线性代数第五版第二章常见试题及解答

合集下载

同济五版线性代数习题答案第二章矩阵及其运算.doc

同济五版线性代数习题答案第二章矩阵及其运算.doc

解(X] x 2x 3)第二章 矩阵及其运算(参考答案)(习题二心76)p 54 1.计算下列乘积:<4 3 r<7、⑴ 1 -2 3 2q7<b<4 3 r ['4x7 + 3x24-1x1、15、 解1 -23 2 — lx7 + (—2)x2 + 3xl — 6 q 70 /、5x74-7x2 + 0x1 \ z <49;3⑵(1,2,3) 2 .,3、解(1 2 3) 2 =(lx3 + 2x2 + 3xl) = (10).J;<2-1(5)3],易,工3)a \2<2‘2x(-1)2x2、 "-2 4、解1 (T 2)=1x(-1)1x2 -1 2X /<3x(-1) 3x2)厂3⑶ 1 (-1,2).31 1 \'1 3 1、"2 1 4 0、 0 -1 2(6 -7 8、 J T 3 4,1 -3 1_〔20 -5 —6,.4 0 一240 解\-2J。

a \2>i = -3Z] + z 2'力=2Z|+Z3y 3=-z 2-k3z 3=(%/] + a ]2x 2 + a ]3x 3 a l2x } + a^x 2 + a 13x 3 a u x } + a-,3x 2 + 6t 33x 3) x =a u x[ + a 22x^ + %3工;+ 2a l2x }x 2 + 2a l3x }x 3 + 2a 23x 2x 3。

2 1 0、<10 3 10 10 10 12-1(6).0 0 2 10 0-23^0 0 0 3, ^0 0 0 —3,<12 10、 Q 0 31<1 2 5 20 10 10 12-10 12-4解0 0 2 1 0 0-23 0 0-43^0 0 0 3, 、0 0 0 一3/,0 0 0 -9;q i i)'1 2 3、fl 1 1解 3AB — 2A=3 i i -i-1 -2 4 -2 1 1 -1 J t •>、05 1,J -1 b5 8、<1 1 qr-2 13 22、 0 -5 6 -2 1 1 -i -2 -17 20<29 0;<1-1<429 -2>求从Z], Z2, Z 3到X p X 2, W 的线性变换.<1 11、< 1 2 3、乌2.设A = 1 1-1 ,B =-1 -2 4<1 "I<o 5 L求 3 AB —2 A 及NB.<1 1 1) '1 2 3、<0 5 8、 A 『B = 1 1 -1 -1 -2 40 -5 6J -1 •> p 0 5 1)<2 9 o >P 54 3.已知两个线性变换而=2一+为< 邑=一2乂+3),2+2为 石=4名+力+5为/、< 2 0 1) 3、< 2 0 1) '-3 1 oy J-2 3 2-2 3 2 2 0 i<4 1 5>*4 \ 1 5, /-1 3^ 由己/ 、22k Z 3>所以有2、 3>8> AB 主 BA(2) (A + B)22、 "2 2、 r 8 14 5, 2 51429 / \ /\ <3 8、 %8、 / + + <4<8 12\‘10 16、J5 27,<2 (A + B)(A —B)=2V05人。

线性代数 同济第五版 课后习题答案详解

线性代数 同济第五版 课后习题答案详解

1
2
第一章 行列式
(3) 逆序数为 5: 3 2, 3 1, 4 2, 4 1, 2 1.
(4) 逆序数为 3: 2 1, 4 1, 4 3.
(5)
逆序数为
n(n−1) 2
:
3 2...........................................................................1 个 5 2, 5 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 个 7 2, 7 4, 7 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 个 .................................................................................. (2n − 1) 2, (2n − 1) 4, (2n − 1) 6, . . . , (2n − 1) (2n − 2). . . . . . . . . . . . . .(n − 1) 个
(2)
abc
b c a = acb + bac + cba − bbb − aaa − ccc = 3abc − a3 − b3 − c3.

工程数学-线性代数第五版答案02

工程数学-线性代数第五版答案02

第二章 矩阵及其运算1. 已知线性变换:⎪⎩⎪⎨⎧++=++=++=3213321232113235322y y y x y y y x y y y x , 求从变量x 1, x 2, x 3到变量y 1, y 2, y 3的线性变换. 解 由已知:⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛221321323513122y y y x x x ,故 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-3211221323513122x x x y y y ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛----=321423736947y y y ,⎪⎩⎪⎨⎧-+=-+=+--=321332123211423736947x x x y x x x y x x x y .2. 已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=32133212311542322y y y x y y y x y y x ,⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y , 求从z 1, z 2, z 3到x 1, x 2, x 3的线性变换.解 由已知⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=321310102013514232102z z z⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z ,所以有⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236z z z x z z z x z z z x .3. 设⎪⎪⎭⎫ ⎝⎛--=111111111A , ⎪⎪⎭⎫⎝⎛--=150421321B , 求3AB -2A 及A T B .解 ⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=-1111111112150421321111111111323A AB⎪⎪⎭⎫⎝⎛----=⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-=2294201722213211111111120926508503,⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=092650850150421321111111111B A T.4. 计算下列乘积:(1)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134;解 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134⎪⎪⎭⎫ ⎝⎛⨯+⨯+⨯⨯+⨯-+⨯⨯+⨯+⨯=102775132)2(71112374⎪⎪⎭⎫⎝⎛=49635.(2)⎪⎪⎭⎫⎝⎛123)321(;解 ⎪⎪⎭⎫⎝⎛123)321(=(1⨯3+2⨯2+3⨯1)=(10).(3))21(312-⎪⎪⎭⎫⎝⎛;解 )21(312-⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛⨯-⨯⨯-⨯⨯-⨯=23)1(321)1(122)1(2⎪⎪⎭⎫⎝⎛---=632142. (4)⎪⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412 ; 解 ⎪⎪⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412⎪⎭⎫ ⎝⎛---=6520876.(5)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x ;解⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x=(a 11x 1+a 12x 2+a 13x 3 a 12x 1+a 22x 2+a 23x 3 a 13x 1+a 23x 2+a 33x 3)⎪⎪⎭⎫⎝⎛321x x x322331132112233322222111222x x a x x a x x a x a x a x a +++++=.5. 设⎪⎭⎫ ⎝⎛=3121A , ⎪⎭⎫ ⎝⎛=2101B , 问: (1)AB =BA 吗? 解 AB ≠BA .因为⎪⎭⎫ ⎝⎛=6443AB , ⎪⎭⎫ ⎝⎛=8321BA , 所以AB ≠BA .(2)(A +B )2=A 2+2AB +B 2吗? 解 (A +B )2≠A 2+2AB +B 2.因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=+52225222)(2B A ⎪⎭⎫ ⎝⎛=2914148,但 ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=++43011288611483222B AB A ⎪⎭⎫ ⎝⎛=27151610, 所以(A +B )2≠A 2+2AB +B 2. (3)(A +B )(A -B )=A 2-B 2吗? 解 (A +B )(A -B )≠A 2-B 2.因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛=-1020B A ,⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=-+906010205222))((B A B A ,而 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-718243011148322B A , 故(A +B )(A -B )≠A 2-B 2.6. 举反列说明下列命题是错误的:(1)若A 2=0, 则A =0;解 取⎪⎭⎫ ⎝⎛=0010A , 则A 2=0, 但A ≠0. (2)若A 2=A , 则A =0或A =E ;解 取⎪⎭⎫ ⎝⎛=0011A , 则A 2=A , 但A ≠0且A ≠E . (3)若AX =AY , 且A ≠0, 则X =Y .解 取⎪⎭⎫ ⎝⎛=0001A , ⎪⎭⎫ ⎝⎛-=1111X , ⎪⎭⎫ ⎝⎛=1011Y , 则AX =AY , 且A ≠0, 但X ≠Y .7. 设⎪⎭⎫ ⎝⎛=101λA , 求A 2, A 3, ⋅ ⋅ ⋅, A k . 解 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=12011011012λλλA , ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==1301101120123λλλA A A , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎪⎭⎫ ⎝⎛=101λk A k . 8. 设⎪⎪⎭⎫⎝⎛=λλλ001001A , 求A k .解 首先观察⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=λλλλλλ0010010010012A ⎪⎪⎭⎫⎝⎛=222002012λλλλλ,⎪⎪⎭⎫⎝⎛=⋅=3232323003033λλλλλλA A A ,⎪⎪⎭⎫⎝⎛=⋅=43423434004064λλλλλλA A A ,⎪⎪⎭⎫⎝⎛=⋅=545345450050105λλλλλλA A A ,⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎝⎛=kA kk kk k k k k k k λλλλλλ0002)1(121----⎪⎪⎪⎭⎫. 用数学归纳法证明: 当k =2时, 显然成立. 假设k 时成立,则k +1时,⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛-=⋅=---+λλλλλλλλλ0010010002)1(1211k k kk k k k k k k k k A A A ⎪⎪⎪⎪⎭⎫⎝⎛+++=+-+--+11111100)1(02)1()1(k k k k k k k k k k λλλλλλ, 由数学归纳法原理知:⎪⎪⎪⎪⎭⎫ ⎝⎛-=---k k k k k k k k k k k A λλλλλλ0002)1(121.9. 设A , B 为n 阶矩阵,且A 为对称矩阵,证明B T AB 也是对称矩阵.证明 因为A T =A , 所以(B T AB )T =B T (B T A )T =B T A T B =B T AB , 从而B T AB 是对称矩阵.10. 设A , B 都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是AB =BA .证明 充分性: 因为A T =A , B T =B , 且AB =BA , 所以 (AB )T =(BA )T =A T B T =AB , 即AB 是对称矩阵.必要性: 因为A T =A , B T =B , 且(AB )T =AB , 所以 AB =(AB )T =B T A T =BA . 11. 求下列矩阵的逆矩阵:(1)⎪⎭⎫ ⎝⎛5221; 解 ⎪⎭⎫ ⎝⎛=5221A . |A |=1, 故A -1存在. 因为⎪⎭⎫⎝⎛--=⎪⎭⎫ ⎝⎛=1225*22122111A A A A A ,故 *||11A A A =-⎪⎭⎫ ⎝⎛--=1225. (2)⎪⎭⎫ ⎝⎛-θθθθcos sin sin cos ; 解 ⎪⎭⎫ ⎝⎛-=θθθθc o s s i n s i n c o s A . |A |=1≠0, 故A -1存在. 因为 ⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛=θθθθcos sin sin cos *22122111A A A A A ,所以 *||11A A A =-⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos . (3)⎪⎪⎭⎫⎝⎛---145243121;解 ⎪⎪⎭⎫⎝⎛---=145243121A . |A |=2≠0, 故A -1存在. 因为⎪⎪⎭⎫⎝⎛-----=⎪⎪⎭⎫ ⎝⎛=214321613024*332313322212312111A A A A A A A A A A ,所以 *||11A A A =-⎪⎪⎪⎭⎫⎝⎛-----=1716213213012.(4)⎪⎪⎪⎭⎫ ⎝⎛n a a a 0021(a 1a 2⋅ ⋅ ⋅a n ≠0) .解 ⎪⎪⎪⎭⎫ ⎝⎛=n a a a A 0021, 由对角矩阵的性质知 ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-n a a a A 10011211 . 12. 解下列矩阵方程:(1)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛12643152X ;解 ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-126431521X ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=12642153⎪⎭⎫ ⎝⎛-=80232. (2)⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--234311111012112X ;解 1111012112234311-⎪⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-=X ⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-=03323210123431131⎪⎪⎭⎫⎝⎛---=32538122. (3)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-101311022141X ;解 11110210132141--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=X⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=210110131142121 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=21010366121⎪⎪⎭⎫ ⎝⎛=04111. (4)⎪⎪⎭⎫⎝⎛---=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛021102341010100001100001010X .解 11010100001021102341100001010--⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=X⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=010100001021102341100001010⎪⎪⎭⎫ ⎝⎛---=201431012.13. 利用逆矩阵解下列线性方程组:(1)⎪⎩⎪⎨⎧=++=++=++3532522132321321321x x x x x x x x x ;解 方程组可表示为⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321153522321321x x x ,故 ⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-0013211535223211321x x x ,从而有 ⎪⎩⎪⎨⎧===001321x x x .(2)⎪⎩⎪⎨⎧=-+=--=--05231322321321321x x x x x x x x x .解 方程组可表示为⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----012523312111321x x x ,故 ⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛-3050125233121111321x x x ,故有 ⎪⎩⎪⎨⎧===305321x x x .14. 设A k =O (k 为正整数), 证明(E -A )-1=E +A +A 2+⋅ ⋅ ⋅+A k -1. 证明 因为A k =O , 所以E -A k =E . 又因为 E -A k =(E -A )(E +A +A 2+⋅ ⋅ ⋅+A k -1), 所以 (E -A )(E +A +A 2+⋅ ⋅ ⋅+A k -1)=E , 由定理2推论知(E -A )可逆, 且 (E -A )-1=E +A +A 2+⋅ ⋅ ⋅+A k -1.证明 一方面, 有E =(E -A )-1(E -A ). 另一方面, 由A k =O , 有E =(E -A )+(A -A 2)+A 2-⋅ ⋅ ⋅-A k -1+(A k -1-A k )=(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A ), 故 (E -A )-1(E -A )=(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A ), 两端同时右乘(E -A )-1, 就有(E -A )-1(E -A )=E +A +A 2+⋅ ⋅ ⋅+A k -1.15. 设方阵A 满足A 2-A -2E =O , 证明A 及A +2E 都可逆, 并求A -1及(A +2E )-1.证明 由A 2-A -2E =O 得 A 2-A =2E , 即A (A -E )=2E , 或 E E A A =-⋅)(21,由定理2推论知A 可逆, 且)(211E A A -=-.由A 2-A -2E =O 得A 2-A -6E =-4E , 即(A +2E )(A -3E )=-4E , 或 E A E E A =-⋅+)3(41)2(由定理2推论知(A +2E )可逆, 且)3(41)2(1A E E A -=+-.证明 由A 2-A -2E =O 得A 2-A =2E , 两端同时取行列式得 |A 2-A |=2, 即 |A ||A -E |=2, 故 |A |≠0,所以A 可逆, 而A +2E =A 2, |A +2E |=|A 2|=|A |2≠0, 故A +2E 也可逆. 由 A 2-A -2E =O ⇒A (A -E )=2E⇒A -1A (A -E )=2A -1E ⇒)(211E A A -=-,又由 A 2-A -2E =O ⇒(A +2E )A -3(A +2E )=-4E ⇒ (A +2E )(A -3E )=-4 E ,所以 (A +2E )-1(A +2E )(A -3E )=-4(A +2 E )-1, )3(41)2(1A E E A -=+-.16. 设A 为3阶矩阵, 21||=A , 求|(2A )-1-5A *|.解 因为*||11A A A =-, 所以|||521||*5)2(|111----=-A A A A A |2521|11---=A A=|-2A -1|=(-2)3|A -1|=-8|A |-1=-8⨯2=-16. 17. 设矩阵A 可逆, 证明其伴随阵A *也可逆, 且(A *)-1=(A -1)*.证明 由*||11A A A =-, 得A *=|A |A -1, 所以当A 可逆时, 有|A *|=|A |n |A -1|=|A |n -1≠0, 从而A *也可逆.因为A *=|A |A -1, 所以 (A *)-1=|A |-1A .又*)(||)*(||1111---==A A A A A , 所以(A *)-1=|A |-1A =|A |-1|A |(A -1)*=(A -1)*. 18. 设n 阶矩阵A 的伴随矩阵为A *, 证明: (1)若|A |=0, 则|A *|=0; (2)|A *|=|A |n -1. 证明(1)用反证法证明. 假设|A *|≠0, 则有A *(A *)-1=E , 由此得 A =A A *(A *)-1=|A |E (A *)-1=O ,所以A *=O , 这与|A *|≠0矛盾,故当|A |=0时, 有|A *|=0. (2)由于*||11A A A =-, 则AA *=|A |E , 取行列式得到|A ||A *|=|A |n . 若|A |≠0, 则|A *|=|A |n -1;若|A |=0, 由(1)知|A *|=0, 此时命题也成立. 因此|A *|=|A |n -1.19. 设⎪⎪⎭⎫⎝⎛-=321011330A , AB =A +2B , 求B .解 由AB =A +2E 可得(A -2E )B =A , 故⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛---=-=--321011330121011332)2(11A E A B ⎪⎪⎭⎫⎝⎛-=011321330.20. 设⎪⎪⎭⎫⎝⎛=101020101A , 且AB +E =A 2+B , 求B .解 由AB +E =A 2+B 得 (A -E )B =A 2-E , 即 (A -E )B =(A -E )(A +E ).因为01001010100||≠-==-E A , 所以(A -E )可逆, 从而⎪⎪⎭⎫⎝⎛=+=201030102E A B .21. 设A =diag(1, -2, 1), A *BA =2BA -8E , 求B . 解 由A *BA =2BA -8E 得 (A *-2E )BA =-8E , B =-8(A *-2E )-1A -1 =-8[A (A *-2E )]-1 =-8(AA *-2A )-1 =-8(|A |E -2A )-1 =-8(-2E -2A )-1 =4(E +A )-1=4[diag(2, -1, 2)]-1)21 ,1 ,21(diag 4-==2diag(1, -2, 1).22. 已知矩阵A 的伴随阵⎪⎪⎪⎭⎫⎝⎛-=8030010100100001*A , 且ABA -1=BA -1+3E , 求B .解 由|A *|=|A |3=8, 得|A |=2. 由ABA -1=BA -1+3E 得 AB =B +3A ,B =3(A -E )-1A =3[A (E -A -1)]-1A 11*)2(6*)21(3---=-=A E A E⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫⎝⎛--=-1030060600600006603001010010000161. 23. 设P -1AP =Λ, 其中⎪⎭⎫ ⎝⎛--=1141P , ⎪⎭⎫ ⎝⎛-=Λ2001, 求A 11. 解 由P -1AP =Λ, 得A =P ΛP -1, 所以A 11= A =P Λ11P -1.|P |=3, ⎪⎭⎫ ⎝⎛-=1141*P , ⎪⎭⎫ ⎝⎛--=-1141311P ,而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=Λ11111120 012001,故 ⎪⎪⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=31313431200111411111A ⎪⎭⎫ ⎝⎛--=68468327322731. 24. 设AP =P Λ, 其中⎪⎪⎭⎫⎝⎛--=111201111P , ⎪⎪⎭⎫ ⎝⎛-=Λ511,求ϕ(A )=A 8(5E -6A +A 2). 解 ϕ(Λ)=Λ8(5E -6Λ+Λ2)=diag(1,1,58)[diag(5,5,5)-diag(-6,6,30)+diag(1,1,25)]=diag(1,1,58)diag(12,0,0)=12diag(1,0,0). ϕ(A )=P ϕ(Λ)P -1*)(||1P P P Λ=ϕ⎪⎪⎭⎫ ⎝⎛------⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---=1213032220000000011112011112 ⎪⎪⎭⎫⎝⎛=1111111114.25. 设矩阵A 、B 及A +B 都可逆, 证明A -1+B -1也可逆, 并求其逆阵. 证明 因为A -1(A +B )B -1=B -1+A -1=A -1+B -1,而A -1(A +B )B -1是三个可逆矩阵的乘积, 所以A -1(A +B )B -1可逆, 即A -1+B -1可逆.(A -1+B -1)-1=[A -1(A +B )B -1]-1=B (A +B )-1A . 26. 计算⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121. 解 设⎪⎭⎫ ⎝⎛=10211A , ⎪⎭⎫ ⎝⎛=30122A , ⎪⎭⎫ ⎝⎛-=12131B , ⎪⎭⎫ ⎝⎛--=30322B ,则 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫⎝⎛+=222111B A O B B A A ,而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+4225303212131021211B B A ,⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛=90343032301222B A , 所以 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A ⎪⎪⎪⎭⎫⎝⎛---=9000340042102521, 即 ⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121⎪⎪⎪⎭⎫ ⎝⎛---=9000340042102521. 27. 取⎪⎭⎫ ⎝⎛==-==1001D C B A , 验证|||||||| D C B A D C B A ≠.解 4100120021100101002000021010010110100101==--=--=D C B A , 而 01111|||||||| ==D C B A ,故 |||||||| D C B A D C B A ≠.28. 设⎪⎪⎪⎭⎫ ⎝⎛-=22023443O O A , 求|A 8|及A 4. 解 令⎪⎭⎫ ⎝⎛-=34431A , ⎪⎭⎫ ⎝⎛=22022A ,则 ⎪⎭⎫⎝⎛=21A O O A A ,故 8218⎪⎭⎫ ⎝⎛=A O O A A ⎪⎭⎫ ⎝⎛=8281A O O A ,1682818281810||||||||||===A A A A A . ⎪⎪⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛=464444241422025005O O A O O A A . 29. 设n 阶矩阵A 及s 阶矩阵B 都可逆, 求 (1)1-⎪⎭⎫ ⎝⎛O B A O ; 解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211C C C C O B A O , 则 ⎪⎭⎫ ⎝⎛O B A O ⎪⎭⎫ ⎝⎛4321C C C C ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=s n E O O E BC BC AC AC 2143. 由此得 ⎪⎩⎪⎨⎧====s n EBC O BC O AC E AC 2143⇒⎪⎩⎪⎨⎧====--121413B C OC O C A C ,所以 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛---O A B O O B A O 111. (2)1-⎪⎭⎫ ⎝⎛B C O A . 解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211D D D D B C O A , 则 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛s n E O O E BD CD BD CD AD AD D D D D B C O A 4231214321.由此得 ⎪⎩⎪⎨⎧=+=+==s nEBD CD O BD CD OAD E AD 423121⇒⎪⎩⎪⎨⎧=-===----14113211B D CA B D O D A D ,所以 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-----11111B CA B O A BC O A . 30. 求下列矩阵的逆阵: (1)⎪⎪⎪⎭⎫⎝⎛2500380000120025; 解 设⎪⎭⎫ ⎝⎛=1225A , ⎪⎭⎫ ⎝⎛=2538B , 则⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--5221122511A , ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--8532253811B .于是 ⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛----850032000052002125003800001200251111B A B A .(2)⎪⎪⎪⎭⎫⎝⎛4121031200210001. 解 设⎪⎭⎫ ⎝⎛=2101A , ⎪⎭⎫ ⎝⎛=4103B , ⎪⎭⎫ ⎝⎛=2112C , 则⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛------1111114121031200210001B CA B O A BC O A⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----=411212458103161210021210001.。

报告线性代数(第五版)课后习题答案.ppt

报告线性代数(第五版)课后习题答案.ppt

第三章
返回
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
第四章
返回
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
第五章
返回
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
f x
y
1
z 2
1
2 2 2
112
x y z
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件

线性代数(同济第五版)习题答案

线性代数(同济第五版)习题答案


1 17 33 48 69
第一章
您发现有好的解法, 请不吝告知.
行列式
课后的习题值得我们仔细研读. 本章建议重点看以下习题: 5.(2), (5); 7; 8.(2). (这几个题号建立有超级链接.) 若
1 . 利用对角线法则计算下列三阶行列式: 2 (1) −1 1 (3) a a
2
0 8 1 b b
2 (3) 逆序数为 5: 3 2, 3 1, 4 2, 4 1, 2 1. (4) 逆序数为 3: 2 1, 4 1, 4 3. (5) 逆序数为
n(n−1) : 2
第一章 行列式
3 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 个 5 2, 5 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 个 7 2, 7 4, 7 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 个 .................................................................................. (2n − 1) 2, (2n − 1) 4, (2n − 1) 6, . . . , (2n − 1) (2n − 2). . . . . . . . . . . . . .(n − 1) 个 (6) 逆序数为 n(n − 1): 3 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 个 5 2, 5 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 个 7 2, 7 4, 7 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 个 .................................................................................. (2n − 1) 2, (2n − 1) 4, (2n − 1) 6, . . . , (2n − 1) (2n − 2). . . . . . . . . . . . . .(n − 1) 个 4 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 个 6 2, 6 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 个 .................................................................................. (2n) 2, (2n) 4, (2n) 6, . . . , (2n) (2n − 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (n − 1) 个 3 . 写出四阶行列式中含有因子 a11 a23 的项.

高等数学 线性代数 习题答案第二章

高等数学 线性代数 习题答案第二章

第二章习题2-11. 证明:若lim n →∞x n =a ,则对任何自然数k ,有lim n →∞x n +k =a .证:由lim n n x a →∞=,知0ε∀>,1N ∃,当1n N >时,有n x a ε-<取1N N k =-,有0ε∀>,N ∃,设n N >时(此时1n k N +>)有n k x a ε+-<由数列极限的定义得 lim n k x x a +→∞=.2. 证明:若lim n →∞x n =a ,则lim n →∞∣x n ∣=|a|.考察数列x n =(-1)n ,说明上述结论反之不成立.证:lim 0,,.使当时,有n x n x aN n N x a εε→∞=∴∀>∃>-<而 n n x a x a -≤- 于是0ε∀>,,使当时,有N n N ∃>n n x a x a ε-≤-< 即 n x a ε-<由数列极限的定义得 lim n n x a →∞=考察数列 (1)nn x =-,知lim n n x →∞不存在,而1n x =,lim 1n n x →∞=,所以前面所证结论反之不成立。

3. 证明:lim n →∞x n =0的充要条件是lim n →∞∣x n ∣=0.证:必要性由2题已证,下面证明充分性。

即证若lim 0n n x →∞=,则lim 0n n x →∞=,由lim 0n n x →∞=知,0ε∀>,N ∃,设当n N >时,有0 0n n n x x x εεε-<<-<即即由数列极限的定义可得 lim 0n n x →∞=4. 利用夹逼定理证明:(1) lim n →∞222111(1)(2)n n n ⎛⎫+++ ⎪+⎝⎭ =0; (2) lim n →∞2!n =0. 证:(1)因为222222111112(1)(2)n n n n n n n n n n++≤+++≤≤=+而且 21lim0n n →∞=,2lim 0n n→∞=, 所以由夹逼定理,得222111lim 0(1)(2)n n n n →∞⎛⎫+++= ⎪+⎝⎭ . (2)因为22222240!1231n n n n n<=<- ,而且4lim 0n n →∞=, 所以,由夹逼定理得2lim 0!nn n →∞= 5. 利用单调有界数列收敛准则证明下列数列的极限存在. (1) x 1>0,x n +1=13()2n nx x +,n =1,2,…; (2) x 1x n +1,n =1,2,…;(3) 设x n 单调递增,y n 单调递减,且lim n →∞(x n -y n )=0,证明x n 和y n 的极限均存在.证:(1)由10x >及13()2n n nx x x =+知,有0n x >(1,2,n = )即数列{}n x 有下界。

线性代数 第五版(同济大学)课后习题答案

线性代数 第五版(同济大学)课后习题答案

−b b b 0 2
c −c c 2 0
e e −e = adf bce
−1 1 1
1 −1 1
1 1 −1
−1 1
r +r r3 +r1
0 0 a −1 0 0
0 2 1 b −1 0
= −adf bce
= 4abcdef.
(4)
0
1 2 = = = = = =
1 + ab b −1 0
a 1 c
= = = =a
裂开
再次
2
y z x
2 (3) 逆序数为 5: 3 2, 3 1, 4 2, 4 1, 2 1. (4) 逆序数为 3: 2 1, 4 1, 4 3. (5) 逆序数为
n(n−1) : 2
第一章 行列式
3 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 个 5 2, 5 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 个 7 2, 7 4, 7 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 个 .................................................................................. (2n − 1) 2, (2n − 1) 4, (2n − 1) 6, . . . , (2n − 1) (2n − 2). . . . . . . . . . . . . .(n − 1) 个 (6) 逆序数为 n(n − 1): 3 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 个 5 2, 5 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 个 7 2, 7 4, 7 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 个 .................................................................................. (2n − 1) 2, (2n − 1) 4, (2n − 1) 6, . . . , (2n − 1) (2n − 2). . . . . . . . . . . . . .(n − 1) 个 4 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 个 6 2, 6 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 个 .................................................................................. (2n) 2, (2n) 4, (2n) 6, . . . , (2n) (2n − 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (n − 1) 个 3 . 写出四阶行列式中含有因子 a11 a23 的项.

线性代数第二章习题及解答

线性代数第二章习题及解答

··· ··· .. . ···
∗ ∗ . . .
2 a2 n1 + · · · + ann

(1)
(2)
2 2 由 A2 = 0 得到 a2 0 i1 + ai2 + · · · + ain = 0, i = 1, 2, . . . , n 于是 aij = ( ) 1 2 2 cos θ sin θ 8. 设 A = ,B = , C = 2 1 −2 − sin θ cos θ 2 −2 1
证明:|A−1 | =
|A| = ±1
1 |A|
注意到 A−1 的元素为正数所以其行列式必为整数, 即
1 |A|
为正数, 于是只有
若 |A| = ±1, 由于 A−1 = 整数.
A∗ |A|
注意到 Aij 为整数,于是 A∗ 的元素必为整数,则 A−1 的元素为
1 3 0 0 0
0 2

20 −1 −1 0 , P AP = 0 1 0 求 A 0 0 2 1 2 520 0 0 解:P AP −1 P AP −1 · · · P AP −1 = P A20 P −1 = 0 1 0 20 0 0 220 520 0 0 2 · 520 − 1 1 − 220 2 · 520 − 221 20 20 那么 A20 = P −1 2 · 520 − 221 0 1 0 P = 2 · 5 − 2 2 − 2 0 0 20 −520 + 1 −1 + 220 −520 + 221 19. 设 A, B, A + B 可逆, 证明 (A−1 + B −1 )−1 = A(A + B )−1 B
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、单项选择题(本大题共10小题,每小题2分,共30分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将代码填写在题后的括号内。

错选、多选或未选均无分。

1.设A 为三阶矩阵,|A|=a ≠0,则其伴随矩阵A *的行列式|A *|=( ) A .a B .a 2 C .a 3D .a 4答案:B2.设A 、B 为同阶可逆矩阵,则以下结论正确的是( ) A .|AB|=|BA| B .|A+B|=|A|+|B| C .(AB )-1=A -1B -1D .(A+B )2=A 2+2AB+B 2答案:A3.设A 可逆,则下列说法错误..的是( ) A .存在B 使AB=E B .|A|≠0C .A 相似于对角阵D .A 的n 个列向量线性无关 答案:C4.矩阵A=⎥⎦⎤⎢⎣⎡0112的逆矩阵的( )A .⎥⎦⎤⎢⎣⎡-2110B .⎥⎦⎤⎢⎣⎡1111 C .⎥⎦⎤⎢⎣⎡2110 D .⎥⎦⎤⎢⎣⎡---2110答案:C5.设A 为3阶方阵,且|A |=2,则|2A -1|=( ) A .-4 B .-1 C .1 D .4答案:D6.设矩阵A =(1,2),B =⎪⎪⎭⎫ ⎝⎛4321,C =⎪⎪⎭⎫⎝⎛654321,则下列矩阵运算中有意义的是( )A .ACB B .ABC C .BACD .CBA答案:B7.设A 为任意n 阶矩阵,下列矩阵中为反对称矩阵的是( ) A .A +A T B .A -A T C .AA T D .A T A答案:B8.设2阶矩阵A =⎪⎪⎭⎫ ⎝⎛d c b a ,则A *=( )A .⎪⎪⎭⎫⎝⎛--a c b dB .⎪⎪⎭⎫⎝⎛--a b c d C .⎪⎪⎭⎫ ⎝⎛--a cb d D .⎪⎪⎭⎫ ⎝⎛--a b c d 答案:A9.矩阵⎪⎪⎭⎫⎝⎛-0133的逆矩阵是( ) A .⎪⎪⎭⎫⎝⎛-3310B .⎪⎪⎭⎫⎝⎛-3130 C .⎪⎪⎭⎫ ⎝⎛-13110D .⎪⎪⎪⎭⎫ ⎝⎛-01311 答案:C10.设矩阵A =⎪⎪⎪⎭⎫ ⎝⎛--500043200101, 则A 中( ) A .所有2阶子式都不为零B .所有2阶子式都为零C .所有3阶子式都不为零D .存在一个3阶子式不为零 答案:D11.设A 是3阶方阵,且|A |=21-,则|A -1|=( )A .-2B .21-C .21D .2答案:A12.设A 为n 阶方阵,λ为实数,则|λA |=( ) A .λ|A | B .|λ||A | C .λn |A | D .|λ|n |A | 答案:C13.设A 为n 阶方阵,令方阵B =A +A T ,则必有( ) A .B T =B B .B =2A C .B T =-B D .B =0 答案:A14.矩阵A =⎪⎪⎭⎫ ⎝⎛--1111的伴随矩阵A *=( )A .⎪⎪⎭⎫⎝⎛--1111B .⎪⎪⎭⎫⎝⎛--1111C .⎪⎪⎭⎫⎝⎛--1111D .⎪⎪⎭⎫⎝⎛--1111答案:D15.下列矩阵中,是初等矩阵的为( )A .⎪⎪⎭⎫ ⎝⎛0001 B .⎪⎪⎪⎭⎫⎝⎛--100101110C .⎪⎪⎪⎭⎫ ⎝⎛101010001 D .⎪⎪⎪⎭⎫⎝⎛001300010 答案:C16.设A 为3阶方阵,且已知|-2A |=2,则|A |=( ) A .-1B .-41C .41D .1答案:B17.设矩阵A ,B ,C 为同阶方阵,则(ABC )T =( ) A .A T B T C T B .C T B T A T C .C T A T B T D .A T C T B T 答案:B18.设A 为2阶可逆矩阵,且已知(2A )-1=⎪⎪⎭⎫ ⎝⎛4321,则A =( )A .2⎪⎪⎭⎫ ⎝⎛4321B .⎪⎪⎭⎫⎝⎛432121 C .214321-⎪⎪⎭⎫⎝⎛D .1432121-⎪⎪⎭⎫ ⎝⎛答案:D19.设A 为三阶方阵且,2-=A 则=A A T 3( )A.-108B.-12C.12D.108 答案:D20.设A 、B 为同阶方阵,下列等式中恒正确的是( ) A.AB=B B.()111---+=+B A B AC.B A B A +=+ D.()T T T B A B A +=+答案:D21.设A 为四阶矩阵,且,2=A 则=*A ( )A.2B.4C.8D.12答案:C22.设矩阵⎪⎪⎭⎫ ⎝⎛+d b a 04=⎪⎪⎭⎫⎝⎛-32c b a ,则( ) A .a=3,b=-1,c=1,d=3B .a=-1,b=3,c=1,d=3C .a=3,b=-1,c=0,d=3D .a=-1,b=3,c=0,d=3答案:C23.设3阶方阵A 的秩为2,则与A 等价的矩阵为() A .⎪⎪⎪⎭⎫ ⎝⎛000000111 B .⎪⎪⎪⎭⎫ ⎝⎛000110111C .⎪⎪⎪⎭⎫ ⎝⎛000222111D .⎪⎪⎪⎭⎫ ⎝⎛333222111 答案:B24.设A 为n 阶方阵,n ≥2,则A 5-=( ) A .(-5)n AB .-5AC .5AD .5n A答案:A25.设A=⎪⎪⎭⎫ ⎝⎛4321,则*A =( ) A .-4B .-2C .2D .4答案:B26.设A ,B 为同阶可逆方阵,则下列等式中错误..的是( ) A.|AB |=|A | |B |B. (AB )-1=B -1A -1C. (A+B )-1=A -1+B -1D. (AB )T =B T A T答案:C27.设A 为三阶矩阵,且|A |=2,则|(A *)-1|=( ) A.41 B.1 C.2D.4答案:A28.设A 为3阶方阵,且==-||3131A A 则,( ) A .-9 B .-3 C .-1D .9答案:B29.设A 、B 为n 阶方阵,满足A 2=B 2,则必有( ) A .A =B B .A = -B C .|A |=|B |D .|A |2=|B |2答案:D30.已知矩阵A =⎪⎭⎫ ⎝⎛-1011,B =⎪⎭⎫ ⎝⎛1101,则AB -BA =( )A .⎪⎭⎫ ⎝⎛--1201B .⎪⎭⎫ ⎝⎛-1011C .⎪⎭⎫ ⎝⎛1001 D .⎪⎭⎫ ⎝⎛0000 答案:A31.设A 是2阶可逆矩阵,则下列矩阵中与A 等价的矩阵是( ) A .⎪⎭⎫ ⎝⎛0000B .⎪⎭⎫ ⎝⎛0001C .⎪⎭⎫ ⎝⎛0011 D .⎪⎭⎫ ⎝⎛1011 答案:D32.设矩阵A =⎪⎭⎫ ⎝⎛3421,则矩阵A 的伴随矩阵A *=( )A .⎪⎭⎫ ⎝⎛1423B .⎪⎭⎫ ⎝⎛--1423C .⎪⎭⎫ ⎝⎛1243 D .⎪⎭⎫ ⎝⎛--1243 答案:B33.设A 为5×4矩阵,若秩(A )=4,则秩(5A T )为( )A .2B .3C .4D .5答案:C34.设矩阵A =⎪⎪⎪⎭⎫⎝⎛22211211a a a a ,B =⎪⎪⎪⎭⎫⎝⎛++121112221121a a a a a a ,P 1=⎪⎪⎪⎭⎫ ⎝⎛0110,P 2=⎪⎪⎪⎭⎫⎝⎛1101,则必有( )A .P 1P 2A =B B .P 2P 1A =BC .AP 1P 2=BD .AP 2P 1=B答案:B35.设n 阶可逆矩阵A 、B 、C 满足ABC =E ,则B -1=( ) A .A -1C -1 B .C -1A -1 C .AC D .CA答案:D36.设3阶矩阵A =⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛000100010,则A 2的秩为( )A .0B .1C .2D .3答案:B37.设A ,B ,C 为同阶方阵,下面矩阵的运算中不成立...的是( ) A.(A +B )T =A T +B T B.|AB |=|A ||B | C.A (B +C )=BA +CAD.(AB )T =B T A T答案:C38.若矩阵A 可逆,则下列等式成立的是( ) A.A =*1A AB.0=AC.2112)()(--=A AD.113)3(--=A A答案:C39.若A =⎥⎦⎤⎢⎣⎡-251213,B =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-131224,C =⎥⎦⎤⎢⎣⎡--211230,则下列矩阵运算的结果为3×2矩阵的是( ) A.ABC B.AC T B T C.CBAD.C T B T A T答案:D40.设A 为2阶矩阵,若A 3=3,则=A 2( ) A .21 B .1 C .34 D .2答案:C41.设n 阶矩阵A 、B 、C 满足E ABC =,则=-1C ( ) A .AB B .BA C .11--B AD .11--A B答案:A42.已知2阶矩阵⎪⎪⎭⎫ ⎝⎛=d c b a A 的行列式1-=A ,则=-1*)(A ( ) A .⎪⎪⎭⎫⎝⎛----d c b aB .⎪⎪⎭⎫⎝⎛--a c b dC .⎪⎪⎭⎫ ⎝⎛--a cb d D .⎪⎪⎭⎫ ⎝⎛d c b a答案:A43.下列矩阵中不是..初等矩阵的为( ) A .⎪⎪⎪⎭⎫⎝⎛101010001B .⎪⎪⎪⎭⎫⎝⎛-101010001C .⎪⎪⎪⎭⎫ ⎝⎛100020001D .⎪⎪⎪⎭⎫ ⎝⎛101011001答案:D44.设A ,B ,C 为同阶可逆方阵,则(ABC )-1=( ) A. A -1B -1C -1 B. C -1B -1A -1C. C -1A -1B -1D. A -1C -1B -1答案:B45.设α1,α2,α3,α4是4维列向量,矩阵A =(α1,α2,α3,α4).如果|A |=2,则|-2A |=( ) A.-32 B.-4 C.4 D.32答案:D46.设A , B , C 均为n 阶方阵,AB=BA ,AC=CA ,则ABC=( ) A.ACB B.CAB C.CBAD.BCA答案:D47.设A 为3阶方阵,B 为4阶方阵,且行列式|A |=1,|B |=-2,则行列式||B |A |之值为( ) A.-8 B.-2 C.2D.8答案:A48.已知A=⎪⎪⎪⎭⎫ ⎝⎛333231232221131211a a a a a a a a a ,B =⎪⎪⎪⎭⎫ ⎝⎛333231232221131211333a a a a a a a a a ,P =⎪⎪⎪⎪⎭⎫ ⎝⎛100030001,Q =⎪⎪⎪⎪⎭⎫ ⎝⎛100013001,则B =( )A.P AB.APC.QAD.AQ答案:B49.已知A 是一个3×4矩阵,下列命题中正确的是( ) A.若矩阵A 中所有3阶子式都为0,则秩(A )=2 B.若A 中存在2阶子式不为0,则秩(A )=2 C.若秩(A )=2,则A 中所有3阶子式都为0 D.若秩(A )=2,则A 中所有2阶子式都不为0答案:C3.若A 为3阶方阵且| A -1 |=2,则| 2A |=( )A.21 B.2 C.4 D.8二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。

相关文档
最新文档