缓释高保坍型聚羧酸高性能减水剂的合成及流变特性研究
新型聚醚EPEG常温制备聚羧酸系高性能减水剂及其性能研究

收稿日期:2018-05-07;修订日期:2018-06-28作者简介:周普玉,男,1974年生,河南兰考人,工程师,从事混凝土外加剂研发。
地址:北京市通州区宋庄镇葛渠北口中国建筑科学研究院建材楼301室,E-mail :Zhoupy2002cn@ 。
新型聚醚EPEG 常温制备聚羧酸系高性能减水剂及其性能研究0引言聚羧酸减水剂具有低掺量、高减水率、低坍落度损失和绿色无污染等优点,是一种综合性能较好的高性能聚羧酸减水剂[1],目前国内市售的聚羧酸减水剂主要包括酯类和醚类聚羧酸减水剂[2]。
酯类减水剂主要采用聚乙二醇单甲醚(MPEG )和甲基丙烯酸(MAA )/甲基丙烯酸甲酯(MMA )等原材料,通过酯交换方法制备大单体,在引发剂作用下,与功能小单体进行聚合得到聚羧酸类减水剂[3]。
由于该反应过程工艺复杂,酯化过程较难控制,且容易影响产物性能,因而酯类减水剂的发展受到制约。
而对于醚类减水剂,通常以不饱和聚醚作为大单体,由于其操作流程简单、环保以及产物性能稳定等优点,逐渐成为聚羧酸减水剂发展的大趋势。
在醚类大单体中,国内外大多采用原材料来源广泛的异戊烯醇聚氧乙烯醚或甲基烯丙基聚氧乙烯醚[4],该聚醚大单体与功能小单体聚合通常在40~70℃条件下反应3~5h ,所得到的聚羧酸减水剂性能稳定、低掺量、高减水率及良好的保坍性。
但是,上述减水剂的合成通常需要在加热的条件下才能反应,这在一定程度上提高了生产成本。
目前常温合成的聚羧酸减水剂还存在许多弊端[5],聚羧酸减水剂的性能与其结构有密切的关系[6-7],新型聚醚大单体C4(2+2)的单体分子结构活性高,常温条件下与功能小单体聚合反应1.5h ,所得聚羧酸高性能减水剂与异戊烯醇聚氧乙烯醚或甲基烯丙基聚氧乙烯醚制得的减水剂相比,具有低掺量、更高的减水率、保坍性能、低能耗且对环境无污染,可大大提高生产效率及产品性能。
周普玉(山西佳维新材料股份有限公司,山西运城044000)摘要:采用新型聚醚大单体(EPEG )于常温条件,在引发剂作用下,1.5h 内发生自由基共聚反应,制得聚羧酸系高性能减水剂,该减水剂具有低掺量、高减水率、低坍落度损失、分子结构设计自由度大、生产工艺绿色化等优点。
聚羧酸减水剂母液(高减水型)产品特点、使用方法及注意事项

聚羧酸减水剂母液(高减水型)产品特点、使用方法及注意事项聚羧酸减水剂母液(高减水型)聚羧酸减水剂高减水型采用聚氧乙烯醚大单体、不饱和酸和磺酸基单体经自由基聚合而成的新一代聚羧酸系高性能减水剂。
产品具有极高的减水率和低的坍落度损失性能,可保证配制混凝土所需的高减水率,可广泛应用于泵送混凝土、超流态自密实以及高强高性能混凝土和商品混凝土。
产品具有梳形结构,分子中采用具有更长长度是聚氧乙烯基长链和高密度磺酸基团,使得具有更大的空间位阻作用和静电斥力作用,为水泥提供了更大的分散性和更高的减水率。
一、产品特点极高的减水率产品具有极大的分散性和极高的减水率(减水率可达40%以上),为配制高等级混凝土提供了保证。
优异的工作性:新拌混凝土高流动性,容易浇筑和密实,能有效的降低混凝土粘度,粘聚性好,含气量适中,适于泵送;混凝土硬化和耐久性能好,混凝土各龄期强度高,体积稳定性好,抗渗、抗冻融、抗腐蚀和抗碳化性能突出;适应性广对硅酸盐水泥、普通硅酸盐水泥、矿渣硅酸盐、粉煤灰水泥、火山灰水泥和各种掺合料均具有广泛的适应性。
绿色、环保,所用原料无毒无害,生产过程中无三废产生。
二、技术指标表1 减水剂匀质性指标检验项目质量指标检验结果外观/ 浅棕黄色透明液体密度g/cm3 1.020-1.050pH / 6~8固含量/ 40±1碱含量(Na2O+0.658K2O %)≤10.0 2.1氯离子含量(%)≤0.2000.018硫酸钠含量(%)≤10.00 1.20水泥净浆流动度mm ≥270300表2 混凝土物理力学性能检验项目质量指标检验结果减水率(%)≥2535常压泌水率比(%)≤200压力泌水率比(%)≤9035含气量(%)≤5.0 3.5坍落度保留值mm 30min ≥18022060min ≥150180抗压强度比(%)3d ≥1701957d ≥15018028d ≥135155对钢筋锈蚀作用无锈蚀无锈蚀收缩率比(%)≤135103三、应用范围1、适用于配制早强型混凝土、缓凝型混凝土、预制混凝土、现浇混凝土、大流态混凝土、自密实混凝土、大体积混凝土、高性能混凝土和清水混凝土,各种工业及民用建筑中的预拌和现浇混凝土。
聚羧酸高性能减水剂

目录1.减水机理 (2)2.优良的性能 (2)2.1 减水剂的匀质性分析 (2)2.2 水泥水化热-电性能分析 (3)2.3 早强效应 (3)2.4减水性能分析 (4)2.5 环保分析 (4)聚羧酸高性能减水剂聚羧酸系高性能混凝土减水剂是20世纪80年代中期由日本首先开发应用的新型混凝土减水剂。
它主要是通过不饱和单体在引发剂作用下共聚,将带活性基团的侧链接枝到聚合物的主链上,使其同时具有高效、控制坍落度损失和抗收缩、不影响水泥的凝结硬化等作用。
聚羧酸系高性能减水剂是完全不同于萘磺酸盐甲醛缩合物NSF 和三聚氰铵磺酸盐甲醛缩合物MSF减水剂,即使在低掺量时也能使混凝土具有高流动性,并且在低水灰比时也具有低粘度和坍落度保持性能。
它与不同水泥有相对更好的相容性,是高强高流动性混凝土所不可缺少的材料。
聚羧酸系混凝土减水剂是继木钙和萘系减水剂之后发展起来的第三代高性能化学减水剂,与传统减水剂相比主要具有以下几个突出的优点:a.高减水率:聚羧酸高性能减水剂减水率可达25-40%。
b. 高强度增长率:很高的强度增长率,尤其是早期强度增长率较高。
c.保坍性优异:极好的保坍性能,可保证混凝土极小的经时损失。
d.匀质性良好:所配混凝土有非常好的流动性,容易浇注和密实,适用于自流平、自密实混凝土。
e. 生产可控性:可通过对聚合物分子量、侧链的长短、疏密及侧链基团种类的调整来调节该系列减水剂的减水率、保塑性和引气性能。
f.适应性广泛:对各种纯硅、普硅、矿渣硅酸盐水泥及各种掺合料制混凝土均具有良好的分散性及保塑性。
g.低收缩性:能有效提升混凝土的体积稳定性,较萘系减水剂混凝土28d收缩降低了20%左右,有效的减少了混凝土开裂带来的危害。
h.绿色环保:无毒性、无腐蚀性,不含甲醛及其他有害成分。
1.减水机理聚羧酸高性能减水剂是运用分子结构设计原理,以DLVO电荷排斥理论和空间位阻效应理论为基础,将带有不同功能的活性基团接枝到主链上聚合而成。
常温合成聚羧酸减水剂及其性能研究

常温合成聚羧酸减水剂及其性能研究摘要:以乙二醇单乙烯基聚乙二醇醚(EPEG)为大单体,丙烯酸(AA)为共聚单体,采用过硫酸钾/硫酸亚铁氧化还原引发体系,巯基丙酸(MPA)为链转移剂,常温合成了聚羧酸减水剂。
研究了酸醚比、引发剂及链转移剂对水泥分散性的影响,确定减水剂的制备工艺。
1 引言聚羧酸减水剂由于分子结构可设计性、低掺量和高效减水的特点而在混凝土领域广泛应用。
目前,市场上广泛应用的聚羧酸减水剂产品主要是在40-80度条件下合成的,常用大单体有甲氧基聚乙二醇醚(MPEG)、甲基烯丙烯聚氧乙烯醚(HPEG)、异戊烯醇聚氧乙烯醚(TPEG)等,这类大单体活性较低,聚合需要加热到一定温度,反应速率低,势必增加生产能耗,另外该类减水剂对黏土适应性差。
乙二醇单乙烯基聚乙二醇醚(EPEG)是当前研发的新型2+2型聚醚大单体,因其大单体高聚合活性而受到行业关注。
与常用大单体分子结构不同的是,EPEG结构中特殊的C-O键分子结构,因不饱和双键与氧原子直接相连,从而改变了大单体在聚合时的电荷分布环境,提高了双键反应活性。
因此关于EPEG大单体在聚羧酸减水剂合成工艺中的应用与推广具有相当大的经济价值。
本文研究了乙二醇单乙烯基聚乙二醇醚(EPEG)大单体与丙烯酸(AA)共聚常温合成聚羧酸减水剂的工艺。
2 实验部分2.1减水剂的合成工艺称取EPEG大单体加入四口瓶中,再加入定量去离子水,搅拌至大单体全部溶解后,同时滴加由巯基丙酸、硫酸亚铁以及去离子水配置的A液体和由丙烯酸和水配的B液。
在实验过程中控制滴加速度,匀速滴加至底液中,滴加结束后保温3h,调节PH值为6~7。
3 结果与讨论3.1引发剂用量对减水剂性能影响固定n(AA):n(EPEG)=3:1,巯基丙酸占EPEG总质量的0.5%,其中m(过硫酸钾):m(硫酸亚铁)=2:1。
引发剂用量对减水剂分散性影响如图1a所示。
图1 (a)引发剂、(b)酸醚比和(c)链转移剂对减水剂分散性影响由图可知,引发剂用量占单体总质量0.5%~0.55%时,其水泥净浆初始流动度效果较好。
聚羧酸类减水剂的制备及性能

聚羧酸类减水剂的制备及性能张赐容;黄易云;宁平【摘要】通过采用聚乙二醇单甲醚和丙烯酸在甲基苯磺酸的催化作用下合成得大分子单体聚乙二醇单甲基丙烯酸酯,再将大分子单体与丙烯酸、烯丙基磺酸盐按一定的摩尔比进行聚合,得到聚羧酸系高效减水剂。
研究了单体的不同比例对高效减水剂性能的影响;并将聚羧酸系高效减水剂在高强混凝土中的应用进行了测试和探讨。
结果表明:以聚乙二醇单甲醚、丙烯酸、烯丙基磺酸盐等为原材料合成聚羧酸系减水剂对水泥具有十分优越的分散性和分散稳定性。
在实验中选用了不同的阻聚剂,阻聚剂的品种及用量对酯化反应有较大的影响。
聚羧酸系高效减水剂中添加消泡剂可以降低混凝土的含气量,提高混凝土的强度。
%Poly-carboxyl superplasticizer was prepared by utilizing acrylic acid,sodium allyl sulfonate and PEG-M acrylic ester.The influences of different monomer ratios and reaction conditions on the superplasticizer performance were studied.The superplasticizer was used in high performance concrete,and had excellent water reduce ability in concrete even at low dosage and the strength of the concrete was also improved.Experiments showed that PEG-M,acrylic acid,and sodium allyl sulfonate used as raw materials in preparing poly-carboxyl superplasticizer which was a very good and stable disperser in cement.Different monomers ratio was used in the preparation process of superplasticizer.Carboxyl and sulfonic group content in superplasticizer had a larger influence on the cementhydration.Hydroquinone and phenothiazine as inhibitors were used in the esterification,and the experiments showed that the phenothiazine hadbetter inhibit ability,and the color of finish good was also lighter than that of using hydroquinone.Defoamer was used in poly-carboxyl superplasticizer to reduce air existing in the concrete and to improve the strength of the concrete.【期刊名称】《广州化工》【年(卷),期】2012(040)024【总页数】4页(P75-77,90)【关键词】聚羧酸;高效减水剂;高性能混凝土【作者】张赐容;黄易云;宁平【作者单位】广州从化鳌头凌丰树脂加工厂,广东从化510900;华南理工大学材料科学与工程学院,广东广州510641;华南理工大学材料科学与工程学院,广东广州510641【正文语种】中文【中图分类】TU528纵观我国50多年混凝土外加剂的发展历史,第一代木质素减水剂与第二代萘系减水剂对混凝土综合性能的提高、生产施工方式的改善起到了巨大的作用[1]。
聚羧酸减水剂母液合成

聚羧酸减水剂母液合成
聚羧酸减水剂母液是一种高效的混凝土减水剂,可以显著提高混凝土的流动性和减少水泥用量。
其主要成分是聚羧酸及其衍生物,通常用于混凝土的施工中。
聚羧酸减水剂母液的合成主要包括以下步骤:
1. 选取适当的羧基单体和交联剂,通过聚合反应合成聚羧酸基聚合物。
2. 将聚羧酸基聚合物与适量的水进行混合,加入适量的碱性物质(如氢氧化钠),进行中和反应。
3. 将中和后的聚羧酸减水剂母液进行过滤、调节pH值和粘度等参数,最终得到合格的聚羧酸减水剂母液。
需要注意的是,在合成过程中需要控制反应条件,如温度、压力、反应时间、添加剂量等,以保证产品质量和性能。
同时,在使用聚羧酸减水剂母液时,也需要按照规定的用量和方法进行施工,以达到最佳效果。
聚羧酸系减水剂的研究现状与发展趋势

聚羧酸系减水剂的研究现状与发展趋势1. 引言1.1 背景介绍随着科技的不断发展和应用需求的不断提高,聚羧酸系减水剂研究领域也在不断拓展和深化。
对聚羧酸系减水剂的分类、应用领域、研究现状和发展趋势进行全面的分析,有助于更好地推动该领域的发展,提高混凝土工程的质量和效益。
1.2 研究意义聚羧酸系减水剂作为混凝土添加剂在建筑工程领域中扮演着重要的角色,其研究意义主要体现在以下几个方面:1. 提高混凝土的流动性和可塑性:聚羧酸系减水剂可以大幅提高混凝土的流动性和可塑性,使得混凝土更容易施工和成型,大大提高了施工效率和质量。
2. 降低混凝土的水灰比:聚羧酸系减水剂能够有效降低混凝土的水灰比,使得混凝土拥有更优良的力学性能,提高混凝土的强度和耐久性。
3. 减少混凝土的开裂和收缩:通过合理使用聚羧酸系减水剂可以有效减少混凝土的开裂和收缩现象,提高混凝土的耐久性和使用寿命。
4. 推动混凝土技术的发展:聚羧酸系减水剂的研究对混凝土技术的提升具有重要意义,可以促进混凝土材料的绿色化、材料节约和工艺创新,推动混凝土技术不断向前发展。
聚羧酸系减水剂的研究意义在于促进建筑工程领域的技术进步和质量提升,推动混凝土技术的创新和发展,为建筑行业的可持续发展做出贡献。
2. 正文2.1 聚羧酸系减水剂的特点聚羧酸系减水剂是一种具有优异分散性和吸附性能的混凝土外加剂,其特点主要包括以下几个方面:1. 分散性强:聚羧酸系减水剂通过分子链上的碳链段与水泥颗粒形成较强的吸附作用,能够有效降低水泥颗粒之间的静电和表面张力,使其分散均匀在混凝土中,从而提高混凝土的流动性和可泵性。
2. 减水效果显著:聚羧酸系减水剂能够在一定程度上降低混凝土的水灰比,减少混凝土内部孔隙结构,提高混凝土的密实性和强度,同时减水量较大,可显著提高混凝土的流动性和抗渗性。
3. 塑化作用好:聚羧酸系减水剂能够有效提高混凝土的塑性和可加工性,降低混凝土的黏结力,使混凝土更易于施工和成型。
聚羧酸减水剂

1.张小芳:MPEGMA 大单体的合成及聚羧酸减水剂的制备[8] 合成原料:甲氧基聚乙二醇单甲醚(MPEG-1200 和 MPEG-2000)、甲基丙烯 酸甲酯(MMA)、NaOH、对苯二酚、甲基丙烯酸、2-丙烯酰胺-2-甲基丙磺酸(AMPS)。 合成步骤:在通入氮气的条件下,以 MPEG-1200/MPEG-2000 和 MMA 为原 料进行酯交换反应,合成制备聚羧酸减水剂的大单体甲氧基聚乙二醇甲基丙烯酸 酯(MPEGMA),其中,以 NaOH 为催化剂,对苯二酚为阻聚剂。将大单体 MPEGMA 与甲基丙烯酸、AMPS 进行共聚反制得聚羧酸减水剂 PC-2。 研究结果:与 PC-1 相比,PC-2 侧链中带有不同长度的链段而具有更好的保 塑性,PC-2 主链中引入了-COOH 和-SO3H 基团单体而具有更好的分散性。 2.张海波:用三乙胺催化合成聚羧酸减水剂研究[1] 设计思路:PCE 合成方法可分为可聚合单体直接共聚法,聚合后功能化法原 位聚合与接枝等,几种各种合成方法中都存在着酸醇酯化的过程,目前使用较多 的是酸性催化剂,而酸性酯化反应催化剂对金属合成设备的腐蚀性较强,采用碱 性催化剂则可以有效降低对合成设备的要求。 合成原料:水解聚马来酸酐(HPMA)、聚乙二醇单甲醚(MPEG)、浓硫酸、 对甲苯磺酸、三乙胺、NaOH。 合成步骤:以催化剂催化 HPMA 与 MPEG 的酯化反应,将 MPEG 接枝在 HPMA 上形成梳状结构的聚羧酸减水剂(如图 1 所示为减水剂分子示意图),此酯化反 应在浓硫酸催化作用下效果最佳,在对甲苯磺酸和三乙胺作用下效果相似,在 NaOH 作用下效果最差。