⎪++=⎨⎪=⎩8,412,512,2,42522,6522. 2.x y y z y z y y y z y z z =⎧++=+=⎧⎧⎪=⎨⎨⎨++=+=⎩⎩⎪=⎩即解得消元消元347,239,5978.x z x y z x y z +=⎧⎪++=⎨⎪-+=⎩347,5,111035. 2.x z x x z z +==⎧⎧⎨⎨+==-⎩⎩解得135,1,32.x y z =⎧⎪⎪=⎨⎪=-⎪⎩归纳:此方程组的特点是①不含y ,而②③中y 的系数为整数倍关系,因此用加减法从②③中消去y 后,再与①组成关于x 和z 的二元一次方程组的解法最合理.•反之用代入法运算较烦琐.例2:在等式y=ax2+bx+c 中,当x=-1时,y=0;当x=2时,y=3;当x=5时,y=60,求a ,b ,•c 的值.(师生一起分析,列出方程组后交由学生求解.)解:由题意,得三元一次方程组②-①,得a+b=1, ④ ③-①,得4a+b=10. ⑤④与⑤组成二元一次方程组. 解得把a=3,b=-2代入①,得c=-5.因此,答:a=3,b=-2,c=-5. 四、知能训练1.解下列三元一次方程组:2.甲、乙、丙三个数的和是35,甲数的2倍比乙数大,乙数的等于丙数0,423,25560.a b c a b c a b c -+=⎧⎪++=⎨⎪++=⎩1,410.a b a b +=⎧⎨+=⎩3,2a b =⎧⎨=-⎩3,2,5.a b c =⎧⎪=-⎨⎪=-⎩29,34,(1)3,(2)2312,247; 6.22,2,:(1)15.5,(2)3,12.5; 1.x y x y z y z x y z z x x y z x x y y z z -=--+=⎧⎧⎪⎪-=+-=⎨⎨⎪⎪+=++=⎩⎩==⎧⎧⎪⎪==⎨⎨⎪⎪==⎩⎩解13的,求这三个数.解:设甲、乙、丙三个数分别为x 、y 、z ,则 即甲、乙、丙三数分别为10、15、10. 五、课堂小结1.学会三元一次方程组的基本解法.2.掌握代入法,加减法的灵活选择,体会“消元”思想. 六、布置作业 七、活动与探究 拓广探索解:由已知,得 ②-①,得b=-11, ④由③得=0, ⑤ ④代入⑤,得a=6. ⑥把代入①,得c=3,因此,答:a=6,b=-11,c=3.《8.4 三元一次方程组的解法》教案二【教学目标】:1235,10,25,15,10.,32x y z x x y y y z z ⎧⎪++==⎧⎪⎪-==⎨⎨⎪⎪=⎩⎪=⎩解得2,20,93.4293a b c a b c a b a b c c ⎧⎪-=++⎪=-+⎨⎪⎪++=++⎩777366a b+6,11a b =⎧⎨=-⎩6,11,3.a b c =⎧⎪=-⎨⎪=⎩1.了解三元一次方程组的概念.2.会解某个方程只有两元的简单的三元一次方程组.3.掌握解三元一次方程组过程中化三元为二元的思路.【教学重点】:(1)使学生会解简单的三元一次方程组.(2)通过本节学习,进一步体会“消元”的基本思想.【教学难点】:针对方程组的特点,灵活使用代入法、加减法等重要方法.【教学过程】:一、创设情景,导入新课前面我们学习了二元一次方程组的解法,有些实际问题可以设出两个未知数,列出二元一次方程组来求解。
人教版七年级下册8.4三元一次方程组的解法(教案)

1.理论介绍:首先,我们要了解三元一次方程组的基本概念。三元一次方程组是由三个含有三个未知数的一次方程组成的方程体系。它在解决多个未知数的实际问题中起着重要作用。
案例分析:接下来,我们来看一个具体的案例。这个案例将展示如何将实际问题转化为三元一次方程组,并通过代入法和加减消元法求解。
然而,我也注意到,有些同学在小组讨论中参与度不高,可能是因为他们对这个话题还不够感兴趣,或者是对自己的数学能力缺乏信心。在未来的教学中,我需要更多地关注这部分学生,激发他们的学习兴趣,帮助他们建立信心。
此外,实践活动虽然能够让学生们动手操作,但在时间安排上可能有些紧张,导致部分学生没有足够的时间去深入思考和实践。我考虑在接下来的课程中,适当延长实践活动的时间,让学生们有更充分的操作和思考空间。
-难点三:将实际问题转化为三元一次方程组时,如何正确识别和设定未知数。
举例:在应用题中,学生可能难以确定三个人的总分、各科分数与方程组之间的关系,从而无法正确列出方程组。
-难点四:在解题过程中,如何进行有效的逻辑推理和数据分析,特别是当方程组较为复杂时。
举例:在处理多个方程和未知数时,学生可能会在推理过程中迷失方向,无法清晰地找出解题路径。
举例:在例1中,选择第一个方程的z变量代入第二个和第三个方程,学生可能会在代入和化简过程中出现计算错误。
-难点二:掌握加减消元法的运用,特别是在多个方程中选择合适的方程进行组合,以及如何处理消元后出现的分数。
举例:在例1中,将第一个方程与第二个方程相加,消去y,学生可能会在选择方程时犹豫不决,或者在消元过程中处理分数不当。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《三元一次方程组的解法》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要同时解决几个问题的情况?”比如,分配任务时需要考虑每个人的能力和时间。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索三元一次方程组的奥秘。
人教版数学七年级下册8-4 三元一次方程组的解法 教案

三元一次方程组的解法教学设计课题三元一次方程组的解法单元8 学科初中数学年级七下学习目标1.理解三元一次方程组的概念.2.会用代入法和加减消元法解简单的三元一次方程组.3.通过解三元一次方程组进一步体会消元思想.4.通过探究消元法解三元一次方程组的过程,提高学生逻辑思维能力、计算能力、解决实际问题的能力.重点使学生会解简单的三元一次方程组,进一步体会“消元”的基本思.难点针对方程组的特点,灵活使用代入法、加减法等重要方法.教学过程教学环节教师活动学生活动设计意图导入新课【创设情境】问题1:解二元一次方程组有哪几种方法?预设:学生分别说一说,并引导其说出代入法和加减法的求解过程及其注意事项.强调:不管是代入法还是加减法,其根本都是消元.问题2:解二元一次方程组的思路是什么?预设:把二元一次方程组通过代入和加减法进行消元,即“二元”化为“一元”.思考:若含有3个未知数的方程组如何求解?回顾、思考并回答.通过回忆二元一次方程组的概念和解法,引出三元一次方程组的学习,并为后边学习三元一次方程组及其相关知识做铺垫.讲授新课【合作探究】小明手头有12张面额分别为1元、2元、5元的纸币,共计22元,其中1元纸币的数量是2元纸币数量的4倍.求1元、2元、5元的纸币各多少张?要想解决这个问题,引导学生让其带着如下三个问题进行思考:学生尝试用学过的知识思考,并回答.通过解决实际问题的情景引出三元一次方程组的学习,以此提高学生学习的兴趣(1)题目中有几个未知量?分别是什么?1元纸币的数量、2元纸币的数量、5元纸币的数量x张y张z张(2)题目中有哪些等量关系?①1元纸币的数量+2元纸币的数量+5元纸币的数量=12张②1元纸币金额+2元纸币金额+5元纸币金额=22元③1元纸币的数量=2元纸币的数量的4倍(3)如何用方程表示这些等量关系呢?先把问题(1)中的未知量设为不同的未知数,然后根据问题(2)中的等量关系列出三个方程分别为:x + y + z = 12,x + 2y + 5z = 22,x = 4y,组成一个方程组.观察得到的方程组,引导学生参照二元一次方程组的概念总结给出三元一次方程组的概念:方程组含有三个未知数,每个方程中含未知数的项的次数都是1,并且一共有三个方程,像这样的方程组叫做三元一次方程组.强调组成三元一次方程组必须满足:方程组含有三个未知数、每个方程中含未知数的项的次数都是1、含有三个方程.【探究】怎样解这个得到的三元一次方程组呢?回忆一下二元一次方程组的求解过程,有代入法和加减法,我们根据二元一次方程组的求解过程探究一下三元一次方程组的解法吧!观察这个方程组,发现三个方程中x的系数都是一样的,因此可以用代入法和加减法进行消元计算,但是第三个方程的结构比较简单,可以直接代入第一个和第二个方程直接进行消元计算.解三元一次方程组:把③分别代入①②,得5y+z = 12,6y + 5z = 22.得到一个二元一次方程组解这个方程组,得学生小组交流,汇总并举手发言.自主进行探究、讨论,然后通过类比得到解三元一次方程组的思路.和动力.通过教师的引导,使学生能类比总结出三元一次方程组的概念.让学生在探究三元一次方程组的解法过程中,进一步体会类比的数学思把y = 2,z = 2代入①,得x=8.因此这个方程组的解是想一想,还有其它的解法吗?你可以根据自己的想法尝试一下哦!通过计算三元一次方程组,你能说一说解三元一次方程组的思路吗?总结:通过“代入”或“加减”进行消元,把“三元”化成“二元”,使解三元一次方程组转化为解二元一次方程组,进而再转化为解一元一次方程.思考并计算.【典型例题】教师提出问题,学生先独立思考,解答.然后再小组交流探讨,如遇到有困难的学生适当点拨,最终教师展示答题过程.例1解三元一次方程组:分析:方程①中只含有x,z,②③中未知数y的系数有倍数关系,因此可以由②③消去y,得到一个也只含有x,z的方程.将得到的有关x,z的二元一次方程与①组成一个二元一次方程组,求解得到x,z,进而可求出y.解:②×3+③,得11x + 10z = 35. ④①与④组成方程组解这个方程组,得把x = 5,z = –2代入②,解得因此这个三元一次方程组的解为你还有其他解法吗?试一试,并与这种解法进行比较!例2 在等式y = ax2+bx+c 中,当x= –1 时,y=0;当x=2 时,y = 3;当x=5 时,y=60.求a,b,c 的学生思考、计算并回答.通过练习,进一步巩固所学知识,加深理解.培养学生在具体情境中分析问题和解决问题的能力.值.分析:观察题目,你能得到什么信息?预设:可以把a,b,c看作三个未知数,分别把已知的三组x,y的值代入原等式,就可以得到 3 个三元一次方程.把这 3 个三元一次方程组成一个方程组,解这个方程组即可求出a,b,c.解:根据题意,得三元一次方程组(观察这个方程组,发现未知数c的系数都是1,因此先消去c.)②–①,得 a + b = 1;④③–①,得4a + b = 10;⑤④与⑤组成二元一次方程组解这个方程组,得把a =3,b = –2代入①,得c = –5.因此即a,b,c的值分别为3,–2,–5.【课堂练习】教师给出练习,随时观察学生完成情况并相应指导,最后给出答案,根据学生完成情况适当分析讲解.1.解下列三元一次方程组:2.甲、乙、丙三个数的和是35,甲数的2倍比乙数大5,乙数的等于丙数的.求这三个数.答案:1.解:②×2+③,得x+2y = 53. ④④+①,得x = 22.把x = 22代入④,得y =把x = 22代入③,得z =所以原方程的解为①+②,得5x+2y=16. ④②+③,得3x+4y=18. ⑤⑤–④×2得,x = 2.把x = 2代入④,得y = 3.把x =2,y =3代入③,得z=1.所以原方程的解为2.解:设甲、乙、丙三数分别为x,y,z.根据题意,得解这个方程组,得∴甲数是10,乙数是15,丙数是10. 自主完成练习,然后集体交流评价.通过练习,进一步巩固所学知识,加深理解.培养学生在具体情境中分析问题和解决问题的能力.课堂小结以思维导图的形式呈现本节主要内容:回顾本节课所讲的内容通过小结让学生进一步熟悉巩固本节课所学的知识.板书 1.三元一次方程组的概念:方程组含有三个未知数,每个方程中含未知数的项的次数都是1,并且一共有三个方程,像这样的方程组叫做三元一次方程组.2.解三元一次方程组的思路:通过“代入”或“加减”进行消元,把“三元”化成“二元”,使解三元一次方程组转化为解二元一次方程组,进而再转化为解一元一次方程.3.例题讲解。
8.4三元一次方程组解法举例(2)学案-2021-2022学年七年级数学下册(无答案)1

8.4三元一次方程组解法举例课型:新授课执笔:审核:七年数学组讲学时间:【自学目标】阅读人教版七年下册第-页教材,达到以下要求:1、了解三元一次方程组的概念。
2、会解三元一次方程组,并掌握三元一次方程组的解法及其步骤。
【教学目标】1、会解三元一次方程组,感受“三元”化归“二元”,再由“二元”化归“一元”的数学思想。
2、经历探究三元一次方程组的解题过程,体会其内涵;培养数学化归思想,真正体验到数学分析的应用价值。
【教学重点】掌握三元一次方程组的解法。
【教学难点】应用代入法、加减法消去一个未知数,转化成二元一次方程组。
【学习过程】一、学前准备1、请快速写出方程组23y xx y=⎧⎨+=⎩的解:xy=⎧⎨=⎩;2、请快速写出方程组31x yx y+=⎧⎨-=⎩的解:xy=⎧⎨=⎩;3、以上两个方程组都是方程组,第一个方程组用法较便捷,第二个方程组用法较便捷,不管那一种方法,它们的目的都是为了,从而把二元一次方程组转化为方程来解。
二、探究活动活动一:小明手头有12张面额分别为l元、2元、5元的纸币,共计22元.其中1元纸币的数量是2元纸币数量的4倍.求l元、2元、5元纸币各多少张.可以设l元、2元、5元的纸币分别为x张、y张、z张.根据题意,可以得到下面三个方程:请同学们观察上面的三个方程有什么特点?总结:这个方程组含有____个未知数,并且每个方程中含未知数的项的__________,像这样的方程组叫做三元一次方程组。
活动二:尝试解三元一次方程组:12 (1)2522 (2)4 (3)x y zx y zx y++=⎧⎪++=⎨⎪=⎩解:把(3)分别代入(1)、(2)得:(4)(5)把方程(4)、(5)组成方程组⎧⎨⎩解这个方程组,得yz=⎧⎨=⎩把y=代入(3),得x=因此,三元一次方程组的解为xyz=⎧⎪=⎨⎪=⎩小结:解三元一次方程组的基本思想方法是:将三元一次方程组通过或______化为__________,然后再次消元将二元方程组化为一元一次方程。
人教版数学七年级下册8.4《三元一次方程解法举例》教案

人教版数学七年级下册8.4《三元一次方程解法举例》教案一. 教材分析人教版数学七年级下册8.4节选自《三元一次方程解法举例》,这部分内容是在学生已经掌握了二元一次方程组解法的基础上进行教学的。
三元一次方程组的解法与二元一次方程组解法有相似之处,也有不同之处。
本节课通过具体例子引导学生探究三元一次方程组的解法,让学生体会数学知识的广泛应用,提高学生解决实际问题的能力。
二. 学情分析七年级的学生已经掌握了二元一次方程组的解法,对解方程组有一定的认识和理解。
但面对三元一次方程组,学生可能会觉得抽象难懂,难以把握。
因此,在教学过程中,教师需要从学生的实际出发,引导学生通过合作、交流、探究等方式,理解并掌握三元一次方程组的解法。
三. 教学目标1.让学生理解三元一次方程组的含义,掌握三元一次方程组的解法。
2.培养学生运用数学知识解决实际问题的能力。
3.培养学生的合作、交流、探究能力,提高学生的逻辑思维能力。
四. 教学重难点1.重点:三元一次方程组的解法。
2.难点:三元一次方程组的解法在实际问题中的应用。
五. 教学方法采用问题驱动法、合作交流法、探究学习法等,引导学生主动参与教学过程,提高学生的学习兴趣和积极性。
六. 教学准备1.准备相关例题,用于引导学生探究三元一次方程组的解法。
2.准备实际问题,用于巩固学生对三元一次方程组解法的掌握。
3.准备多媒体教学设备,用于展示教学内容。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾二元一次方程组的解法,为新课的学习做好铺垫。
然后,教师给出一个三元一次方程组,让学生尝试解这个方程组,从而引出本节课的内容。
2.呈现(10分钟)教师呈现一个具体的三元一次方程组,引导学生进行分析。
教师通过提问方式,引导学生思考如何解决这个问题。
在学生思考的过程中,教师逐步给出解题思路,让学生理解并掌握三元一次方程组的解法。
3.操练(10分钟)教师给出几个类似的三元一次方程组,让学生独立解决。
人教版七年级下册8.4三元一次方程组的解法教学设计
人教版七年级下册8.4三元一次方程组的解法教学设计知识目标1.理解三元一次方程组的概念与解法2.学会使用代入法与消元法求解三元一次方程组3.能够把抽象的数学概念应用到实际问题中能力目标1.提高学生的数学思维能力,分析和解决实际问题2.培养学生的团队合作精神,增强沟通协调能力3.培养学生的自学能力,激发兴趣,探索知识教学过程导入(5分钟)介绍三元一次方程组的相关概念,如:未知数、系数、方程等,引导学生理解。
知识点讲解(15分钟)给学生讲解代入法和消元法的概念,并演示如何使用这两种方法解决三元一次方程组。
利用黑板和投影仪,让学生更好地理解。
当堂练习(25分钟)学生分成若干个小组,每个小组随机分到一个三元一次方程组实际问题,如:小王有5元和10元的硬币共两种,他一共有20枚硬币,这些硬币总的面值为90元。
请问小王有多少张5元硬币和10元硬币?学生需要分析问题,列出方程组并使用代入法或消元法来解决问题。
每组的解决方案需要在黑板上展示,并进行讨论和批评。
总结归纳(10分钟)回顾当堂练习,让学生总结代入法和消元法的特点,强调在实际问题中运用数学方法的重要性。
作业布置(5分钟)布置一些与三元一次方程组相关的作业题目,要求学生自主完成。
作业中需涉及到来自实际生活和工作的问题,这可以增加学生的兴趣,提高他们的自学能力。
教学特色1.场景化教学法通过把数学概念应用到实际问题中,让学生更加容易理解和记忆。
2.合作学习法学生分组进行当堂练习,强化了沟通和合作能力,同时激发了团队合作的精神。
3.自主学习法作业的设计涉及到实际问题,让学生自己分析问题并解决,可以提高自学能力和兴趣。
教学效果通过本课程的教学,学生能够掌握三元一次方程组的解法方法,并能够将抽象的数学概念应用到实际问题中。
学生的数学思维能力也得到了提高,同时培养了团队合作和自主学习的能力。
人教版数学七年级下册8.4《三元一次方程组解法》教案
人教版数学七年级下册8.4《三元一次方程组解法》教案一. 教材分析《三元一次方程组解法》是初中数学人教版七年级下册的教学内容。
这部分内容是在学生已经掌握了二元一次方程组解法的基础上进行教学的,通过这部分的学习,使学生掌握三元一次方程组的概念和解法,培养学生解决实际问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了二元一次方程组的解法,但对三元一次方程组的解法还比较陌生。
因此,在教学过程中,需要引导学生通过已学的知识来探索和理解三元一次方程组的解法。
三. 教学目标1.让学生掌握三元一次方程组的概念和解法。
2.培养学生解决实际问题的能力。
3.培养学生的合作交流能力和思维能力。
四. 教学重难点1.教学重点:三元一次方程组的概念和解法。
2.教学难点:三元一次方程组的解法。
五. 教学方法采用问题驱动法、合作交流法、引导发现法等教学方法,引导学生通过已学的知识来探索和理解三元一次方程组的解法。
六. 教学准备1.教师准备课件和教学素材。
2.学生准备笔记本和笔。
七. 教学过程1.导入(5分钟)教师通过一个实际问题引入三元一次方程组的概念,引导学生思考如何解决这个问题。
2.呈现(10分钟)教师呈现三元一次方程组的解法,引导学生通过已学的知识来理解和掌握这个解法。
3.操练(10分钟)教师给出几个三元一次方程组,让学生独立解答,然后互相交流解题过程和方法。
4.巩固(5分钟)教师针对学生解答过程中出现的问题进行讲解和指导,帮助学生巩固三元一次方程组的解法。
5.拓展(5分钟)教师给出一个难度较大的三元一次方程组,让学生分组讨论和解答,培养学生的合作交流能力和思维能力。
6.小结(5分钟)教师引导学生总结三元一次方程组的解法,并强调解题过程中需要注意的问题。
7.家庭作业(5分钟)教师布置几个三元一次方程组的家庭作业,让学生巩固所学知识。
8.板书(5分钟)教师板书三元一次方程组的解法,方便学生复习和记忆。
在教学过程中,要注意引导学生通过已学的知识来探索和理解三元一次方程组的解法,注重学生合作交流能力的培养。
七年级数学下册(人教版)8.4三元一次方程组的解法优秀教学案例
(一)情景创设
1.生活情境:以实际生活中的问题为背景,创设情境,引发学生的思考,激发学生的学习兴趣。例如,设计一道与购物、旅游等生活场景相关的问题,让学生在解决问题的过程中自然地引入三元一次方程组。
2.故事情境:通过讲述一个有趣的故事,引发学生的兴趣,使他们能够主动参与到学习中。例如,讲述一个侦探破案的故事,引导学生思考并解决问题,从而引入三元一次方程组的概念和解法。
2.鼓励学生互相倾听和尊重对方的意见,培养他们的团队合作能力。例如,在小组活动中,可以设置一个环节,让每个小组成员分享自己的解题思路和方法,并进行讨论和评价。
(四)总结归纳
1.对本节课的主要内容和知识点进行总结归纳,让学生能够梳理和巩固所学知识。例如,总结三元一次方程组的定义、解法和解的情况的判断方法等。
在教学过程中,我注重引导学生运用已知知识解决未知问题,培养他们的逻辑思维能力和创新意识。同时,我通过设计丰富的教学活动,激发学生的学习兴趣,使他们能积极主动地参与课堂讨论,提高课堂效果。此外,我还注重对学生的个性化指导,针对不同学生的学习情况,给予他们有针对性的帮助,使他们在课堂上都能有所收获。
二、教学目标
3.小组合作:本节课通过组织学生进行小组合作学习,促进了学生之间的交流和合作。例如,设计一个小组活动,让学生分组讨论并解决一个复杂的三元一次方程组问题。在合作过程中,学生能够互相倾听和尊重对方的意见,培养他们的团队合作能力。小组合作的方式不仅能够提高学生的学习效果,还能够培养他们的沟通能力、协作能力和团队意识。
2.通过提问引导学生思考问题的本质,引发学生的思考和探究。例如,提出一个问题:“如果有一个房间,里面有三个开关,对应着另一个房间里的三盏灯,你如何通过只进房间一次,找出哪盏灯对应哪个开关?”让学生思考并解决这个问题。
人教版七年级数学下册8.4三元一次方程组的解法导学案
集体备课导学案学段初中年级七年级学科数学单元第8单元课题8.4.1三元一次方程组的解法(2)课型新授主备学校初审人终审人主备人合作团队课标依据掌握代入消元法和加减消元法,能解二元一次方程组。
教学目标熟练地掌握简便方法解三元一次方程组教学重点掌握三元一次方程组的解法。
教学难点三元一次方程组如何化归到二元一次方程组。
导学环节课堂流程时间任务驱动问题导学学法指导知识链接呈现目标2分小黑板呈现目标自主学习温故知新5分1、解三元一次方程组的思路是什么?2、课本106业习题8.4第1题复习检查上节课所学知识。
消元法互助释疑3分鼓励学生提出疑问。
小组内互相帮助解决.探究出招10分1、课本105业例22、解方程组先独立思考,然后在小组内合作、讨论。
③②①361xzzyyx解法一:消去y,得:解法二:(①+②+③)×得:______④④-①,得:④-②,得:④-③,得:展示交流小组展示3分组长负责,组员在小组内展示。
班级展示3分各组派代表在全班展示、交流。
点拨升华反馈矫正3分在展示、交流过程中存在的问题要及时反馈、纠错。
必要时教师给予补充。
释疑解惑3分你还有什么疑惑?师生共同解答总结提高3分这节课你有什么收获?学生举手回答课堂作业达标训练10分1、课本106页练习第2题。
2、课本106页习题8.4 第3、5题。
检查学生对所学知识的掌握情况。
21。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8.4 三元一次方程组的解法
【学习目标】(1)能说出什么是三元一次方程组.
(2)会运用代入消元法和加减消元法解简单的三元一次方程组.
(3)通过解三元一次方程组进一步体会消元思想.
【学习重点】用代入消元法和加减消元法解简单的三元一次方程组||,进一步体会消元思想.
【学习难点】根据方程组的特征寻找合适的消元途径.
【教学过程】
(一)【创设情境||,引入课题】
问题1:小明手头有12张面额分别为1元、2元、5元的纸币||,共计22元.其中1元的纸币的数量是2元纸币数量的4倍.求1元、2元、5元的纸币各多少张.
分析:此问题中包含个未知量||,分别是 ||。
分别设未知数:
在问题中||,你能找出几个等量关系?可以列出几个方程?
分别建立方程为:
(二)【探究新知||,练习巩固】
1.知识点1
问题2:分析上面方程的特点||,结合二元一次方程的定义||,给出三元一次方程的定义||。
________________________________________________叫做三元一次方程.
问题3:这个问题的解必须同时满足上面三个条件||,类比二元一次方程组||,我们把这三个方程合在一起||,写成
观察这个方程组||,含有_____个未知数||,每个方程中含___________的次数都是____||,并且一共有_____个方程||,像这样的方程组叫做
___________________.
(三)【合作探究||,尝试求解】
在方程组中||, ②
把③代入①得||,
把③代入②得||, ; 联立两个方程||,得方程组为: ;
解方程组得: ;
把y = 代入③得x = ;
∴原方程组的解为:⎪⎩
⎪⎨⎧===z y x
(四)【概括提炼||,课堂小结】
解三元一次方程组的基本思路是什么?
三元一次方程组 消元 二元一次方程组 消元一元一次方程
(五)【当堂达标||,拓展延伸】
1、在等式y=ax 2+bx+c 中 ||,当x =-1时||,y =0;当x =2时||,y =3;当x =5时||,y =60||。
求a 、b 、c 的值||。
2、甲、乙、丙三个数的和是35||,甲数的2倍比乙数大5||,乙数的1/3等于丙数的1/2||,求这三个数||。
3、解方程组
(1)275322344y x x y z x z =-⎧⎪++=⎨⎪-=⎩ (2)293247x y y z x z -=-⎧⎪=+⎨⎪+=⎩
(3)
34
2312
6
x y z
x y z
x y z
-+=
⎧
⎪
+-=
⎨
⎪++=
⎩
编制人:惠民第二实验学校石盼
惠民晨光实验学校夏晓慧。