车架

车架
车架

汽车的车架

2005-8-15 13:40:27来源: 编辑:

1.早期的车架设计

“车架”这个名称原本是从法文的“Chassis”衍生而来的,早期汽车所使用的车架,大多都是由笼状的钢骨梁柱所构成的,也就是在两支平行的主梁上,以类似阶梯的方式加上许多左右相连的副梁制造而成。车体建构在车架之上,至于车门、沙板、引擎盖、行李厢盖等钣件,则是另外再包覆于车体之外,因此车体与车架其实是属于两个独立的构造。这种设计的最大好处,在于轻量化与刚性得以同时兼顾,因此受到了不少跑车制造商的青睐,早期的法拉利与兰博基尼都是采用的这种设计。

由于钢骨设计的车架必须通过许多接点来连结主梁和副梁,加之笼状构造也无法腾出较大的空间,因此除了制造上比较复杂、不利于大量生产之外,也不适合用在强调空间的四门房车上。随后单体结构的车架在车坛上成为主流,笼状的钢骨车架也逐渐改由这种将车体与车架合二为一的单体车架所取代,这种单体车架一般以“底盘”称之,也就是衍生自英文的“Platform”。

2.关于车架刚性

很多人都知道刚性的良好与否会直接影响到一部车的操控,但是所谓的车架刚性究竟指的是什么?而刚性不足又会带来哪些后果呢?简单的说,车架所要求的刚性其实就建构在车架的抗变形能力上,也就是指车架对于受外力影响而弯曲或扭转的抗力。一旦车架刚性不足,操控性便会受到影响。试想前轮因车架变形而导致转向时出现时间差,或是轮胎与路面的接地性不良而影响到循迹性与抓地力等,肯定都会使操纵性无法发挥出原有的水准。

影响车架刚性的外力,通常是来自于路面磨擦力以及加减速或过弯时产生的G值。早期的汽车由于引擎及底盘设计不像现在发达,轮胎的抓地力也不如今日优异,因此车架刚性的重要性并不容易被关注。但是近年来市售车所搭载的引擎已有不错的动力,许多车都拥有200km/h以上的极速,而且除了轮胎进化成抓地力更好的辐射层构造,低扁平比薄胎与大直径化的设定也成为了市场的主流,因此在动力有所提升、轮胎与悬挂所承受的负荷增大并且转移至车架的情况下,车架本身承受的负荷肯定也会大幅提高,而车架刚性的良好与否也就显得更为重要。

3.车架在实际环境下要面对的4种压力

1)负载弯曲(Vertical bending)

从字面上就可以十分容易的理解这个压力,部分汽车的非悬挂重量(unsprung mass),是由车架承受的,通过轮轴传到地面。而这个压力,主要会集中在轴距的中心点。因此车架底部的纵梁和横梁(member),一般都要求较强的刚度。

2)非水平扭动(longitudinal torsion)

当前后对角车轮遇到道路上的不平而滚动,车架的梁柱便要承受这个纵向扭曲压力(longltudinal torsion),情况就好象要你将一块塑料片扭曲成螺旋形一样。

3)横向弯曲(lateral bending)

所谓横向弯曲,就是汽车在入弯时重量的惯性(即离心力)会使车身产生向弯外甩的倾向,而轮胎的抓着力会和路面形成反作用力,两股相对的压力将车架横向扭曲。

4)水平菱形扭动(horizontal lozenging)

因为车辆在行驶时,每个车轮因为路面和行驶情况的不同,(路面的铺设情况、凹凸起伏、障碍物及进出弯角等等)每个车轮会承受不同的阻力和牵引力,这可以使车架在水平方向上产生推拉以至变形,这种情况就好象将一个长方形拉扯成一个菱形一样。

4.车架的种类

车架的作用是承受载荷,包括汽车自身零部件的重量和行驶时所受的冲击、扭曲、惯性力等。现有的车架种类有大梁式、承载式、钢管式及特殊材料一体成型式等。

1)大梁式车架(图1)

在港台汽车刊物中常称作“阵式车架”,是最早出现的车架类型(从全世界第一部汽车开始一直沿用至今)。大梁车架的原理很简单:将粗壮的钢梁焊接或铆合起来成为一个钢架,然后在这个钢架上安装引擎、悬架、车身等部件,这个钢架就是名附其实的“车架”。大梁式车架的优点是钢梁提供很强的承载能力和抗扭刚度,而且结构简单,开发容易,生产工艺的要求也较低。致命的缺点是钢制大梁质量沉重,车架重量占去全车总重的相当部分;此外,粗壮的大梁纵贯全车,影响整车的布局和空间利用率,大梁的厚度使安装在其上的坐厢和货厢的地台升高,使整车重心偏高。综合这些因素可见,大梁式车架适用于要求有大载重量的货车、中大型客车,以及对车架刚度要求很高的车辆,如越野车。传统越野车在良好道路上行驶时表现出重心过高的不良操控性,就是由大梁式车架所致。(A:大型客车B:丰田Prado越野车的大梁车架)

图1

2)承载式车架(图2)

也称作整体式或单体式车架。针对大梁式车架质量重、体积大、重心高的问题,承载式车架的意念是用金属制成坚固的车身,再将发动机、悬架等机械零件直接安装在车身上。这个车身承受所有的载荷,充当车架,所以准确称呼应为“无车架结构的承载式车身”(采用大梁车架的汽车车身则称为“非承载式车身”)。承载式车架由钢(较先进的是铝)经冲压、焊接而成,对设计和生产工艺的要求都很高,这也是中国目前的车身设计开发难以突破的大难点。成型的车架是个带有坐舱、发动机舱和底板的骨架(C),我们所能看到的光滑的汽车车身则是嵌在骨架上的覆盖件(D)。

图2图3

承载式车车架是目前轿车的主流,因为这种结构将车架和车身二合为一,重量轻,可利用空间大,重心低,而且冲压成型的制造方式十分适合现代化的大批量生产。但是除了开发制造难度高外,刚度(尤其是抗扭刚度)不足也是承载式车身的一大缺陷。这问题在日常用车上还不明显,但对于大马力、大扭力的高性能跑车,要求有很高的车架刚度,普通承载式车身就显得刚度不足。因此近年的高性能汽车,除了马力不断提升外,各车厂也不断致力于提高车身的刚度,目前主要采取的办法是优化车架的几何形状和采用局部增粗或补焊以加强抗扭能力。

由于承载式车架将全车所有部件,包括悬架、车身和乘员连成一体,具有很好的操控反应(正式学名是“操作响应性”),而且传递的震动、噪音都较少,这是大梁式车架不可比拟的。因此不仅是轿车,就连一些针对良好道路环境设计的越野车也有弃大梁车架而改用承载式车身的趋势,这就是所谓的“城市化越野车”。另外针对大梁式车架地台高的弊病,近年还出现了采用承载式车身的大型客车(称为“无大梁车身”或“无阵车身”),由于取消了大梁,旅游大巴可以在车底腾出巨大且左右贯通的行李空间,用于市区的公共汽车则可以将地台降至与人行道等高以便于上下车(要配合特殊的低置车桥)。低地台是客车的一个重要发展方向(E)。

3)钢管式车架(图3)

前面曾说过承载式车架的设计开发和生产工艺都复杂,只适宜大批量生产。但是对于少量生产的轿车又如何呢?虽然可以采用共用平台策略,但所谓的“共用平台”能共用的只是悬架、传动系统等底盘部件,承载式的车架由于必须与车身形状吻合,对于不同的车身造型是不能共用车架的。于是钢管式(又称“框条式”)车架便应运而生。

顾名思义,钢管式车架就是用很多钢管焊接成一个框架,再将零部件装在这个框架上。它的生产工艺简单,很适合小规模的工作坊作业,50-70年代英国有很多小规模的车厂生产各式各样的汽车,都是用自行开发制造的钢管车架,是钢管车架的全盛时期。时至今日仍采用钢管车架的都是一些产量较少的跑车厂,如LAMBORGHINI和TVR,原因是可以省去冲压设备的巨大投资。由于对钢管车

车架进行局部加强十分容易(只须加焊钢管),在质量相等的情况下,往往可以得到比承载式车架更强的刚度,这也是很多跑车厂仍乐于用它的原因。(F是LAMBORGHINI DIABLO的钢管骨架,装上覆盖件后成为G)

4)铝合金车架(图4)

奥迪A8的车架是用铝合金做的,但那是冲压成型的结构,只是材料不同了,仍属于承载式车架。这里说的铝合金车架是另一种类型,将铝合金条梁焊接、铆接或贴合在一起组成一个框架,可以理解为钢管车架的变种,只是铝合金是方梁状而非管状。铝合金车架最大优点是轻(相同刚度的情况下)。但是成本高,不宜大量生产,而且铝合金本身的特性决定了其承载能力受限制,暂时只有少数车厂运用在小型的量产跑车上,如莲花ELISE和雷诺SPIDER(H)。

图4图5图6

5)碳纤维车架(图5)

亦即是开头所提到的“特殊材料一体成型式车架”。制造方法是用碳纤维浇铸成一体化的底板、坐舱和引擎舱结构,再装上机械零件和车身复盖件。碳纤维车架的刚度极高,重量比其它任何车架都要轻,重心也可以造得很低。但是制造成本是它的致命伤,因此目前都只用于不计成本的赛车和极少数量产车上。碳纤维车架在80年代首先出现一级方程式赛车上,然后延伸到C组赛车和90年代的GT赛车,至今仅有的两部采用碳纤维车架的量产车是94年的MCLAREN F1和95年的FERRARI F50。(I:法拉利F50一体成型的碳纤维地台连坐舱就是它的车架)

碳纤维的刚度不仅有利于操控,对提高安全性也有很大的作用。典型例子是在95年,宝马的总裁驾驶一部MCLAREN F1(街道版)满载3人在德国的公路上以280公里时速失控,冲出公路后再翻滚无数圈后才停车,车上3人居然只受了轻伤。当时全车外壳尽毁,但车架和坐舱仍保持完好的形状,如非碳纤维车架肯定是招架不住的。这也是一级方程式赛车至今沿用它的原因之一。

6)“副车架”

副车架并非完整的车架,只是支承前后车桥、悬架的支架,使车桥、悬架通过它再与“正车架”相连,习惯上称为“副架”。副架的作用是阻隔振动和噪声,减少其直接进入车厢,所以大多出现在豪华的轿车和越野车上,有些汽车还为引擎装上副架。

5.未来发展

大梁式和承载式车架是占绝大多数的主流车架形式,但它们都分别有着显著的缺点,即笨重和刚度不足。于是近年出现了融合这两者优点和车架设计方案,图6中所示是三菱PAJERO IO的独创车架,在承载式结构的车厢底部增加了独立的钢框架(J中的蓝色部分),可以认为是简化的大梁结构,从而在保证刚度的同时,重量和重心又比大梁式结构大为下降。另一个例子是本田S2000,由于对性能要求很高,而敞篷车身的刚度不足,于是在承载式车架的底部加焊了类似大型横梁的补强结构,从而增强了刚度。今后这种“杂交”车架的形式肯定会更层出不穷。

计算车架尺寸公

计算车架尺寸公

————————————————————————————————作者:————————————————————————————————日期:

在Airborne网站上看到了度量身体个部位长度和计算车架尺寸的公式,供大家参考使用。 1. 测量大腿长度i 此主题相关图片如下: 测量时最好穿骑行服,站于水平硬性地面,并由一人辅助。身体直立,两脚间隔约十公分。用书本或其他类似的东西平置于裆部,并向上施加小于坐车座的适当力度,测量书本顶部至 地面的距离:i 2. 测量身长t 此主题相关图片如下:

姿势与步骤1相同,测量锁骨之间V字槽底部至书本上端的距离:t 3. 测量臂长a 此主题相关图片如下: 水平站立,平伸手臂、掌心向前,测量从虎口到肋骨所在平面的距离 4. 测量肩宽s 此主题相关图片如下:

直立,放松两臂,测量肩关节处的宽度s 以上尺寸每个测量三次,取平均值 根据以上数据可以得到你所需要的车架尺寸: 公路车架尺寸=i*0.67(cm) 山地车架尺寸=(i*0.67-11.0)*0.394(英寸) 把立长度=[(t+a)/2+x]-et 公路车x=4;山地x=8;et=effective top tube length(车架上管有效长度就是第一张 图中的“o”) 你所适合的曲柄长度: 腿长范围(cm)曲柄长度 65cm - 70cm 165mm 71cm - 76cm 170mm 79cm - 81cm 172.5mm 82cm - 90cm 175mm 弯把宽度:(弯把的宽度是指中心至中心的长度) 肩宽范围s 把宽cm 38cm 38 - 40 39cm 40 40cm 40 41cm 40 – 42

车架计算

XXX车架强度计算报告 现根据需要,对XXXX车架结构进行调整,对比调整前后的结构状态,进行车架强度计算。根据协议要求,需保证更改后车架的强度满足安全使用要求,同时在支腿工作时,车架的变形量不大于6mm。 一、模型的建立 鉴于UG软件不但具有很强的建模能力,而且还具有很强的数值运算能力和高效的求解技术,本车架利用UGNX8.0建立物理模型后,直接从UG建模模块切换至CAE模块进行有限元网格划分、边界条件加载、NASTRAN求解器求解等工作,从而避免了不同软件模型之间传递的失真问题。 1. 车架的物理模型 整个车架由主纵梁、主横梁、支腿、座圈和支架等几部分组成。保证各个零件之间的相对位置,并且保证它们的联结关系。车架变更前后的物理模型见图1。 图1a 图1b 图1 车架更改前后物理模型 2. 车架的约束

主要考虑上装工作时车架的实际工作情况,可以假定支腿的四个端面为固定面,因此将这四个面上的所有点的自由度全部进行约束,即约束所有点的六个自由度。 3. 车架的载荷加载 根据车架各主要部件的位置,将驾驶室、发动机、变速箱、分动器、油箱等总成的载荷按实际重量加载在车架上,并将16吨的上装载荷加载在座圈三个垫块上,载荷安全系数取3,如图2所示。 图2 模型的边界条件及加载 4. 车架的网格划分 对车架进行网格划分,为提高计算精度,对座圈等关键位置网格细分,见图3.

图3 座圈位置网格细分二、计算结果 1. 更改前后车架强度 图4(a) 更改前

图4(b) 更改后 图4更改前后车架等效应力云图 局部位置应力强度对比见图5、6、7: 图5(a) 更改前

车架受力分析基础

车架受力分析基础 一、对车架整车的受力要求 二、车架的受力情况具体分析 三、车架的结构分析 1.车架的基本结构形式 2.车架宽度的确定 3.纵梁的形式、主参数的选择 4.车架的横梁及结构形式 5.车架的连接方式及特点 6.载货车辆采用铆接车架的优点 四、车架的计算 1.简单强度计算分析 2.简单刚度计算分析 3.CAE综合分析 五、附表 2000年7月1日

一、整车对车架的要求 车架是整车各总成的安装基体,对它有以下要求: 1.有足够的强度。要求受复杂的各种载荷而不破坏。要有足够的疲劳强度,在大修里程内不发生疲劳破坏。 2.要有足够的弯曲刚度。保证整车在复杂的受力条件下,固定在车架上的各总成不会因车架的变形而早期损坏或失去正常工作能力。 3.要有足够的扭转刚度。当汽车行使在不平的路面上时,为了保证汽车对路面不平度的适应性,提高汽车的平顺性和通过能力,要求车架具有合适的扭转刚度。对载货汽车,具体要求如下:3.1车架前端到驾驶室后围这一段车架的扭转刚度较高,因为这一段装有前悬架和方向机,如刚度弱而使车架产生扭转变形,势必会影响转向几何特性而导致操纵稳定性变坏。对独立悬架的车型这一点很重要。 3.2包括后悬架在内的车架后部一段的扭转刚度也应较高,防止由于车架产生变形而影响轴转向,侧倾稳定性等。 3.3驾驶室后围到驾驶室前吊耳以前部分车架的刚度应低一些,前后的刚度较高,而大部分的变形都集中在车架中部,还可防止因应力集中而造成局部损坏现象。 4.尽量减轻质量,按等强度要求设计。 二、车架的受力情况分析 1.垂直静载荷: 车身、车架的自重、装在车架上个总成的载重和有效载荷(乘员和货物),该载荷使车架产生弯曲变形。 2.对称垂直动载荷: 车辆在水平道路上高速行使时产生,其值取决于垂直静载荷和加速度,使车架产生弯曲变形。 3.斜对称动载荷 在不平道路上行使时产生的。前后车轮不在同一平面上,车架和车身一起歪斜,使车架发生扭转变形。其大小与道路情况,车身、车架及车架的刚度有关。 4.其它载荷 4.1汽车加速和减速时,轴荷重新分配引起垂直载荷。 4.2汽车转弯时产生的侧向力。 4.3一前轮撞在凸包上,车架水平方向上产生箭切变形。 4.4装在车架上总成(方向机、发动机、减振器)产生的作用反力。 4.5载荷作用线不通过纵梁的弯曲中心(油箱、悬架)而使纵梁产生局部受扭。 因此车架的受力是一复杂的空间力系,纵梁和横梁截面形状和连接的多变多样,使车架的受载更复杂化。车架CAE分析时一轮悬空这种极限工况,即解除一个车轮的约束,分析车架弯扭组合情况下的最大应力。

自行车车架大小计算

参加自行车运动,最重要的器材莫过于您的坐骑——自行车了。 车架作为整个车子的骨架,最大程度地决定、影响了你骑行姿势的正确性和舒适性,所以选择一个合适的车架是至关重要的。 在Airborne网站上看到了度量身体个部位长度和计算车架尺寸的公式,供大家参考使用。 1. 测量大腿长度 测量时最好穿骑行服,站于水平硬性地面,并由一人辅助。身体直立,两脚间隔约十公分。用书本或其他类似的东西平置于裆部,并向上施加小于坐车座的适当力度,测量书本顶部至地面的距离。 【: 回复 yuyu_tom 的文章:】 2. 测量身长

姿势与步骤1相同,测量锁骨之间V字槽底部至书本上端的距离 【: 回复 yuyu_tom 的文章:】 3.测量臂长 水平站立,平伸手臂、掌心向前,测量从虎口到肋骨所在平面的距离。 【: 回复 yuyu_tom 的文章:】 4. 测量肩宽 直立,放松两臂,测量肩关节处的宽度s 以上尺寸每个测量三次,取平均值 根据以上数据可以得到你所需要的车架尺寸: 公路车架尺寸=i*0.67(cm) 山地车架尺寸=(i*0.67-11.0)*0.394(英寸)

把立长度=[(t+a)/2+x]-et 公路车x=4;山地x=8;et=effective top tube length(车架上管有效长度就是第一张图中的“o”) 你所适合的曲柄长度: 腿长范围(cm)曲柄长度 65cm - 70cm 165mm 71cm - 76cm 170mm 79cm - 81cm 172.5mm 82cm - 90cm 175mm 弯把宽度:(弯把的宽度是指中心至中心的长度) 肩宽范围s 把宽cm 38cm 38 - 40 39cm 40 40cm 40 41cm 40 – 42 42cm 42 43cm 42 – 44 44cm 44 45cm 44 46cm 44 - 46

车架计算

汽车车架是整个汽车的基体,是将汽车的主要总成和部件连接成汽车整体的金属构架,对于这种金属构架式车架,生产厂家在生产设计时应考虑结构合理,生产工艺规范,要采取一切切实可行的措施消除工艺缺陷,保证它在各种复杂的受力情况下不至于被破坏。 车架作为汽车的承载基体,为货车、中型及以下的客车、中高级和高级轿车所采用,支撑着发动机离合器、变速器、转向器、非承载式车身和货箱等所有簧上质量的有关机件,承受着传给它的各种力和力矩。为此,车架应有足够的弯曲刚度,以使装在其上的有关机构之间的相对位置在汽车行驶过程中保持不变并使车身的变形最小;车架也应有足够的强度,以保证其有足够的可靠性与寿命,纵梁等主要零件在使用期内不应有严重变形和开裂。车架刚度不足会引起振动和噪声,也使汽车的乘坐舒适性、操纵稳定性及某些机件的可靠性下降。车架受力状态极为复杂。汽车静止时,它在悬架系统的支撑下,承受着汽车各部件及载荷的重力,引起纵梁的弯曲和偏心扭转(局部扭转)。如汽车所处的路面不平,车架还将呈现整体扭转。汽车行驶时,载荷和汽车各部件的自身质量及其工作载荷(如驱动力、制动力和转向力等)将使车架各部件承受着不同方向、不同程度和随机变化的动载荷,车架的弯曲、偏心扭转和整体扭转将更严重,同时还会出现侧弯、菱形倾向,以及各种弯曲和扭转振动。同时,有些装置件还可能使车架产生较大的装置载荷。 钢板经冷冲成形后,其疲劳强度要降低,静强度高、延伸率小的材料的降低幅度更大。常用车架材料在冲压成形后的疲劳强度约为

140~160Mpa 。轻型货车冲压纵梁的钢板厚度为5.0~7.0mm ,槽型断面纵梁上下翼缘的宽度尺寸约为其腹板高度尺寸的35%~40%. 随着计算机技术的发展,在产品开发阶段,对车架静应力、刚度、振动模态以至动应力和碰撞安全等已可进行有限元分析,对其轻量化、使用寿命,以及振动和噪声特性也可以做出初步判断,为缩短产品开发周期创造了有利条件。 当车架纵梁承受的是均匀分布的载荷时,车架强度的简化计算可按下述进行,但须做一定假设。即认为纵梁为支承在前后轴上的简支梁;空车时簧上负荷Gs 均布在左右纵梁的全长上,满载时有效载荷Ge 则均布在车箱长度范围内的纵梁上;忽略不计局部扭矩的影响。 R f 为一根纵梁的前支承反力,由该图可求得: R f =)]2()2([412c c Ge b L Gs l -+- (1) 在驾驶室的长度范围内这一段纵梁的弯矩为 Mx=R f x-2)(4a x L Gs + (2) 驾驶室后端至后轴这一段纵梁的弯矩为: Mx ˊ= R f x-2)(4a x L Gs +-21)]([4x l c c Ge -- (3) 显然,最大弯矩就发生在这一段梁内。可用对上式中的弯矩 Mx ˊ=f (x )求导数并令其为0的方法求出最大弯矩发生的位置x ,即 0)(2)(2'1=+--+-=c l x c Ge a x L Gs R dx dMx f (4) 由此求得: )(])(2[1c Ge L Gs c c l Ge L a Gs R x f +-+?- = (5)

车架设计的基础知识

车架设计基础 一、整车对车架的要求 二、车架的受力情况分析 三、车架的结构分析 1.车架的基本结构形式 2.车架宽度的确定 3.纵梁的形式、主参数的选择 4.车架的横梁及结构形式 5.车架的连接方式及特点 6.载货车辆采用铆接车架的优点 四、车架的计算 1.简单强度计算分析 2.简单刚度计算分析 3.CAE综合分析 五、附表 2000年7月1日

一、整车对车架的要求 车架是整车各总成的安装基体,对它有以下要求: 1.有足够的强度。要求受复杂的各种载荷而不破坏。要有足够的疲劳强度,在大修里程内不发生疲劳破坏。 2.要有足够的弯曲刚度。保证整车在复杂的受力条件下,固定在车架上的各总成不会因车架的变形而早期损坏或失去正常工作能力。 3.要有足够的扭转刚度。当汽车行使在不平的路面上时,为了保证汽车对路面不平度的适应性,提高汽车的平顺性和通过能力,要求车架具有合适的扭转刚度。对载货汽车,具体要求如下:3.1车架前端到驾驶室后围这一段车架的扭转刚度较高,因为这一段装有前悬架和方向机,如刚度弱而使车架产生扭转变形,势必会影响转向几何特性而导致操纵稳定性变坏。对独立悬架的车型这一点很重要。 3.2包括后悬架在内的车架后部一段的扭转刚度也应较高,防止由于车架产生变形而影响轴转向,侧倾稳定性等。 3.3驾驶室后围到驾驶室前吊耳以前部分车架的刚度应低一些,前后的刚度较高,而大部分的变形都集中在车架中部,还可防止因应力集中而造成局部损坏现象。 4.尽量减轻质量,按等强度要求设计。 二、车架的受力情况分析 1.垂直静载荷: 车身、车架的自重、装在车架上个总成的载重和有效载荷(乘员和货物),该载荷使车架产生弯曲变形。 2.对称垂直动载荷: 车辆在水平道路上高速行使时产生,其值取决于垂直静载荷和加速度,使车架产生弯曲变形。 3.斜对称动载荷 在不平道路上行使时产生的。前后车轮不在同一平面上,车架和车身一起歪斜,使车架发生扭转变形。其大小与道路情况,车身、车架及车架的刚度有关。 4.其它载荷 4.1汽车加速和减速时,轴荷重新分配引起垂直载荷。 4.2汽车转弯时产生的侧向力。 4.3一前轮撞在凸包上,车架水平方向上产生箭切变形。 4.4装在车架上总成(方向机、发动机、减振器)产生的作用反力。 4.5载荷作用线不通过纵梁的弯曲中心(油箱、悬架)而使纵梁产生局部受扭。 因此车架的受力是一复杂的空间力系,纵梁和横梁截面形状和连接的多变多样,使车架的受载更复杂化。车架CAE分析时一轮悬空这种极限工况,即解除一个车轮的约束,分析车架弯扭组合情况下的最大应力。

车架横梁法计算

------------------------------------------------------------------------------- STRUCTURE NO. 19 *** INITIALIZING DA TA *** DRIVE D ------------------------------------------------------------------------------- 将车架当成刚性横梁计算数据: total total total total total total total members joints springs sections materials ld cases ld combinations 364 215 0 4 1 9 10 job description: frame description: user name: metric or imperial (M/I): M bandwidth optimization (Y/N): Y ld case 1 = selfweight (Y/N): Y 坐标: 214 .7 0 0 0 1 215 17.395 0 0 0 1 ------------------------------------------------------------------------------- STRUCTURE NO. 19 *** SECTION PROPERTY DA TA *** DRIVE D ------------------------------------------------------------------------------- sec X-sectional mom. inertia shear area section mod plastic moment no area mm2 1.0E+06 mm4 mm2 1.0E+06 mm3 capacity kN-m 1 2549 3.964 2549 .0793 2 0 2 5098 20.677 5098 .20677 0 3 958 .128 958 .0049 0 4 100000 100000 100000 1000 0 ------------------------------------------------------------------------------- STRUCTURE NO. 19 *** MEMBER CONNECTIVITY DATA *** DRIVE D ------------------------------------------------------------------------------- member lower greater section material lower greater attribute number joint joint number number end type end type type 361 1 214 4 1 1 1 1 362 45 214 4 1 1 1 1 363 176 215 4 1 1 1 1 364 177 215 4 1 1 1 1

汽车车架的动力分析计算

重型运输车车架的动力学分析 摘要:本文采用有限元方法对重型运输车车架进行了动力学分析。通过对改变车架纵梁厚度、横梁壁厚、横梁外径和局部加强的分析计算,研究了车架结构与其固有频率及其振型的关系,为解决车架结构的动力学问题和结构的改进提供了一定的依据。 关键词:有限元方法,车架,固有频率,动力学分析 1 引言 车辆是运输机械,其工作过程总是受到随时间变化的载荷作用。当动载荷很小时,可忽略不计,只需进行静态分析。若所受动载荷较大,或者虽然不大但作用力的频率与结构的某一固有频率接近时,都可能引起结构共振,从而引起很高的动应力,造成强度破坏或产生不允许的变形,破坏车辆的性能,因此必须对车辆的结构进行动态分析。以往,研究车辆的振动是在样车研制出来以后,测量车辆在各种路面及车速下的加速度和振动频率,这种方法显然存在一定的设计风险。因此有必要针对其结构形式和结构特点,用动态分析的方法求出整车的动态特性模型及参数,并通过已有的试验结果予以验证,从而预估车辆的动态特性响应。本文应用有限元方法对运输车的车架进行动力学分析,分析采用先进的有限元分析软件ANSYS完成。 2 有限元模型的建立 以往车架结构的有限元分析大多采用梁单元模型,其优点在于建模简单、单元数目少、计算速度快,适合于对结构的初选方案进行分析对比。但将梁单元用于整车的结构分析时,存在下列问题: ①无法解决应力集中问题,尤其是在纵梁与横梁连接处的应力集中,这是由于梁单元在离散车架结构时,将纵梁与横梁连接处处理为一个节点,不能真实反映车架纵梁与横梁连接处的几何形状。 ②对于复杂的梁,其截面特性无法确定,因此计算精度差。 该运输车的底盘采用双横臂双扭杆独立悬架(带液力减振器)、宽断面越野低压可充放气轮胎、大断面Z型底盘大梁(两根大梁间用数根管状横梁相连),底盘自重大、整车载荷分布均匀。根据这一结构,车架模型中大梁与横梁支座采用三维壳单元SHELL63,扭杆和横臂等采用梁单元BEAM4,横梁采用管单元PIPE16。此外,由于整个车架的结构复杂,在建立模型时根据具体结构情况进行了以下简化: ①略去承受载荷比较小、对结构变形影响很小的部件,如储气筒等。 ②对部分部件进行简化,如悬挂支座和扭杆固定端支座由于结构复杂,对其采用板单元进行简化。 ③将一些节点的自由度进行耦合,如将横梁支座与大量的螺栓连接处的自由度进行耦合。 ④把发动机、液力变矩器、变速箱等部件简化为其支点上的集中质量与转动惯量。 经过以上简化处理,建立有限元结构模型如图1所示。

车车架的结构设计与强度和刚度分析.

第29卷第7期2007年7月 北J佣maI 京科技大学学报 VoI.29No.7 ofUnive玮ityofscien傥andT∞hnolo科Beijing Jul.2007 SGA92150型半挂车车架的结构设计与 强度和刚度分析 张国芬1’ 张文明1’ 剥、玉亮1’ 董翠燕2) 1)北京科技大学土木与环境工程学院,北京1000832)北京首钢重型汽车制造厂,北京100043 摘要对渊2150型半挂车车架的总体布置、纵梁、横梁、纵梁与横梁的连接等进行了设计.利用有限元软件Ansys workbench对车架进行应力和变形计算,利用Matlab软件采用传统方法对纵梁进行受力分析和应力计算.结果表明车架强度和刚度均满足要求.关键词半挂车;车架;结构设计;强度分析;刚度分析;有限元法;实体单元分类号TD402;U469.5+3;U463.32 SGA92150型半挂车是笔者设计、北京首钢重型汽车制造厂2005年生产的重型运输车辆,它是迄今为止国内载重量最大的半挂车,具有以下四大特点:(1)属非公路平板运输车,适用于露天矿山运输大型设备,工作条件恶劣;(2)载重量大,额定载重质量150t;(3)半挂车车架纵梁长(23m),支点跨距大(18.8m),货箱面积大(17m×6m);(4)半挂车车架采用变截面梁,质量轻(总质量31t).因而,半挂车车架的设计与普通车辆不同,需要考虑每部分应力和变形,而且尽可能减轻自身重量. 由于车架结构复杂,用经典力学方法分析其强 度和刚度不可能得到精确的结果.有限元法以离 鹅颈式.为了具有足够的强度和刚度,所设计车架材料选用16Mn钢板,采用焊接式结构.1.1总体布置 sGA92150型半挂车车架总体布置如图1所示,这里总体布置的几个总成是按照焊接次序分层的,牵引销座属于前部鹅颈总成,轮轴座属于后部轮轴座总

车架设计指南

上汽集团奇瑞汽车有限公司 奇瑞汽车有限公司 底盘部设计指南 编制: 审核: 批准:

上汽集团奇瑞汽车有限公司 1、架的主要功能: 车架是整个汽车的基体,汽车上绝大多数部件和总成都是通过车架来固定其位置的。如:发动机、传动系统、悬架、转向、驾驶室、货箱和有关操纵机构。车架的功用是支撑连接汽车的各零部件,并承受来自车内外的各种载荷。 2、车架的类型: 2.1 主要类型 目前,汽车车架的结构形式基本上有三种:边梁式车架、中梁式车架(或称脊骨式车架)和综合式车架。其中以边梁式车架应用最广。 边梁式车架由两根位于两边的纵梁和若干根横梁组成,用铆接法或焊接法将纵梁与横梁连接成坚固的刚性构架。通常用低合金钢板冲压而成,断面形状一般为槽形,也有的做成Z字形或箱形断面。其结构特点是便于安装驾驶室、车厢及一些特种装备和布置其它总成,有利于改装变型车和发展多品种汽车。被广泛采用在载货汽车和大多数的特种汽车上。近代轿车为了保证良好的整车性能,尽量降低中心和有利于前后悬架的布置,把结构需要放在第一位,兼顾车架加工工艺性,所以车架形状设计的比较复杂而实用。 中梁式车架只有一根位于中央贯穿前后的纵梁,因此亦称为脊骨式车架,中梁的断面可以做成管型或箱型。这种结构的车架有较大的扭转刚度。使车轮有较大的运动空间,便于布置等优点因此被采用在某些轿车和货车上。 综合式车架比较复杂,应用比较广,一般轿车上使用。 2.2车架的几种结构 车架主要有以下结构形式: 1.箱横梁和发动机支撑梁 横梁总成支撑发动机、水箱、保证车身的扭转刚度 发动机支撑梁和水箱横梁均有钢板冲压焊接而成,发动机支撑梁为封闭断面。 发动机支撑梁与车身连接处通常装有橡胶缓冲块。 材料:支撑梁上下体材料常采用为SAPH440其它BH340 表面处理为电泳。

汽车车架的静态强度分析

汽车车架的静态强度分析 1、水平弯曲工况 水平弯曲工况下,车身骨架承受的载荷主要是由车身、动力总成、备用轮胎、电瓶、散热器、压缩机、油箱和油、司机座椅、乘客、行李箱、清洁水箱、玻璃等的质量在重力加速度作用下而产生的。该工况模拟客车在平坦路面以较高车速匀速行驶时产生的对称垂直载荷。它是经常行驶于平坦道路上的大客车主要运行情况,其车速较高、车身骨架扭转角不大,它主要承受由垂直振动所引起的较大的弯曲载荷。载荷与边界条件水平弯曲工况下,车身骨架承受的载荷是主要质量在重力加速度作用下而产生的。本文根据车载质量的空间布置情况将它们换算节点载荷施加在其布置位置的梁的节点上。 此外,为消除车身骨架的刚体位移,需要对骨架与悬架的装配位置的节点进行约束。水平弯曲工况下,其边界条件为:约束前轮装配位置处节点的三个平动自由度UX, UY, UZ,从而释放三个转动自由度ROTX, ROTY, ROTZ;约束后轮装配位置处节点的垂直方向自由度UZ,释放其它自由度。 水平弯曲工况加载示意图 2、极限扭转工况

整车满载水平放置,后两轮固定,前轴间加一极限扭矩(前轴负荷的一半乘以轮距),相当于客车单轮悬空的极限受力情况,模拟客车在崎岖不平的道路上低速行驶时产生的斜对称垂直载荷。极限扭矩计算公式:T =P x L/2,其中T表示计算扭矩、p表示前桥悬挂负荷、L表示前轮轮距。扭转工况下的动载,在时间上变化得很缓慢,所以惯性载荷也很小,因此,车身的扭转特性也可以近似地看作是静态的,而试验结果也证实了这一点,静态扭转试验和动载试验所测得的骨架的薄弱部位一致。即静态扭转时骨架上的大应力点,就可以用来判定动载时的大应力点。 载荷与边界条件 由于路面不平度的作用,汽车需要模拟两前轮之一悬空时,车身骨架静态极限扭转时承受的应力分布情况,这种情况下车身骨架的载荷同满载水平弯曲工况一样。 边界条件为:约束左(右)前轮装配位置处节点的三个平动自由度UX, UY, UZ,释放三个转动自由度ROTX, ROTY, ROTZ;释放右(左)前轮装配位置处节点的所有自由度;约束后轮装配位置处节点的垂直方向自由度UZ,释放其它所有自由度。 车轮悬空扭转工况

车架计算资料讲解

车架计算

汽车车架是整个汽车的基体,是将汽车的主要总成和部件连接成汽车整体的金属构架,对于这种金属构架式车架,生产厂家在生产设计时应考虑结构合理,生产工艺规范,要采取一切切实可行的措施消除工艺缺陷,保证它在各种复杂的受力情况下不至于被破坏。 车架作为汽车的承载基体,为货车、中型及以下的客车、中高级和高级轿车所采用,支撑着发动机离合器、变速器、转向器、非承载式车身和货箱等所有簧上质量的有关机件,承受着传给它的各种力和力矩。为此,车架应有足够的弯曲刚度,以使装在其上的有关机构之间的相对位置在汽车行驶过程中保持不变并使车身的变形最小;车架也应有足够的强度,以保证其有足够的可靠性与寿命,纵梁等主要零件在使用期内不应有严重变形和开裂。车架刚度不足会引起振动和噪声,也使汽车的乘坐舒适性、操纵稳定性及某些机件的可靠性下降。 车架受力状态极为复杂。汽车静止时,它在悬架系统的支撑下,承受着汽车各部件及载荷的重力,引起纵梁的弯曲和偏心扭转(局部扭转)。如汽车所处的路面不平,车架还将呈现整体扭转。汽车行驶时,载荷和汽车各部件的自身质量及其工作载荷(如驱动力、制动力和转向力等)将使车架各部件承受着不同方向、不同程度和随机变化的动载荷,车架的弯曲、偏心扭转和整体扭转将更严重,同时还会出现侧弯、菱形倾向,以及各种弯曲和扭转振动。同时,有些装置件还可能使车架产生较大的装置载荷。

钢板经冷冲成形后,其疲劳强度要降低,静强度高、延伸率小的材料的降低幅度更大。常用车架材料在冲压成形后的疲劳强度约为140~160Mpa 。轻型货车冲压纵梁的钢板厚度为5.0~7.0mm ,槽型断面纵梁上下翼缘的宽度尺寸约为其腹板高度尺寸的35%~40%. 随着计算机技术的发展,在产品开发阶段,对车架静应力、 刚度、振动模态以至动应力和碰撞安全等已可进行有限元分析,对其轻量化、使用寿命,以及振动和噪声特性也可以做出初步判断,为缩短产品开发周期创造了有利条件。 当车架纵梁承受的是均匀分布的载荷时,车架强度的简化计 算可按下述进行,但须做一定假设。即认为纵梁为支承在前后轴上的简支梁;空车时簧上负荷Gs 均布在左右纵梁的全长上,满载时有效载荷Ge 则均布在车箱长度范围内的纵梁上;忽略不计局部扭矩的影响。 R f 为一根纵梁的前支承反力,由该图可求得: R f = )]2()2([412c c Ge b L Gs l -+- (1) 在驾驶室的长度范围内这一段纵梁的弯矩为 Mx=R f x- 2)(4a x L Gs + (2) 驾驶室后端至后轴这一段纵梁的弯矩为:

车架有限元分析

1前言 车架是汽车的主要部件。深人解车架的承载特性是车架结构设计改进和优化的基础。过去汽车设计多用样车作参考,这种方法不仅费用大,试制周于精确解。因此,正确建立结构的力学模型,是分析期长,而且也不可能对多种方案进行评价。现代车架设计已发展到包括有限元法、优化、动态设计等在内的计算机分析、预测和模拟阶段。计算机技术与现代电子测试技术相结合已成为汽车车架研究中十分行之有效的方法。实践证明,有限元法是一种有效的数值计算方法,利用有限元法计算得到的结构位移场、应力场和低阶振动频率可作为结构设计的原始判据或作为结构改进设计的基础。 2车架的静态分析 力学模型的选择 有限元分析的基本思想,是用一组离散化的单元组集,来代替连续体机构进行分析,这种单元组集体称之为结构的力学模型;如果已知各个单元体的力和位移(单元的刚度特性),只需根据节点的变形连续条件与节点的平衡条件,来推导集成结构的特性并研究其性能。有限元的特点是始终以矩阵形式来作为数学表达式,便于程序设计,大量工作是由电子计算机来完成,只要计算机容量足够,单元的剖分可以是任意的,对于任何复杂的几何形状,多样化的载荷和任意的边界条件都能适应。然而,由于有限元是一种数值分析方法,计算结果是近似解,其精度主要取决于离散化误差。如果结构离散化恰当,单元位移函数选取合理,随着单元逐步缩小,近似解将收敛于精确解。因此,正确建立结构的力学模型,是分析工作的第一步目前采用有限元分析模型一般有如下两种:梁单元模型和组合模型等。梁单元模型是将车架结构简化为由一组两节点的梁单元组成的框架结构,以梁单元的截面特性来反映车架的实际结构特性。其优点是:划分的单元数目和节点数目少,计算速度快而且模型前处理工作量不大,适合初选方案。其缺点是:无法仔细分析车架应力集中问题,因而不能为车架纵、横梁连接方案提供实用的帮助。组合单元模型则是既采用梁单元也采用板壳单元进行离散。在实际工程运用中,由于车架是由一系列薄壁件组成的结构,且形状复杂,宜离散为许多板壳单元的组集,其缺点是前处理工作量大,计算时间长,然而随着计算机技术的不断发展,这个问题已得到了较好的解决,而且由于有大型有限元软件支撑,巨大的前处理工作量绝大部分可由计算机完成,也不是制约板壳元模型实际运用的困难了。这种模型使得对车架的分析计算更为精确,能为车架设计提供更为有利的帮助。 车架的计算方法 汽车车架的主要结构形式为边梁式车架,货车车架纵梁截面多为槽形,横梁截面可为槽

车架尺寸计算公式

车架尺寸计算公式(转自车友论坛) 参加自行车运动,最重要的器材莫过于您的坐骑——自行车了。车架作为整个车子的骨架,最大程度地决定、影响了你骑行姿势的正确性和舒适性,所以选择一个合适的车架是至关重要的。 在Airborne网站上看到了度量身体个部位长度和计算车架尺寸的公式,供大家参考使用。 1. 测量大腿长度i 测量时最好穿骑行服,站于水平硬性地面,并由一人辅助。身体直立,两脚间隔约十公分。用书本或其他类似的东西平置于裆部,并向上施加小于坐车座的适当

力度,测量书本顶部至地面的距离:i 2. 测量身长t 姿势与步骤1相同,测量锁骨之间V字槽底部至书本上端的距离:t 3. 测量臂长a

水平站立,平伸手臂、掌心向前,测量从虎口到肋骨所在平面的距离 4. 测量肩宽s 直立,放松两臂,测量肩关节处的宽度s 以上尺寸每个测量三次,取平均值 根据以上数据可以得到你所需要的车架尺寸: 公路车架尺寸=i*0.67(cm) 山地车架尺寸=(i*0.67-11.0)*0.394(英寸) 把立长度=[(t+a)/2+x]-et 公路车x=4;山地x=8;et=effective top tube length(车架上管有效长度就是第一张图中的“o”)

你所适合的曲柄长度: 腿长范围(cm)曲柄长度 65cm - 70cm 165mm 71cm - 76cm 170mm 79cm - 81cm 172.5mm 82cm - 90cm 175mm 弯把宽度:(弯把的宽度是指中心至中心的长度)肩宽范围s 把宽cm 38cm 38 - 40 39cm 40 40cm 40 41cm 40 – 42 42cm 42 43cm 42 – 44 44cm 44 45cm 44 46cm 44 - 46

车架受力分析

大梁式车架受力分析 一、整车对车架的要求 二、车架的受力情况分析 三、车架的结构分析 1.车架的基本结构形式 2.车架宽度的确定 3.纵梁的形式、主参数的选择 4.车架的横梁及结构形式 5.车架的连接方式及特点 6.载货车辆采用铆接车架的优点 四、车架的计算 1.简单强度计算分析 2.简单刚度计算分析 3.CAE综合分析 五、附表 2000年7月1日 一、整车对车架的要求 车架是整车各总成的安装基体,对它有以下要求:

1.有足够的强度。要求受复杂的各种载荷而不破坏。要有足够的疲劳强度,在大修里程内不发生疲劳破坏。 2.要有足够的弯曲刚度。保证整车在复杂的受力条件下,固定在车架上的各总成不会因车架的变形而早期损坏或失去正常工作能力。 3.要有足够的扭转刚度。当汽车行使在不平的路面上时,为了保证汽车对路面不平度的适应性,提高汽车的平顺性和通过能力,要求车架具有合适的扭转刚度。对载货汽车,具体要求如下:3.1车架前端到驾驶室后围这一段车架的扭转刚度较高,因为这一段装有前悬架和方向机,如刚度弱而使车架产生扭转变形,势必会影响转向几何特性而导致操纵稳定性变坏。对独立悬架的车型这一点很重要。 3.2包括后悬架在内的车架后部一段的扭转刚度也应较高,防止由于车架产生变形而影响轴转向,侧倾稳定性等。 3.3驾驶室后围到驾驶室前吊耳以前部分车架的刚度应低一些,前后的刚度较高,而大部分的变形都集中在车架中部,还可防止因应力集中而造成局部损坏现象。 4.尽量减轻质量,按等强度要求设计。 二、车架的受力情况分析 1.垂直静载荷: 车身、车架的自重、装在车架上个总成的载重和有效载荷(乘员和货物),该载荷使车架产生弯曲变形。 2.对称垂直动载荷: 车辆在水平道路上高速行使时产生,其值取决于垂直静载荷和加速度,使车架产生弯曲变形。 3.斜对称动载荷 在不平道路上行使时产生的。前后车轮不在同一平面上,车架和车身一起歪斜,使车架发生扭转变形。其大小与道路情况,车身、车架及车架的刚度有关。 4.其它载荷 4.1汽车加速和减速时,轴荷重新分配引起垂直载荷。 4.2汽车转弯时产生的侧向力。 4.3一前轮撞在凸包上,车架水平方向上产生箭切变形。 4.4装在车架上总成(方向机、发动机、减振器)产生的作用反力。 4.5载荷作用线不通过纵梁的弯曲中心(油箱、悬架)而使纵梁产生局部受扭。 因此车架的受力是一复杂的空间力系,纵梁和横梁截面形状和连接的多变多样,使车架的受载更复杂化。车架CAE分析时一轮悬空这种极限工况,即解除一个车轮的约束,分析车架弯扭组合情况下的最大应力。 普通载货汽车车架的弯矩图如下:

材料力学课程设计(底盘车架的静力分析及强度、刚度计算)

材料力学课程设计 HZ140TR2后置旅游车底盘车架的静力分析 及强度、刚度计算 姓名:吴博宇 学院:汽车工程学院 专业:工科试验班(车辆工程) 学号:42160702 序号:190 题号:7.1题,数据Ⅱ,序号5 指导教师:郭桂凯 日期:2018.10.13

目录 1、设计目的 (3) 2、设计任务和要求 (3) 3、设计题目 (4) 4、心得体会 (30) 5、参考文献 (31) 6、附录 (32)

1、设计目的 本课程设计是在系统学完材料力学课程之后,结合工程实际中的问题,运用材料力学的基本理论和计算方法,独立地计算工程中的典型零部件,以达到综合利用材料力学知识解决工程实际问题的目的。同时,可以使学生将材料力学的理论和现代计算方法及手段融为一体,既从整体上掌握了基本理论和现代计算方法,又提高了分析问题、解决问题的能力;既是对以前所学知识(高等数学、工程图学、理论力学、算法语言、计算机和材料力学等)的综合运用,又为后续课程(机械设计、专业课等)的学习打下基础,并初步掌握工程设计思路和设计方法,使实际工作能力有所提高。具体有以下六项: (1)使所学的材料力学知识系统化、完整化。 (2)在系统全面复习的基础上,运用材料力学知识解决工程实际中的问题。(3)由于选题力求结合专业实际,因而课程设计把材料力学与专业结合起来。(4)综合运用以前所学的各门课程的知识(高等数学、工程图学、理论力学、算法语言、计算机等),使相关学科的知识有机地联系起来。 (5)初步了解和掌握工程实际中的设计思路和设计方法。 (6)为后续课程的教学打下基础。 2、设计任务和要求 参加设计者要系统复习材料力学课程的全部基本理论和方法,独立分析、判断设计题目的已知条件和所求问题,画出受力分析计算简图和内力图,列出理论依据并导出计算公式,独立编制计算机程序,通过计算机给出计算结果,并完成设计计算说明书。 2.1设计计算说明书的要求 设计计算说明书是该题目设计思路、设计方法和设计结果的说明,要求书写工整,语言简练,条理清晰、明确,表达完整。具体内容应包括: (1)设计题目的已知条件、所求及零件图。 (2)画出结构的受力分析计算简图,按比例标明尺寸、载荷及支座等。 (3)静不定结构要画出所选择的基本静定系统及与之相应的全部求和过程。(4)画出全部内力图,并标明可能的各危险截面。

装载机车架强度计算与测试

装载机车架强度计算与测试 许胜虎 洪沁 摘要: 本文利用有限元理论,通过计算机程序,对装载机车架各部分应力进行了计算,并 对车架各部分强度进行了测试。最后分析比较了计算与实测结果。 关键词:有限元,车架,强度测试 序言 在上文中[注],经过一系列的抽象简化,分析得到车架强度计算公式。下面通过必要的 试验检测,得到具体的实验数据,来验证理论计算公式得到的数据是否合理、正确,是否具 有普遍性。 一、车架有限元计算程序 根据前面的理论和主要计算公式,采用FORTRAN77语言,编制了空间刚架计算程序。程序运行后输出所有节点位移、支座反力及各杆件的杆端力。程序模块如下图所示: 二、车架强度检测 1、 使用仪器 动态电阻应变仪,笔录仪,稳压电源,万用表,电阻箱,导线,应变片 2、 测试方案 有关测点布局,主要考虑两方面的需要来安排: (1)通过理论计算得到的应力较大部位。(2)单纯为验证理论计算结果布置的点。 车架上共布置了12个测点,均布置在大梁一侧上,见图1,贴片方位见图2。 [注] 见《装载机车架强度理论分析》 Program MAIN Subroutine IUPUT Subroutine SSM Subroutine SLEQ Subroutine JDAR Subroutine FAML Subroutine SMRL

图1 车架测点布置图 图2 大梁截面贴片位置 3、 测试条件及车架工况 车架强度测试是在Z20履带装载机样机上,按照其实际作业工况(在作业场地进行铲 土、装载作业)进行。由于条件限制,并且考虑到装载机某些承载构件的设计可能还存在 一些问题,为了避免意外事件发生,我们只进行装载机铲斗对称受载时的车架强度测试, 对于铲斗偏载的工况暂不进行测试。 车架强度测试共做了四个工况:(1)铲斗铲掘。(2)满载转向。(3)满载直线行驶时 车架三点支承。(4)履带后部离开地面。装载机铲斗装载物料的重量往往是难以估算的, 为了使试验工况更接近于理论计算工况,我们采用人为的加载办法(铲斗装上装载机备用 铸铁配重块),使铲斗达到额定载重量2000kg 。在进行车架三点支承工况测试时,让装载 机一侧履带驶过凸起障碍物来实现这一工况。测点分为二组进行测量,测量结果见下表。 三、理论计算数据与测试数据的比较 理论计算结果与测试结果比较(单位:N/mm 2) 工况 Ⅰ Ⅱ Ⅲ Ⅳ 测点 σ计 σ测 σ计 σ测 σ计 σ测σ计 σ测 σ计 σ测 1 -23.4 -22.2 -119.6 -110.8 –112.4 -128.4 -47.5 -53.2 –59.3 -66.8 2 -8. 3 -10.2 -16.3 -18.5 –5.7 -7.0 -6.1 -7.0 -7. 4 -9.1 3 +13.8 +15.2 +99.1 +103.2 +95.2 +84.4 +47.2 +51. 5 +51.7 +58.2 应力值 左转向 右转向

车桥结构

动力传递的纽带卡车车桥结构图文讲解 发动机,变速箱和车桥是卡车的三大动力核心总成,三者中车桥虽不像发动机和变速箱一样常被人们提及,但却在汽车动力传输的过程中发挥着纽带的作用,对整车的行驶的动力性和稳定性有着举足轻重的作用。 ● 什么是车桥? 车桥,通过悬架和车架(或承载式车身)相连,两端安装汽车车轮的桥式结构。 图为车桥总成 ● 车桥的作用 车桥的功能就是传递车架(或承载式车身)与车轮之间各方向作用力及其力矩,其对汽车的动力性,稳定性,承载能力等性能有着重要的影响。如果是作为驱动桥,除了承载作用外还起到驱动、减速和差速的作用。 ● 车桥的结构 卡车一般采用发动机前置,后轮驱动的布置方法。一般情况下,前桥都

是转向桥,而驱动桥在后桥。 前桥的结构 前桥定型结构 卡车前桥由主要由前梁,转向节,主销和轮毂等部分组成。车桥两端与转向节绞接。前梁的中部为实心或空心梁。 ● 驱动桥结构 驱动桥位于汽车传动系统的末端,主要由主减速器、差速器、半轴和驱动桥壳等组成。

驱动桥典型结构 1.主减速器 主减速器一般用来改变传动方向,降低转速,增大扭矩,保证汽车有足够的驱动力和适当的速度。主减速器类型较多,有单级、双级、双速、轮边减速器等。 卡车后桥主减速器 1)单级主减速器

由一对减速齿轮实现减速的装置,称为单级减速器。其结构简单,重量轻。 2)双级主减速器 对一些载重较大的载重汽车,要求较大的减速比,用单级主减速器传动,则从动齿轮的直径就必须增大,会影响驱动桥的离地间隙,所以采用两次减速,通常称为双级减速器。双级减速器有两组减速齿轮,实现两次减速增扭。 双级主减速器 为提高锥形齿轮副的啮合平稳性和强度,第一级减速齿轮副是螺旋锥齿轮。二级齿轮副是斜齿圆柱齿轮。 主动圆锥齿轮旋转,带动从动圆锥齿轮旋转,从而完成一级减速。第二级减速的主动圆柱齿轮与从动圆锥齿轮同轴而一起旋转,并带动从动圆柱齿轮旋转,进行第二级减速。因从动圆柱齿轮安装于差速器外壳上,所以,当从动圆柱齿轮转动时,通过差速器和半轴即驱动车轮转动。 3)轮边减速器 一般来说,采用轮边减速器是为了提高汽车的驱动力,以满足或修正整个传动系统驱动力的匹配。目前采用的轮边减速器,就是为满足整个传动系统匹

三轮车车架强度有限元分析

? 10 ?内燃机与配件 三轮车车架强度有限元分析 Finite Element Analysis of Tricycle Frame Strength 高宏阁 GAO Hong-ge (天津内燃机研究所,天津300072) (Tianjin Internal Combustion Engine Research Institute,Tianjin 300072,China) 摘要:本文利用有限元分析对处于设计阶段的三轮车车架强度进行了校核。首先,在CAD软件中进行了车架3D建模,然后在有 限元软件中对CAD模型进行了必要的简化,抽取中面,处理焊接位置,施加约束和载荷,建立有限元模型,最后针对最大制动力工况、最大驱动力工况、转弯工况和最大爬坡工况进行了有限元分析,对危险截面的应力水平和安全系数进行了计算,找出了设计中的薄弱 位置,为后续车架结构的优化提供了有力的理论依据。 Abstract:In this paper,it applies the finite element analysis to make strength check in the design phase of the tricycle frame.Firstly, 3D model of frame is built by CAD software,and then the CAD model is necessarily simplified in the FEA software,the middle surface is extracted,welding position is processed,the constraint and load are applied,and the FEA model is built,finally the finite element analysis is made based on maximum braking condition,the biggest driving force condition,turning condition and maximum climbing condition,to calculate the stress level and safety coefficient of dangerous section and find out the w T eak position in design,so as to provide a strong theoretical basis for the follo'w-up frame structure optimization. 关键词:三轮车;车架;强度;有限元分析 Key words:tricycle;frame;strength;FEA 0引言 车架作为整车各总成的安装基础是核心受力结构,它既要有足够的强度又要有足够的刚度,在设计环节极 为关键。随着计算机辅助设计的普及,目前车架设计多 数先用CAD软件进行设计细化、建立三维数模,再根据 车架的受力特点和整车运行工况借助C A E软件进行有 限元分析[|-4」。 三轮车车架通常采用前脊梁式、后框架式结构,这种 结构既适应了三轮车自身车轮的布置特征,又兼顾了车架 抗扭、抗弯强度和刚度的综合特性。本文针对国内某三轮 车企业的车架设计进行了多工况的强度校核,旨在设计阶 段通过C A E手段找出设计中的缺陷,通过进行有限元分 析,得出不同行驶工况下载荷时车架的应力分布,借此判 断车架可能存在的薄弱位置,为进行车架的结构优化与安 全校核提供依据。 1车架建模 基于车架3D模型,通过有限元软件对该模型提取中 面,并对几何模型进行清理,对小的工艺孔进行简化,保留 了车架本身的大部分细节。采用PSHELL单元,单元尺寸 为10mm,经有限元离散后,划分为30971个单元,30956 个节点。离散后的车架有限元模型如图1所示。 图1离散的车架有限元模型 对车架上各部件连接的焊接部位采用rigid单元或 weld单元进行模拟,如图2和图3所示。 图2车架各部件间连接后的模型 为有效进行车架的有限元分析,根据车架实际工作状 态进行边界条件的施加,包括载荷施加、约束施加、重力加 速度施加等。 该车架在实际工作中主要受到驾驶员载荷、发动机载 荷、车箱载荷及货物载荷的作用,根据实际情况,将货物、驾驶员、发动机的质量作为一集中质量单元进行施加,按载荷 赋予各集中质量单元实际质量,集中质量单元通过rigid单元与车架相连,以模拟车架在实际工作中所受的负载,如图 4所示。各集中质量单元的坐标位置见表1。 对车头管及车架吊耳处进行全约束,类似于最恶劣工 况。通过GRAV施加重力加速度,并指定为-Z方向,以反 映车架及载荷的自重,从而模拟货物、驾驶员、发动机对车 架所施加的载荷。另外, 对应不同工况时施加不同的加速

相关文档
最新文档