毕奥-萨伐尔定律
毕奥萨伐尔定律

1820年,法国物理学家比奥特(Biot)和萨瓦特(Savart)通过实验,测量了一条长直电流线附近的小磁针的力定律,并发表了一篇论文,题为“传递给运动中的金属的电的磁化力”。
后来被称为比奥-萨瓦特定律。
后来,在数学家拉普拉斯(Laplace)的帮助下,该定律以数学公式表示。
毕奥-萨伐尔定律:载流导线上的电流元Idl在真空中某点P的磁感度dB的大小与电流元Idl的大小成正比,与电流元Idl和从电流元到P点的位矢r之间的夹角θ的正弦成正比,与位矢r的大小的平方成反比。
dB的方向垂直于Idl和r所确定的平面,当右手弯曲,四指从方向沿小于π角转向r时,伸直的大拇指所指的方向为dB的方向,即dB、Idl、r三个矢量的方向符合右手螺旋法则。
叠加原理:
与点电荷的场强公式相似,毕奥——萨伐尔定律是求电流周围磁感强度的基本公式.磁感强度B也遵从叠加原理.因此,任一形状的载流导线在空间某一点P的磁感强度B,等于各电流元在该点所产生的磁感应强度dB的矢量和。
特点:
从课程论和物理学课自身特点的角度来分析毕奥-萨伐尔定律,它体现的学科特点有以下几点:(1)是稳恒电流磁场的关键知识点;(2)具有高度的抽象性;(3)使用数学工具的复杂性;(4)掌握“方法”比掌握“内容”更重要;(5)在探索知识的过程中体现“把握本质联
系,揭示事物发展内在规律性”的唯物辩证法观点。
毕奥---萨伐尔定律

两电流元之间的安培定律也可表示成 两电流元之间的安培定律也可表示成
u r r uur u r ˆ I1 I 2 dl2 × (dl1 × r12 ) d F12 = k = I 2 dl2 × dB1 2 r 12
电流元 I1d l1产生的磁场
ˆ ˆ Idl × r µ0 Idl × r dB = k = 2 2 r 4π r
• 求二阶导数
d 2B 在O 令x = 0处的 2 = 0 ⇒ 在O点附近磁场最均匀的条件 dx µ0 d 2B 2a 2 − 2 R 2 = 6π R 2 I = 0 ⇒ a2 = R2 7 2 dx 2 x =0 4π 2 a 2 2 R + 4
a=R
例1、无限长载流直导线弯成如图形状
大小
µ0 Idl dB = 4π r2
r r 方向 Idl × r0
分析对称性、 分析对称性、写出分量式
r r B⊥ = ∫ dB = 0
⊥
µ0 Idl sinα Bx = ∫ dBx = ∫ 4π r2
统一积分变量
µ0 Idl sinα Bx = ∫ dBx = ∫ 4π r2 µ0IR µ0IR dl = π = ⋅2 R 3 ∫ 3 4 r 4 r π π
a
•
•
P T
µ0I 3 BL′A = (cos π − cosπ ) 4πa 4
µ0I π BLA = (cos0 − cos ) 方向 ⊗ 4 a 4 π
方向 ⊗
T点
Bp = BLA + BL′A = 2.94×10−5T 方向 ⊗
r 电流元 Idl
——右手定则 右手定则 r r r µ0 Idl ×r 毕奥-萨伐尔定律 毕奥 萨伐尔定律 dB = 4 π r3 r r r r µ0 Idl ×r 对一段载流导线 B = ∫ dB = ∫ 4π L r3
毕奥萨伐尔定律

• 下右图给出另一个右手定则,用它可以判断载流线 圈的磁感应线方向。这右手定则是:用右手弯曲的 四指代替圆线圈中电流的方向,则伸直的姆指将沿着 轴线上B的方向。
生的磁感应强度的大小 • 与电流元Idl的大小成正比, • 与电流元和从电流元到P点的位矢之间的夹
角θ的正弦成正比, • 与位矢r的大小的平方成反比。即:
一、毕奥---萨伐尔定律
dB的方向 垂直于dl和r所确定的平面,沿
dl×r的方向,用右手螺旋法 则来判定。
矢量表示为: d B 0 Id l r 4 r 3
• 其中:S=πR2为圆线圈的面积。
三、载流圆环导线轴线上的磁场
• 圆线圈轴线上各点的磁感应强度都沿着轴线方向, 与电流方向组成右手螺旋关系。
• 下面讨论两种特殊的情况: • 1、在圆心O处,即a=0处的磁感应强度为: •
• 2、在远离线圈处,即 a>>R,轴线上各点的磁感 应强度约为:
三、载流圆环导线轴线上的磁场
• 由图
cos 1
x L 2
R2 (x L )2 2
cos 2
x L 2
R2 (x L)2 2
代入即得螺线管轴线上任一点P的磁感应强度。
B随x变化关系见上图中的曲线,由这曲线可以看出,当 L>>R时,在螺线管内部很大一个范围内磁场近于均匀, 只在端点附近B值才显著下降。
• 其中 40为比例系数, • μ0 称 为 真 空 磁 导 率 , :
毕奥-萨伐尔定律

将实验结果与毕奥-萨伐尔定律的理论值进行对比,评估定律的准确性。
结果分析
分析实验误差来源,如设备精度、环境干扰等,提高实验的可靠性和准确性。
05
毕奥-萨伐尔定律的扩展与 推广
对三维空间的推广
总结词
毕奥-萨伐尔定律最初是在二维空间中 推导出来的,但通过引入矢量运算, 该定律可以扩展到三维空间中。
Idl
电流元,表示电流的一 部分。
r
观察点到电流元的径矢 ,表示观察点与电流元
之间的距离。
03
毕奥-萨伐尔定律的应用场 景
电场与磁场的关系
磁场是由电流产生的,而电场是由电 荷产生的。毕奥-萨伐尔定律描述了 电流和磁偶极子产生的磁场,以及变 化的电场产生的磁场。
毕奥-萨伐尔定律揭示了电场和磁场之 间的相互关系,表明它们是电磁场的 两个方面,而不是独立存在的。
THANKS
对微观尺度的适用性问题
毕奥-萨伐尔定律在描述微观尺度的电磁场时,其精确度受 到限制。在量子尺度下,电磁场的涨落和量子效应可能导 致定律的不适用。
未来研究需要进一步探索毕奥-萨伐尔定律在微观尺度下 的适用性和修正,以更好地描述量子电磁场的行为。
对超导态物质的适用性问题
毕奥-萨伐尔定律在描述超导态物质的 电磁场时,可能存在局限性。超导态 物质的电磁行为与常规物质有所不同, 需要更复杂的理论模型来描述。
电流与磁场的相互作用
根据毕奥-萨伐尔定律,电流产生磁场,而磁场对电流有作用 力。这种作用力被称为洛伦兹力,它描述了电流在磁场中所 受到的力。
毕奥-萨伐尔定律是电动机和发电机等电气设备工作的基础, 它解释了电流如何在磁场中受到作用力,从而产生旋转或线 性运动。
磁力线的描绘
毕奥萨伐尔定律

在静磁学中,毕奥-萨伐尔定律(英文:Biot-Savart Law)描述电流元在空间任意点P处所激发的磁场。
定律文字描述:电流元Idl 在空间某点P处产生的磁感应强度 dB 的大小与电流元Idl 的大小成正比,与电流元Idl 所在处到 P点的位置矢量和电流元Idl 之间的夹角的正弦成正比,而与电流元Idl 到P点的距离的平方成反比。
该定律在静磁近似中是有效的,并且与Ampère的电路规律和磁性高斯定律一致,以Jean-Baptiste Biot和FélixSavart命名。
定义在静磁学中,毕奥-萨伐尔定律(英文:Biot-Savart Law)描述电流元在空间任意点P处所激发的磁场。
定律文字描述:电流元Idl 在空间某点P处产生的磁感应强度dB 的大小与电流元Idl 的大小成正比,与电流元Idl 所在处到 P点的位置矢量和电流元Idl 之间的夹角的正弦成正比,而与电流元Idl 到P点的距离的平方成反比。
该定律在静磁近似中是有效的,并且与Ampère的电路规律和磁性高斯定律一致,以Jean-Baptiste Biot和FélixSavart命名。
电流(沿闭合曲线)毕奥-萨伐尔定律适用于计算一个稳定电流所产生的磁场。
这电流是连续流过一条导线的电荷,电流量不随时间而改变,电荷不会在任意位置累积或消失。
采用国际单位制,用方程表示:电流(整个导体体积)当电流可以近似为穿过无限窄的电线时,上面给出的配方工作良好。
如果导体具有一定厚度,则适用于Biot-Savart定律(再次以SI为单位):Biot-Savart:毕奥萨伐尔定律定律是实验定律,以一些简单的典型的载流导体产生的磁场为基础,经分析、归纳出的定律,而不是由电流元直接得出的,实际上不可能得到单独的电流元。
毕奥萨伐尔定律

磁力发电机
磁力发电机是一种利用磁场产生电能的装置。根据毕奥萨 伐尔定律,当导体在磁场中运动时,会在导体中产生感应 电流。磁力发电机通过转子产生的旋转磁场与定子绕组相 对运动,使定子绕组中产生感应电流,实现发电的目的。
磁力发电机广泛应用于风力发电、水力发电、汽车发动机 等领域,为可再生能源的开发和节能减排做出了重要贡献 。
06
毕奥萨伐尔定律的未来研 究与展望
磁场产生的原因与机制
磁场产生的原因
毕奥-萨伐尔定律指出,运动电荷或电流会产生磁场,这是磁场产生的根本原因。
磁场产生的机制
磁场的产生与电荷或电流的运动有关,当电荷或电流运动时,会激发周围的磁场 ,磁场的大小和方向与电荷或电流的运动状态有关。
磁场对物质的作用与影响
核磁共振成像等磁现象在医疗领域具有广泛的应用前景,同时磁 约束核聚变等前沿技术也在积极探索中。
磁现象在太阳能领域的应用
太阳能电池板在吸收太阳能时,利用磁性原理可以提高太阳能利 用率。
感谢您的观看
THANKS
磁场强度的方向与单位
磁场强度的方向
在右手螺旋定则中,拇指指向电流的方向 ,四指环绕的方向就是磁场的方向。
VS
磁场强度的单位
安培/米(A/m),国际单位制中,磁场强度 的单位是安培/米。
03
毕奥萨伐尔定律的实验验 证
实验设计思路
确定实验目标
验证毕奥萨伐尔定律在特定情况下 的适用性,即通过实验手段测量物 理量以验证理论的准确性。
总结词
描述电磁场基本规律的方程组。
详细描述
麦克斯韦方程组是描述电磁场基本规律的方程组,其 中包括了电场、磁场和电荷密度等物理量的关系。毕 奥萨伐尔定律是麦克斯韦方程组的一个推论,它描述 了磁场与电流之间的关系。此外,麦克斯韦方程组还 预言了电磁波的存在,即光、无线电波等。
毕奥-萨伐尔定律

dB
P
r
dl
I
I dl dB
r
电流元在给定点所产生的磁感应强度的大小 与Idl成正比,与到电流元的距离平方成反比,与 电流元和矢径夹角的正弦成正比。
d
B
k
I
d
l sin r2
毕奥—萨伐尔(Biot-Savart)定律
d
B
0I d l sin 4r 2
其中0=410-7N•A-2,称为真空中的磁导率。
B
dB dN
0 4
qv sin
r2
其 方 向 根 据 右
手 螺 旋法 则 , B 垂 直v、r 组成的平 面。 q为正,B 为 v r 的 方 向;q为负,B 与
r
•
+ q>0 v
v r 的方向相反。
r
v
q0
运动电荷的磁场
矢量式:
B
0 4
qv r
r3
运动电荷除激发磁场外,同时还在其周围
§11-2 毕奥—萨伐尔定律
1. 毕奥—萨伐尔(Biot-Savart)定律
载流导线中的电流为I, 导线半径比到观察点P的距 离小得多,即为线电流。在
线 电 流 上 取 长为 dl 的 定 向 线
元,规定 d的l方 向与电流的 方向相同, I d为l 电流元。
Idl
I
毕奥—萨伐尔(Biot-Savart)定律
磁感应强度的矢量式:
d
0I dl
4 r3
r
Biot-Savart定律 的微分形式
(11 6)
B
0
4
I dl r L r3
Biot-Savart定 律的积分形式
(11 7)
毕奥撒法尔定律

毕奥撒法尔定律
毕奥-萨伐尔定律(也被称为电场定律)是电学中的一个重要定律,它描述了电荷之间的相互作用力与它们所带电荷量的乘积以及它们之间距离之间的关系。
具体来说,毕奥-萨伐尔定律表明在真空中,静止的点电荷所产生的电场强度与它们所带电荷量成正比,与它们之间的距离的平方成反比。
公式表示为:$\frac{E}{q} = \frac{k}{r^{2}}$,其中E是电场强度,q是源电荷的电荷量,k是常数,r是源电荷与试探电荷之间的距离。
这个定律是英国物理学家约瑟夫·安培的学生,法国物理学家奥古斯汀·毕奥和其时的科学家萨伐尔共同发现的。
他们在研究电流产生的磁场时,通过实验和理论推导得出了这个定律。
这个定律不仅适用于点电荷产生的电场,还适用于任何形状的电荷分布产生的电场,以及多个电荷共同产生的电场。
需要注意的是,毕奥-萨伐尔定律是在静止电荷产生的电场中得出的,对于随时间变化的磁场,需要使用麦克斯韦方程组来描述。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
毕奥—萨伐尔定律
1820年,毕奥和萨伐尔通过实验得到了载流导线周围磁场与电流的定量关系,拉普拉斯又以公式的形式概括得出电流元产生磁感强度d B 的规律。
为计算电流为I 的导线在空
间某点户产生的磁感强度B ,
设想将载流导线分割成许多电
流元,用矢量dl I 表示.线元dl
的方向与电流流向一致。
毕奥
—萨伐尔定律指出:载流导线上的电流元dl I 在真空中某点P 的磁感度dB 的大小与电流元dl I 的大小成正比,与电流元dl I 和从电流元到P 点的位矢r 之间的夹角θ的正弦成正比,与位矢r 的大小的平方成反比,即
2
0sin 4r dl I dB θπμ= (9-2a ) 上式中,π
μ40为比例系数,0μ称为真空磁导率,其值为 270104--∙⨯=A N πμ dB 的方向垂直于dl I 和r 所确定的平面,当右手弯曲,四指从dl I 方向沿小于π角转向r 时,伸直的大姆指所指的方向为dB 的方向, 即dB 、dl I 、r 三个
矢量的方向符合右手螺旋
法则,如图9—2所示,因此,可将式(9—2a)写成矢量形
式
20
4r r
dl
I dB ⨯
=
π
μ
(9-2b)
上式中,r0为位矢r的单位矢量.此即毕奥——萨伐尔定律的公式表述。
与点电荷的场强公式相似,毕奥——萨伐尔定律是求电流周围磁感强度的基本公式.磁感强度B也遵从叠加原理.因此,任一形状的载流导线在空间某一点P的磁感强度B,等于各电流元在该点所产生的磁感应强度dB的矢量
和,即⎰⎰⨯
=
=
L r r
Idl
dB
B
20
4π
μ
(9-3)
例9-1例9-1求载流直导线周围的磁场。
解:设有长为L的直导线上通有
电流I,求距离此导线为a处一点P的磁
感应强度。
在直导线上任取一电流元
Idl,它到P点的位矢为r,P点到直线的
垂足为O,电流元到O的距离为l,Idl
与r的夹角为θ,如左图所示。
根据毕萨定律可得该电流元在P点的磁感应强度dB的大小为
2
0sin 4r l d I dB θπμ= dB 的方向垂直于纸面向里,图中用⊗表示.由于直导线上所
有电流元在P 点的磁感应强度dB 的方向度相同,所以, P 点
的磁感应强度B 的大小等于各电流元在P 点dB 的大小之和,
即
20sin 4r l d I B L θπ
μ⎰
= 将上式中l 、r 、θ等变量统一为一个变量,以便积分.由图9-3所得
()θπ-=ctg a l
θ
θd a
dl 2sin =
()
θθπsin sin a a r =-=
于是
()2100c o s c o s 4s i n 421θθπμθθπμθθ-==⎰a
I d a I B (9-4)
式中,θ1和θ2分别为直导线两端的电流元与它到P 点的位矢
之间的夹角。
若L 》a,则导线可视为无限长.此时,θ1≈0,θ2≈π,P 点的
磁感应强度为
a
I B πμ20= (9-5)
上式表明,无限长载流直导线周围的a
I B ∝。
这一正比关系最初是毕奥、萨伐尔从实验中得到的。
例9-2 设在半径为R 的圆形线圈上通有电流I,求圆心O
处的磁感强度。
解:在圆线圈上任取一电流元Idl ,他到圆心O 的位矢
为r ,因Idl 与r 之间夹角为2
π,所以该电流元在圆心O 的磁感强度dB 的大小为
202020442sin 4R l d I r l d I r l d I dB πμπμπ
πμ===
dB 的方向垂直于纸面向外。
由于所有电流元在O 点的磁感
应强度B 的方向都相同,所以,O 点的磁感应强度B 的大小等于各电流元在P 点的dB 的大小之和,即 R I dl R I B L 24020μπμ==
⎰ (9-6)。