毕奥萨伐尔定律推导
毕奥萨伐尔定律内容及公式(一)

毕奥萨伐尔定律内容及公式(一)毕奥萨伐尔定律内容及公式毕奥萨伐尔定律简介毕奥萨伐尔定律(也称作毕奥-斯沃特定律)是电磁学中的一个重要定律,描述了电流所产生的磁场的特性。
由法国物理学家安德烈-玛丽-安普尔毕奥和德国物理学家卡尔-戴维德斯洛特共同发现并命名。
毕奥萨伐尔定律公式在真空中,毕奥萨伐尔定律可以用公式表达为:B = μ0 * I * (l / 2πr)其中, - B 是磁场的磁感应强度,单位为特斯拉(T); - I 是载流导线的电流,单位为安培(A); - l 是载流导线的长度,单位为米(m); - r 是从载流导线测量到的点的距离,单位为米(m);- μ0(读作mu-null)是磁导率,也称真空磁导率,约等于4π * 10^-7 T·m/A。
毕奥萨伐尔定律的解释与示例毕奥萨伐尔定律表明,电流所产生的磁场的强度与电流强度、导线长度以及距离的关系。
以下是一些示例来解释毕奥萨伐尔定律的应用:•示例一假设一段10米长的电缆中有电流流过,电流强度为5安培。
现在我们想要计算距离电缆1米处的磁场强度。
使用毕奥萨伐尔定律的公式,代入I=5A,l=10m,r=1m,以及μ0≈4π * 10^-7 T·m/A,我们可以计算得到:B = 4π *10^-7 * 5 * (10 / 2π * 1) = * 10^-6 T•示例二假设在一个闭合导线圈中有电流流过,导线圈的半径为米,电流强度为10安培。
现在我们想要计算导线圈中心的磁场强度。
使用毕奥萨伐尔定律的公式,代入I=10A,l=2π * (周长),r=,以及μ0≈4π * 10^-7 T·m/A,我们可以计算得到:B = 4π * 10^-7 * 10 * (2π * / 2π * ) = * 10^-6 T这些示例展示了应用毕奥萨伐尔定律计算不同条件下的磁场强度的过程。
通过理解该定律,我们可以更好地研究和应用电磁学中与磁场相关的现象和设备。
毕奥---萨伐尔定律

两电流元之间的安培定律也可表示成 两电流元之间的安培定律也可表示成
u r r uur u r ˆ I1 I 2 dl2 × (dl1 × r12 ) d F12 = k = I 2 dl2 × dB1 2 r 12
电流元 I1d l1产生的磁场
ˆ ˆ Idl × r µ0 Idl × r dB = k = 2 2 r 4π r
• 求二阶导数
d 2B 在O 令x = 0处的 2 = 0 ⇒ 在O点附近磁场最均匀的条件 dx µ0 d 2B 2a 2 − 2 R 2 = 6π R 2 I = 0 ⇒ a2 = R2 7 2 dx 2 x =0 4π 2 a 2 2 R + 4
a=R
例1、无限长载流直导线弯成如图形状
大小
µ0 Idl dB = 4π r2
r r 方向 Idl × r0
分析对称性、 分析对称性、写出分量式
r r B⊥ = ∫ dB = 0
⊥
µ0 Idl sinα Bx = ∫ dBx = ∫ 4π r2
统一积分变量
µ0 Idl sinα Bx = ∫ dBx = ∫ 4π r2 µ0IR µ0IR dl = π = ⋅2 R 3 ∫ 3 4 r 4 r π π
a
•
•
P T
µ0I 3 BL′A = (cos π − cosπ ) 4πa 4
µ0I π BLA = (cos0 − cos ) 方向 ⊗ 4 a 4 π
方向 ⊗
T点
Bp = BLA + BL′A = 2.94×10−5T 方向 ⊗
r 电流元 Idl
——右手定则 右手定则 r r r µ0 Idl ×r 毕奥-萨伐尔定律 毕奥 萨伐尔定律 dB = 4 π r3 r r r r µ0 Idl ×r 对一段载流导线 B = ∫ dB = ∫ 4π L r3
6-3毕奥—萨伐尔定律

0 I 1 l r1 r2 0 I 2 l d r1 ln ln 2 r1 2 d r1 r2
2.26 10 6 Wb
运动电荷的磁场
三、 运动电荷的磁场
形成
电荷运动
电 流
磁 场
设电流元 Idl ,横截面积S,单位体积内有n 个定向运动的正电荷 , 每个电荷电量为 q ,定向 速度为v。
L
I d l er 2 r
二、毕奥—萨伐尔定律的应用 先将载流导体分割成许多电流元 Idl 写出电流元 Idl 在所求点处的磁感应强度,然后
按照磁感应强度的叠加原理求出所有电流元在该点 磁感应强度的矢量和。 实际计算时要应先建立合适的坐标系,求各电流元的 分量式。即电流元产生的磁场方向不同时,应先求出 各分量 dBx dBy dBz 然后再对各分量积分,
0 I sin B 2R 2 4r
I dl
R
r
d B
dB
IO
2 2
x
2
P
d B//
R R r R x ; sin 2 2 12 r (R x ) 0 IR 2 0 IS B 2 2 32 2 2 32 2 ( R x ) 2( R x )
0 qv sin dB B dN 4 r2
矢量式:
0 qv er B 2 4 r
其方向根 据 右手螺 旋法则, B 垂直 v 、r 组成的平面。 q 为正, B 为 v 的方向;q为 r 负, B 与 v r 的方向 相反。
1.71 105 T
方向
S点
L
0 I 1 1 BLA (sin sin ) 方向 4a 4 2 L 0 I 1 1 BAL (sin sin ) 方向 4a 2 4
10.3 毕奥-萨伐尔定律

毕奥—萨伐尔定律 10.3 毕奥 萨伐尔定律 讨 论
第十章 真空中的稳恒磁场
B=
µ0 nI
2
(cos β 2 − cos β1 )
π β1 = , β 2 = 0 2 1 B = µ 0 nI 2
(1) 无限长的螺线管 无限长的螺线管
(2)半无限长螺线管端点处 )
β1 = π , β 2 = 0
B = µ 0 nI
v dB
P *
v r
θ
v Idl
I
v r
任意载流导线在点 P 处的磁感强度
v v v v µ0 I dl × r0 磁感强度叠加原理 B = dB = ∫ ∫ 4 π r2 (多采用分量式计算 多采用分量式计算) 多采用分量式计算
毕奥—萨伐尔定律 10.3 毕奥 萨伐尔定律
*二 运动电荷的磁场 二
R2
*o
B0 =
µ0 I
8R
B0 =
µ0 I
4 R2
−
µ0 I
4 R1
−
µ0 I
4π R1
毕奥—萨伐尔定律 10.3 毕奥 萨伐尔定律
第十章 真空中的稳恒磁场
例3 载流直螺线管轴线上的磁场 如图所示,有一长为 半径为R的载流密绕直螺 如图所示,有一长为l , 半径为 的载流密绕直螺 线管,螺线管单位长度的匝数为n,通有电流I. 线管,螺线管单位长度的匝数为 ,通有电流 设把 螺线管放在真空中,求管内轴线上一点处的磁感强度. 螺线管放在真空中,求管内轴线上一点处的磁感强度
v dB 方向均沿
y
D
dl
I
C
z
4π r µ0 Idl sin α B = ∫ dB = ∫ 2 CD α 4π r v sinα = cos β r v r = a sec β l dB β2 l = a tan β dl = a sec2 β dβ β * x o a β1 µ 0 I β2 P B= ∫β1 cosβ dβ 4πa
毕奥-萨伐尔定律公式

毕奥-萨伐尔定律公式
毕奥-萨伐尔定律公式是描述电磁感应现象的重要公式之一,它是由法国物理
学家毕奥和英国物理学家萨伐尔分别独立提出的,因此也被称为毕萨定律。
该定律表述了当一个闭合电路中的磁通量发生变化时,该电路内会产生电动势。
具体来说,如果一个电磁感应器中的磁通量Φ发生变化,那么在该感应器两端就
会产生一个电动势E,其大小与磁通量变化率的绝对值成正比。
毕奥-萨伐尔定律公式可以用一个简单的公式来表达:
E = -dΦ/dt
其中,E是感应电动势的大小,Φ是穿过感应电路的磁通量,t是时间,d/dt表示对时间的导数运算。
公式中的负号表示感应电动势的方向与磁通量变化的方向相反。
需要注意的是,该定律只适用于闭合电路中的感应电动势。
对于非闭合电路,根据法拉第电磁感应定律,产生的感应电动势大小与闭合电路中的相同,但方向可能不同。
总的来说,毕奥-萨伐尔定律公式是电磁学中一个非常重要的公式,广泛应用
于各种电磁感应现象的分析和设计中。
毕奥-萨伐尔定律

将实验结果与毕奥-萨伐尔定律的理论值进行对比,评估定律的准确性。
结果分析
分析实验误差来源,如设备精度、环境干扰等,提高实验的可靠性和准确性。
05
毕奥-萨伐尔定律的扩展与 推广
对三维空间的推广
总结词
毕奥-萨伐尔定律最初是在二维空间中 推导出来的,但通过引入矢量运算, 该定律可以扩展到三维空间中。
Idl
电流元,表示电流的一 部分。
r
观察点到电流元的径矢 ,表示观察点与电流元
之间的距离。
03
毕奥-萨伐尔定律的应用场 景
电场与磁场的关系
磁场是由电流产生的,而电场是由电 荷产生的。毕奥-萨伐尔定律描述了 电流和磁偶极子产生的磁场,以及变 化的电场产生的磁场。
毕奥-萨伐尔定律揭示了电场和磁场之 间的相互关系,表明它们是电磁场的 两个方面,而不是独立存在的。
THANKS
对微观尺度的适用性问题
毕奥-萨伐尔定律在描述微观尺度的电磁场时,其精确度受 到限制。在量子尺度下,电磁场的涨落和量子效应可能导 致定律的不适用。
未来研究需要进一步探索毕奥-萨伐尔定律在微观尺度下 的适用性和修正,以更好地描述量子电磁场的行为。
对超导态物质的适用性问题
毕奥-萨伐尔定律在描述超导态物质的 电磁场时,可能存在局限性。超导态 物质的电磁行为与常规物质有所不同, 需要更复杂的理论模型来描述。
电流与磁场的相互作用
根据毕奥-萨伐尔定律,电流产生磁场,而磁场对电流有作用 力。这种作用力被称为洛伦兹力,它描述了电流在磁场中所 受到的力。
毕奥-萨伐尔定律是电动机和发电机等电气设备工作的基础, 它解释了电流如何在磁场中受到作用力,从而产生旋转或线 性运动。
磁力线的描绘
毕奥-萨伐尔定律

例1 载流长直导线的磁场.
dB 方向均沿
z
D
2
dz
r
r0
Iz1源自 dB* y Pr2 0 Idz sin B dB CD r 2 4π
解 dB
x 轴的负方向 0 Idz sin
4π
x
C
o
z r0 cot , r r0 / sin 2 dz r0d / sin 0 I 2 B 1 sin d 4π r0
4π r
2
dq 2π rdr
v r
dr
dB B
0
2
R
dr
0
2
0
dr
0 R
2
小 • 磁场
电 流 运动电荷 磁 铁
结
磁 场
电
流
运动电荷 磁 铁
0 Idl r • 毕奥-萨伐尔定律 dB 4 r 3 o I o qv r B (cos 1 cos 2 ) B 4ro 3
Pm
en
I S
说明:只有当圆形电流的面积S很小,或场点距 圆电流很远时,才能把圆电流叫做磁偶极子.
例3 载流直螺线管的磁场 如图所示,有一长为l , 半径为R的载流密绕直螺 线管,螺线管的总匝数为N,通有电流I. 设把螺线管 放在真空中,求管内轴线上一点处的磁感强度.
R
o * p
dx
x
x
++ ++++ ++ +++ ++ +
解 由圆形电流磁场公式
B
0 IR
毕奥萨伐尔定律的数学表达式

毕奥萨伐尔定律的数学表达式
毕奥萨伐尔定律是描述一个重要物理现象的重要定律。
1853年,德国物理学家威廉·毕奥萨·伐尔提出了这一定律,他指出,磁体周围存在一种旋转电流,磁体正在试图引导这种旋转电流。
由此,如果磁体不能无限循环这种电流,那么磁场强度就会减弱,直到磁体消失。
毕奥萨·伐尔定律的数学表达式是用来描述磁体的磁场的变化的重要理论,其定律如下:B⃗={μ⃗0 ·(I⃗·r̂)/4πr2}r̂, 其中B⃗是磁场,μ⃗0是真空磁导率,I⃗是电流,r̂是相对于磁片的单位向量。
从这个公式可以看出,磁场强度随着距离的增加而减弱,磁场强度和电流强度之间存在着内在联系。
毕奥萨·伐尔定律非常重要,它不仅在物理上解释了磁场的结构,而且是研究电磁相关问题的基础。
在电工学中广泛应用,例如在线圈的设计中,用伐尔定律可以迅速计算线圈的磁场,确定绕线的线圈,以及测量电压、电流和功率。
总之,毕奥萨·伐尔定律是一个重要及有效的定律,它可以解释磁体所受到的影响,而且它在电磁学中被广泛应用。
它的数学表达式让研究变得简单、快速,也显示出物理系统中物体与环境之间微妙的相互作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
“毕奥.萨伐尔”定律推导
毕奥·萨伐尔定律:
其中是从电流元指向参考点方向的单位矢量,是真空磁导率。
电流元产生的磁场的磁感应强度dB垂直Idl与e r组成的平面,并满足右手螺旋定则。
电流元
定义:Idl为电流元。
大小为Idl,的方向由线元所在处电流的流向来确定。
目的:用积分法来求出任意形状的磁场分布。
电流元的磁场
大小:
载流直导线的磁场
长为的载流直导线,其中电流为I,计算距离直导线为r0的P点的磁感应强度。
涉及到的数学公式
磁感应强度的积分推导
所以:
无限长载流直导线
则,
扩展知识:
磁现象
一切磁现象都源于电荷的运动。
一切磁力本质上都是电荷之间的作用力。
宇宙间四种基本作用力
1、引力又称重力,是四个基本相互作用中最弱的,但是同时又
是作用范围最大的。
而广义相对论中说引力是由于弯曲的空间和时间。
2、电磁力:世上大部分物质都具有电磁力,而磁与电是电磁力其中的一种表现模式。
3、强相互作用力又称为强核力,所有存在宇宙中的物质都是由原子构成,原子由电子和原子核组成,而原子核是由中子和质子组成。
4、弱相互作用力又称为弱核力,可以说是核能的另一种来源,主要是核子产生的天然辐射,四种相互作用力中,弱相互作用只比引力强一点。