毕尔萨伐尔定律
大学物理8-3 毕奥-萨伐尔定律

上页 下页 返回 退出
而k
0 4
故
dB
0 I d l sin
4 πr
2
-7 2 4 π 10 N A 其中 0 ,称为真空中的磁导率。
磁感应强度的矢量式:
0 Idl er dB 2 4π r
Biot-Savart定 律的微分形式
Biot-Savart定 律的积分形式
I qnvS
电流元在P点产生的磁感应强度
dB
0 qnvSdl sin
r
2
4π
设电流元内共有dN个以速度v运动的带电粒子:
d N nS d l
每个带电量为 q的粒子以速度 v通过电流元所 在位置时,在P点产生的磁感应强度大小为
0 qv sin dB B dN 4π r2
r
dl
r d dB B
P
I
电流元在给定点所产生的磁感应强度的大小与 Idl 成正比,与到电流元的距离平方成反比,与电 流 元 和矢径夹角的正弦成正比 于r 。 dB 方 向 垂 直 与 Idl 组成的平面,指向为由 Idl 经 角转向 r 时 右螺旋前进方向。
I d l sin dB k r2
dB
0 R nI d l
2
2( R l )
2
2 3/ 2
2
0 R nIdl B dB L L 2( R 2 l 2 ) 3 / 2
上页 下页 返回 退出
. . .. . . . . . . . . . . . .
A2 dB
q
r
q
垂直于纸面向内
v
毕奥-萨伐尔定律介绍

en
S
I
13
物理学
第五版
7-4
毕奥-萨伐尔定律
例3 载流直螺线管内部的磁场. 如图所示,有一长为l ,半径为R的载 流密绕直螺线管,螺线管的总匝数为N, 通有电流I. 设把螺线管放在真空中,求管 内轴线上一点处的磁感强度.
R
*
P
×× × ×× × ×× × ×× ×× ×
第七章 恒定磁场
1
r
x
C
o r0
P
y
B 的方向沿 x 轴负方向
5
0 I (cos1 cos 2 ) 4 π r0
第七章 恒定磁场
物理学
第五版
7-4
毕奥-萨伐尔定律
B
0 I
4 π r0
(cos1 cos 2 )
z
D
无限长载流长直导线
1 0 2 π
×
2
B
0 I
2 π r0
1
物理学
第五版
7-4
毕奥-萨伐尔定律
任意载流导线在点 P 处的磁感强度 磁感强度 叠加原理 B dB
dB
r
Idl
0 I dl r 4 π r3
dB
P*
I
Idl
r
第七章 恒定磁场
2
物理学
第五版
7-4
毕奥-萨伐尔定律
例 判断下列各点磁感强度的方向和大小.
第五版
7-4
毕奥-萨伐尔定律
2
x Rcot
B dB
2
dx R csc d
0 nI
2
2 2
毕萨定律

Idl
c
Idl a
μ 0 Idl 水平向右 dB = 2 4π 2 R μ 0 Idl μ 0 Idl dB 总 = ⋅ 2= 2 2 4π 2 R 4 2πR
Y.L.Wang
叠加原理求磁场
例4、薄圆环内半径a,外半径b,可绕与环面垂 直的轴O以ω的角速度逆时针旋转。现给该圆环均匀 带电+Q,求环心o处的磁感应强度 解:将环分成无数同心小环, 任选其中一 个环,设其半径为 r, 环宽dr, 则环上带电量为:
Y.L.Wang
用矢量形式表示的毕奥—萨伐尔定律
I
ˆ μ Idl × r dB = 2 4π r
r
I
μ Idl × r = 3 4π r
α
dB Idl
r
dB 磁场叠加原理: 若磁场由数个运动电荷产生,各电荷单独存在时 产生的磁场分别为B1,B2,…,Bi,…,则:
B = ∑ i Bi
Y.L.Wang
dE
§8-3 毕奥-萨伐尔定律
+ dq
P
•
一、毕奥—萨伐尔定律
dq ˆ r dE = 2 4πε 0 r 1
方向 : l × r d ˆ μ 0 = 4π × 10 −7 ( NA−2 ) 真空中的磁导率
ˆ μ 0 Idl × r dB = 2 4π r μ 0 Idl sin θ 大小: dB = 2 4π r
说 明 1)它只适用于稳恒电流 2)Ii 与所取环路成右手螺旋时为正,反之为负 3)B 是全空间电流的贡献,但只有Ii对环流有贡献 4) ∫ B ⋅ d l ≠ 0 说明磁场为非保守场,称为涡旋场
Y.L.Wang
例、均匀通电直长圆柱体的磁
例5
Y.L.Wang
毕奥萨伐尔定律介绍课件

定律的物理意义
物理意义
毕奥-萨伐尔定律揭示了电流在空间 中产生磁场的基本规律,对于电磁场 理论的发展和应用具有重要意义。
应用举例
在电磁学、电机学、变压器、电磁铁 等领域中,毕奥-萨伐尔定律被广泛应 用于分析和计算磁场分布。
Part
02
毕奥萨伐尔定律的推导
毕奥萨伐尔的生平与贡献
毕奥出生于1774年,是 法国物理学家和数学家。
在物理学中的应用
01
02
03
描述磁场分布
毕奥-萨伐尔定律可以用来 描述磁场在空间中的分布 ,特别是在电流和磁铁附 近产生的磁场。
计算磁场力
根据毕奥-萨伐尔定律,可 以计算磁场对电流和磁铁 的作用力,即洛伦兹力和 安培力。
解决电磁问题
在解决电磁学问题时,毕 奥-萨伐尔定律常与其他电 磁学定律一起使用,以完 整地描述电磁场的行为。
毕奥萨伐尔定律介绍 课件
• 毕奥萨伐尔定律概述 • 毕奥萨伐尔定律的推导 • 毕奥萨伐尔定律的应用 • 毕奥萨伐尔定律的实验验证 • 毕奥萨伐尔定律的扩展与展望
目录
Part
01
毕奥萨伐尔定律概述
定义与公式
定义
毕奥-萨伐尔定律描述了电流在空间中产生的磁场分布,特别是电流元在空间中产生的磁 场。
公式
毕奥和萨伐尔通过实验观 测到电流在空间中产生磁 场的现象。
毕奥萨伐尔定律的数学表达形式
毕奥萨伐尔定律可以用数学公式 表示,描述了电流产生的磁场的
大小和方向。
这个定律在电磁学中非常重要, 是研究电磁场和电磁力的基础。
通过应用毕奥萨伐尔定律,可以 解决许多与电流和磁场相关的问
题。
Part
03
毕奥萨伐尔定律的应用
毕奥-萨伐尔定律及毕奥-萨伐尔定律应用举例

毕奥-萨伐尔定律及毕奥-萨伐尔定律应用举例一、毕奥-萨伐尔定律1.毕奥-萨伐尔定律:载流导线产生磁场的基本规律。
微分形式为:整个闭合回路产生的磁场是各电流元所产生的元磁场dB的叠加。
磁感应线的方向服从右手定则,如图。
二、毕奥-萨伐尔定律应用举例两种基本电流周围的磁感应强度的分布:载流直导线;圆电流。
例1.载流长直导线的磁场解:建立如图坐标系,在载流直导线上,任取一电流元Idz,由毕-萨定律得元电流在P点产生的磁感应强度大小为:方向为垂直进入纸面。
所有电流元在P点产生的磁场方向相同,所以求总磁感强度的积分为标量积分,即:(1)由图得:,即:此外:,代入(1)可得:讨论:(1)无限长直通电导线的磁场:(2)半无限长直通电导线的磁场:(3)其他例子例2:圆形载流导线轴线上的磁场:设在真空中,有一半径为 R ,通电流为 I 的细导线圆环,求其轴线上距圆心 O 为 x 处的P点的磁感应强度。
解:建立坐标系如图,任取电流元,由毕-萨定律得:,方向如图:,所有dB形成锥面。
将dB进行正交分解:,则由由对称性分析得:,所以有:,因为: ,r=常量,所以:,又因为:所以:,方向:沿x轴正方向,与电流成右螺旋关系。
讨论:(1)圆心处的磁场:x=0 ,。
(2)当即P点远离圆环电流时,P点的磁感应强度为:。
例3:设有一密绕直螺线管。
半径为 R ,通电流 I。
总长度L,总匝数N(单位长度绕有n 匝线圈),试求管内部轴线上一点 P 处的磁感应强度。
解:建立坐标系,在距P 点 x 处任意截取一小段 dx ,其线圈匝数为: 电流为:。
其相当于一个圆电流,它在P点的磁感应强度为:。
因为螺线管各小段在P点的磁感应强度的方向均沿轴线向右,所以整个螺线管在P点的磁感应强度的大小为:因为:代入上式得:所以:讨论:(1)管内轴线上中点的磁场:(2)当 L>>R时,为无限长螺线管。
此时,,管内磁场。
即无限长螺线管轴线上及内部为均匀磁场,方向与轴线平行满足右手定则。
毕奥 萨伐尔定律

1 0 2
B
I 0
oa
B
+
1
p
2πa
A
I
B
I
X B
太原理工大学大学物理
2)半无限长载流长直导线的磁场
B
0I
4πa
(cos1
cos2
)
I
2
B
1
2
2
B
I 0
4πa
3)载流长I 直导线延长线rr上的*磁p 场
A
1
a
B=0
B
+P
A
太原理B工大学大学物理
2. 圆形载流导线的磁场
真空中 ,半径为R 的载流导线,通有电流I,称圆电流.
求其轴线上一点 p 的磁感强度的方向和大小.
Idl
R
r
dB
o
x
*p x
解:根据对称性分析
B 0
B Bx
太原理工大学大学物理
Idl sin 900
dB 0
dBx dB sin
4π
r2
Idl
rv0
毕奥—萨伐尔定律
4π r2
思考: 判断下列各点磁感强度的方向和大小.
1
1、5 点 :dB 0
8 7
+2
Idl + 3
3、7点
:dB
0 Idl
4π R2
2、4、6、8 点 :
R
6
+ 4
5
dB
0 Idl
4π R2
sin
450
太原理工大学大学物理
毕奥-萨伐尔定律

将实验结果与毕奥-萨伐尔定律的理论值进行对比,评估定律的准确性。
结果分析
分析实验误差来源,如设备精度、环境干扰等,提高实验的可靠性和准确性。
05
毕奥-萨伐尔定律的扩展与 推广
对三维空间的推广
总结词
毕奥-萨伐尔定律最初是在二维空间中 推导出来的,但通过引入矢量运算, 该定律可以扩展到三维空间中。
Idl
电流元,表示电流的一 部分。
r
观察点到电流元的径矢 ,表示观察点与电流元
之间的距离。
03
毕奥-萨伐尔定律的应用场 景
电场与磁场的关系
磁场是由电流产生的,而电场是由电 荷产生的。毕奥-萨伐尔定律描述了 电流和磁偶极子产生的磁场,以及变 化的电场产生的磁场。
毕奥-萨伐尔定律揭示了电场和磁场之 间的相互关系,表明它们是电磁场的 两个方面,而不是独立存在的。
THANKS
对微观尺度的适用性问题
毕奥-萨伐尔定律在描述微观尺度的电磁场时,其精确度受 到限制。在量子尺度下,电磁场的涨落和量子效应可能导 致定律的不适用。
未来研究需要进一步探索毕奥-萨伐尔定律在微观尺度下 的适用性和修正,以更好地描述量子电磁场的行为。
对超导态物质的适用性问题
毕奥-萨伐尔定律在描述超导态物质的 电磁场时,可能存在局限性。超导态 物质的电磁行为与常规物质有所不同, 需要更复杂的理论模型来描述。
电流与磁场的相互作用
根据毕奥-萨伐尔定律,电流产生磁场,而磁场对电流有作用 力。这种作用力被称为洛伦兹力,它描述了电流在磁场中所 受到的力。
毕奥-萨伐尔定律是电动机和发电机等电气设备工作的基础, 它解释了电流如何在磁场中受到作用力,从而产生旋转或线 性运动。
磁力线的描绘
毕奥萨伐尔定律

磁力发电机
磁力发电机是一种利用磁场产生电能的装置。根据毕奥萨 伐尔定律,当导体在磁场中运动时,会在导体中产生感应 电流。磁力发电机通过转子产生的旋转磁场与定子绕组相 对运动,使定子绕组中产生感应电流,实现发电的目的。
磁力发电机广泛应用于风力发电、水力发电、汽车发动机 等领域,为可再生能源的开发和节能减排做出了重要贡献 。
06
毕奥萨伐尔定律的未来研 究与展望
磁场产生的原因与机制
磁场产生的原因
毕奥-萨伐尔定律指出,运动电荷或电流会产生磁场,这是磁场产生的根本原因。
磁场产生的机制
磁场的产生与电荷或电流的运动有关,当电荷或电流运动时,会激发周围的磁场 ,磁场的大小和方向与电荷或电流的运动状态有关。
磁场对物质的作用与影响
核磁共振成像等磁现象在医疗领域具有广泛的应用前景,同时磁 约束核聚变等前沿技术也在积极探索中。
磁现象在太阳能领域的应用
太阳能电池板在吸收太阳能时,利用磁性原理可以提高太阳能利 用率。
感谢您的观看
THANKS
磁场强度的方向与单位
磁场强度的方向
在右手螺旋定则中,拇指指向电流的方向 ,四指环绕的方向就是磁场的方向。
VS
磁场强度的单位
安培/米(A/m),国际单位制中,磁场强度 的单位是安培/米。
03
毕奥萨伐尔定律的实验验 证
实验设计思路
确定实验目标
验证毕奥萨伐尔定律在特定情况下 的适用性,即通过实验手段测量物 理量以验证理论的准确性。
总结词
描述电磁场基本规律的方程组。
详细描述
麦克斯韦方程组是描述电磁场基本规律的方程组,其 中包括了电场、磁场和电荷密度等物理量的关系。毕 奥萨伐尔定律是麦克斯韦方程组的一个推论,它描述 了磁场与电流之间的关系。此外,麦克斯韦方程组还 预言了电磁波的存在,即光、无线电波等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
毕尔萨伐尔定律
毕尔萨伐尔定律,也称为毕尔萨伐尔-马列德定律(Pouillet's Law),描述了电流通过导体时产生的热量和电流强度、电阻以及时间的关系。
根据毕尔萨伐尔定律,电流通过导体时产生的热量(Q)等于电流强度(I)的平方乘以电阻(R)乘以时间(t)。
数学表达式为:Q = I^2 × R × t
其中,Q的单位是焦耳(J),I的单位是安培(A),R的单位是欧姆(Ω),t的单位是秒(s)。
这个定律说明了电流通过导体时会产生热量,热量的大小取决于电流的强度、导体的电阻以及电流通过导体的时间。
这对于电路设计和电能转化等方面有重要的应用。