混凝土温度变形裂缝的成因与控制
泵送混凝土温度裂缝的成因和防治方法范本

泵送混凝土温度裂缝的成因和防治方法范本混凝土温度裂缝是指由于混凝土在硬化过程中由于温度变化引起的裂缝。
混凝土是一种复合材料,其混凝土的体积会随着温度的变化而发生变化。
在混凝土表面产生的温度差异会导致混凝土的收缩或膨胀,从而产生应力,当混凝土内部的应力超过了其强度或弹性极限时,就会产生温度裂缝。
成因:
1.混凝土浇筑过程中未能充分考虑混凝土的收缩和膨胀,导致温度应力超过混凝土的强度。
2.大气温度变化剧烈,尤其是在极端气候条件下,混凝土受到极端的收缩或膨胀。
3.混凝土中含有过多的水分,当水分蒸发或冷凝时,会导致混凝土体积的变化,从而形成温度裂缝。
4.混凝土结构与周围环境温度变化快速不一致,造成了温度差异。
防治方法:
1.在混凝土浇筑过程中,控制混凝土的收缩和膨胀,可以通过添加混凝土膨胀剂或使用控制性收缩剂来达到效果。
2.在混凝土表面覆盖绳网或其他保护层来降低表面温度差异。
3.控制混凝土中的水分含量,避免过量含水,可以通过控制施工环境的湿度和采用干燥剂等方法来达到效果。
4.在混凝土结构上设置伸缩缝,以分割混凝土结构,减少温度差异的传递,从而减轻温度裂缝的产生。
5.控制混凝土结构与周围环境的温度差异,可以采用隔热材料或复合材料等方法来达到效果。
总之,混凝土温度裂缝的产生是由于混凝土内部的温度差异导致的应力超过了混凝土的强度,因此,在混凝土施工过程中应该预防温度裂缝的产生,采取相应的措施来降低温度差异,如添加混凝土膨胀剂、控制水分含量、设置伸缩缝等。
这些措施旨在减轻温度裂缝的产生,从而提高混凝土结构的整体性能和使用寿命。
建筑施工专业技术中混凝土出现裂缝的原因及预防措施

建筑施工专业技术中混凝土出现裂缝的原因及预防措施混凝土裂缝是建筑施工中常见的问题,其产生主要有以下几个原因:1.温度变化:混凝土在干燥过程中会收缩,而在水分稳定后会膨胀。
如果温度变化较大,混凝土受热后膨胀,受冷后收缩,容易产生裂缝。
2.过早干燥:在混凝土表面脱水速度过快而导致混凝土变干燥过快,会引起表面和内部的应力不均匀,从而产生裂缝。
3.混凝土成分问题:混凝土配合比的设计不合理,或者掺入的掺合材料质量不合格,都会影响混凝土的抗裂性能。
4.静载荷:施工过程中如果超载、区域集中、不均匀等情况产生,都会给混凝土的结构强度带来不均衡的应力分布,从而导致裂缝的产生。
预防混凝土裂缝的措施可以从以下几个方面入手:1.合理设计配合比:根据施工环境、工程要求和材料实际情况,合理配比混凝土,确保混凝土的性能和稳定性,从而减少裂缝产生的可能。
2.控制混凝土的含水量:通过加水量、养护等措施,使混凝土的水分含量控制在适当范围内,避免过早干燥导致的裂缝。
3.加入抗裂措施:可在混凝土中加入纤维材料,例如聚丙烯纤维、钢纤维等,以提高混凝土的抗裂性能。
4.控制温度变化:在施工过程中,应合理设置温度控制设备,如覆盖保温材料、使用冷却水等来控制混凝土的温度,从而减少温度变化引起的裂缝。
5.控制静载荷:在施工过程中,需要合理安排工序、控制施工速度等,以确保混凝土受力均匀,避免因静载荷过大而引发裂缝。
6.加强养护工作:混凝土浇筑后需进行养护,如覆盖保湿膜、定期喷水等,以保持混凝土表面的湿度和温度,避免裂缝的产生。
7.做好施工质量管控:施工中要加强对混凝土质量的把控,确保原材料的质量符合要求,施工过程中严格按照施工规范进行操作,避免操作不当导致的裂缝。
在建筑施工中,避免混凝土裂缝是非常重要的,它不仅关系到建筑物的安全性能,还会影响建筑的美观。
因此,需要在设计、施工和养护等方面都加以重视,以减少混凝土裂缝的发生。
混凝土施工温度控制以及裂缝防治措施

混凝土施工温度控制以及裂缝防治措施混凝土施工温度控制以及裂缝防治措施混凝土工程是建筑工程中重要的组成部分,其质量直接关系着整个建筑工程的安全与质量。
在混凝土施工过程中,裂缝普遍存在,成为工程施工中的难点,尽管在施工中采取了各种有效的措施,但措施依然存在,造成这种现象的原因是由于施工人员对混凝土温度应力变化不够重视,没有从产生裂缝的原因上汲取经验。
为了控制混凝土裂缝,需要充分了解裂缝成因,加强对混凝土施工温度的控制,并科学合理的进行混凝土施工管理与养护管理,提高混凝土工程的施工质量。
1混凝土裂缝成因造成混凝土裂缝的因素很多,主要包括混凝土湿度与温度的变化、结构不合理、不均匀性、原材料质量差、基础发生不均匀沉降、模板变形等等。
在混凝土硬化阶段,由于水泥的水化作用会释放出大量的热量,导致混凝土内部温度上升,引起混凝土表面的拉应力。
随着水化作用的结束,混凝土内部开始不断降温,在降温的过程中,由于基础等造成的约束,会导致其内部产生拉应力。
同时外界温度的降低也会导致混凝土表面产生拉应力,如果拉应力的大小超出了混凝土抗裂能力,混凝土表面就会产生裂缝。
另外,混凝土内部湿度变化较为缓慢,但其表面的湿度会受到外界环境的影响而发生较大的波动。
如果对混凝土养护不合理,混凝土内部湿度就会对其表面的干缩性造成制约,这也是产生混凝土裂缝的原因之一。
2混凝土温度应力分析根据混凝土温度应力产生的过程,能够将温度应力分为以下三个阶段:(1)从混凝土浇筑到内部水泥水化放热结束,通常需要持续30天。
在这一阶段,混凝土主要有两个方面的特征:第一,混凝土内部的水泥由于水化作用会释放大量的热量;第二,这一阶段混凝土弹性模量会剧烈的变化,由于其弹性模量的变化会导致其内部出现残余的应力。
(2)温度应力中期主要是从水化作用结束到混凝土基本冷却结束。
在这一时期,温度应力的产生主要是由于混凝土冷却、外部温度变化引起的,这些应力与第一阶段混凝土内部残留的应力雷击。
现浇钢筋混凝土温度裂缝产生的成因及控制措施

现浇钢筋混凝土温度裂缝产生的成因及控制措施裂缝的位置取决于两个因素,一是约束,二是抗拉能力。
对楼板来说,约束最大的位置在四个转角处,因为转角处梁或墙的刚度最大,它对楼板形成的约束也最大,同时沿外墙转角处因受外界气温影响,楼板属收缩变形最大的部位;一般来说,板内配筋都按平行于板的两条相邻边而设置,也就是说,转角处夹角平分线方向的抗拉能力最薄弱。
故大多数板上裂缝都出现在沿外墙转角处,而且呈45°斜向放射状。
裂缝的原因;设计要求;钢筋混凝土中的水泥在水化过程中,将释放大量的热量形成不均匀非稳定温度场,产生非均匀温度变形,极易导致混凝土裂缝产生,还有施工中的混凝土的干缩也会使混凝土产生裂缝,影响到结构的整体性和耐久性。
本文就钢筋混凝土温度裂缝成因及控制措施进行分析、总结。
一、裂缝产生的原因混凝土中产生裂缝的原因有多种,主要是混凝土内部温度变化产生不均匀变形和湿度的变化引起的不均匀干缩变形叠加作用导致。
混凝土是一种脆性、非匀质的脆性材料,抗压力比抗拉力大一个数量级,极易在由于温差、干缩变形的作用下产生的主拉应力作用下产生宏观裂缝。
许多混凝土的内部湿度变化很小或变化较慢,但表面湿度可能变化较大或发生剧烈变化。
如养护不周、时干时湿,表面干缩形变受到内部混凝土的约束,也往往导致裂缝。
由于原材料不均匀,水灰比不稳定,及运输和浇筑过程中的离析现象,在同一块混凝土中其抗拉强度又是不均匀的,存在着许多抗拉能力很低,易于出现裂缝的薄弱部位。
在钢筋混凝土中,拉应力主要是由钢筋承担,混凝土只是承受压应力。
在素混凝土内或钢筋混凝上的边缘部位如果结构内出现了拉应力,则须依靠混凝土自身承担。
一般设计中均要求不出现拉应力或者只出现很小的拉应力。
但是在凝固中混凝土由最高温度冷却到运转时期的稳定温度,往往在混凝土内部引起相当大的拉应力。
有时温度应力可超过其它外荷载所引起的应力,因此掌握温度应力的变化规律对于进行合理的结构设计和施工极为重要。
混凝土裂缝控制技术规程

混凝土裂缝控制技术规程一、前言混凝土结构在使用过程中难免出现裂缝,裂缝的存在会影响混凝土结构的性能和寿命,因此混凝土裂缝控制技术显得尤为重要。
本文将介绍混凝土裂缝控制技术的相关规程。
二、混凝土裂缝的分类根据混凝土中裂缝的形成原因和裂缝的性质,混凝土裂缝可以分为以下几类:1. 收缩裂缝:混凝土在硬化过程中,由于水分的蒸发、水泥水化反应、骨料间的相互挤压等原因,会产生收缩变形,从而形成收缩裂缝。
2. 温度裂缝:混凝土在温度变化的作用下,由于不同部位的温度变化不同,会产生温度变形,从而形成温度裂缝。
3. 弯曲裂缝:混凝土在受到弯曲荷载作用下,由于混凝土的抗弯强度不足以抵抗弯曲荷载的作用,会产生弯曲变形,从而形成弯曲裂缝。
4. 拉伸裂缝:混凝土在受到拉应力作用下,由于混凝土的抗拉强度不足以抵抗拉应力的作用,会产生拉伸变形,从而形成拉伸裂缝。
三、混凝土裂缝控制的目标混凝土裂缝控制的目的是在混凝土结构的使用寿命内,控制混凝土的裂缝数量和裂缝的宽度,以保证混凝土结构的正常使用。
具体来说,混凝土裂缝控制的目标包括:1. 控制混凝土中的收缩裂缝数量和宽度,使其不影响混凝土结构的正常使用。
2. 控制混凝土中的温度裂缝数量和宽度,使其不影响混凝土结构的正常使用。
3. 控制混凝土中的弯曲裂缝数量和宽度,使其不影响混凝土结构的正常使用。
4. 控制混凝土中的拉伸裂缝数量和宽度,使其不影响混凝土结构的正常使用。
四、混凝土裂缝控制的方法混凝土裂缝控制的方法包括以下几种:1. 控制混凝土的收缩变形:可以通过控制混凝土的水灰比、使用低收缩水泥、采用减少水分蒸发的养护方式等方法来控制混凝土的收缩变形,从而减少收缩裂缝的产生。
2. 控制混凝土的温度变形:可以通过控制混凝土的配合比、采用隔热材料保温、采用冷却水等方法来控制混凝土的温度变形,从而减少温度裂缝的产生。
3. 增加混凝土的抗弯和抗拉强度:可以通过增加混凝土的配合比、使用高强度水泥、增加混凝土中的钢筋等方法来增加混凝土的抗弯和抗拉强度,从而减少弯曲裂缝和拉伸裂缝的产生。
混凝土裂缝控制原理与方法

混凝土裂缝控制原理与方法一、引言混凝土裂缝是混凝土结构中常见的一种缺陷。
混凝土裂缝会导致混凝土结构的强度和耐久性下降,甚至引起结构的崩塌。
因此,在混凝土结构设计和施工中,裂缝控制是必不可少的。
本文将从混凝土裂缝的原因、分类、控制方法等方面进行详细介绍。
二、混凝土裂缝的原因混凝土裂缝的形成原因有很多,主要包括以下几个方面:1.混凝土的收缩变形:混凝土在硬化过程中会发生收缩变形,当收缩应力超过混凝土的抗拉强度时,就会产生裂缝。
2.混凝土的温度变化:混凝土的温度变化会引起体积变化,从而产生应力,当应力超过混凝土的抗拉强度时,就会产生裂缝。
3.荷载作用:荷载作用会使混凝土产生应力,当应力超过混凝土的抗拉强度时,就会产生裂缝。
4.施工操作不当:混凝土施工中如果操作不当,如浇筑不均匀、振捣不到位等,会导致混凝土中存在空隙和缺陷,从而引起裂缝。
三、混凝土裂缝的分类混凝土裂缝根据其出现的位置和形态可以分为以下几类:1.伸缩缝裂缝:伸缩缝是为了控制混凝土结构在热胀冷缩过程中的变形而设置的,因此在伸缩缝处经常会出现裂缝。
2.收缩裂缝:由于混凝土在硬化过程中会发生收缩变形,当收缩应力超过混凝土的抗拉强度时,就会产生收缩裂缝。
3.温度裂缝:混凝土的温度变化会引起体积变化,从而产生应力,当应力超过混凝土的抗拉强度时,就会产生温度裂缝。
4.荷载裂缝:荷载作用会使混凝土产生应力,当应力超过混凝土的抗拉强度时,就会产生荷载裂缝。
5.施工裂缝:混凝土施工中如果操作不当,如浇筑不均匀、振捣不到位等,会导致混凝土中存在空隙和缺陷,从而引起施工裂缝。
四、混凝土裂缝的控制方法混凝土裂缝的控制方法主要包括以下几种:1.伸缩缝的设置:在混凝土结构中设置伸缩缝,能够有效控制混凝土结构在热胀冷缩过程中的变形,从而减少伸缩缝处的裂缝。
2.混凝土配合比的优化:混凝土的配合比直接影响混凝土的强度和耐久性,在设计混凝土结构时,应根据具体情况优化混凝土的配合比,减少混凝土的收缩和温度变形,从而减少裂缝的产生。
大体积混凝土温度裂缝防治措施

大体积混凝土温度裂缝防治措施一、背景介绍在混凝土的浇筑过程中,由于温度的变化,往往会出现温度裂缝。
对于大体积混凝土结构来说,这种情况更加常见。
温度裂缝不仅影响美观,还会降低混凝土的强度和耐久性。
因此,在大体积混凝土结构中,必须采取有效的措施来防止温度裂缝的发生。
二、原因分析1. 混凝土浇筑时内部水分蒸发导致收缩;2. 大体积混凝土结构自身重量压力;3. 气温变化引起的热胀冷缩。
三、预防措施1. 控制水分含量:在混凝土浇筑前应进行充分的调配和搅拌,确保混合物均匀。
同时,应控制好水灰比和砂率等参数,以避免过多的水分蒸发导致收缩。
2. 合理设置伸缩缝:在大体积混凝土结构中设置伸缩缝是必要的措施之一。
通过设置伸缩缝,可以使混凝土结构在温度变化时有一定的伸缩空间,从而避免温度裂缝的发生。
3. 控制浇筑温度:在大体积混凝土结构的浇筑过程中,应控制好混凝土的温度。
一般来说,混凝土的浇筑温度应控制在20℃~30℃之间。
如果温度过高,则会导致混凝土内部产生较大的热胀冷缩变形,从而引起温度裂缝。
4. 采用降温剂:在大体积混凝土结构中,可以采用降温剂来控制混凝土的温度。
降温剂可以有效地降低混凝土内部的温度,从而避免因热胀冷缩引起的裂缝。
5. 加强养护:在大体积混凝土结构浇筑完成后,必须进行充分的养护。
养护时间应不少于28天,并且要保持适宜的湿润环境,以确保混凝土内部完全干燥和固化。
四、治理措施1. 填补温度裂缝:如果出现了温度裂缝,必须及时进行治理。
一般来说,可以采用填补的方式来修复温度裂缝。
填补材料应选择与原混凝土相同的材料,并且要充分保证填补材料与原混凝土的粘结性。
2. 加固结构:在大体积混凝土结构中,如果出现了较大的温度裂缝,可能会影响结构的安全性。
这时,可以采用加固措施来增强结构的承载能力。
加固方法可以根据具体情况选择,比如设置加筋板、加固梁柱等。
五、总结针对大体积混凝土结构中出现的温度裂缝问题,必须从预防和治理两个方面来进行措施。
混凝土的裂缝宽度控制原理

混凝土的裂缝宽度控制原理混凝土是一种广泛应用于建筑、桥梁、道路等工程中的建筑材料。
在长期的使用过程中,混凝土可能会出现裂缝,这不仅影响了混凝土的美观性,还可能会危及工程的安全性。
因此,混凝土裂缝宽度的控制是一个非常重要的问题。
一、混凝土裂缝的成因混凝土裂缝的成因非常复杂,主要包括以下几个方面:1.混凝土本身的收缩变形。
混凝土在硬化过程中会发生收缩,这种收缩会引起混凝土内部的应力,从而导致裂缝的产生。
2.混凝土的温度变化。
由于混凝土的导热系数较低,因此在温度变化较大的情况下,混凝土内部会出现温度差异,从而引起裂缝的产生。
3.荷载的作用。
工程中的荷载会使混凝土产生应力,如果这种应力超过了混凝土的承载能力,就会导致裂缝的产生。
4.地震的作用。
地震是混凝土裂缝产生的主要原因之一,地震产生的振动会使混凝土内部的应力超过承载能力,从而引起裂缝的产生。
二、混凝土裂缝宽度控制的原则混凝土裂缝的产生是不可避免的,但是可以通过控制裂缝的宽度来减少裂缝对工程造成的影响。
混凝土裂缝宽度控制的原则主要包括以下几个方面:1.控制混凝土的收缩变形。
混凝土在硬化过程中会发生收缩,可以通过采用适当的混凝土配合比,添加适量的膨胀剂、缩微剂等措施来控制混凝土的收缩变形,从而减少裂缝的产生。
2.控制混凝土的温度变化。
可以采用保温措施、在混凝土中添加热稳定剂等措施来控制混凝土的温度变化,从而减少裂缝的产生。
3.控制荷载的作用。
可以通过合理的结构设计、采用适当的支座形式等措施来控制荷载的作用,从而减少裂缝的产生。
4.控制地震的作用。
可以采用适当的抗震措施,如设置抗震支撑、增加构件截面等措施来控制地震的作用,从而减少裂缝的产生。
三、混凝土裂缝宽度控制的方法混凝土裂缝宽度控制的方法主要包括以下几种:1.采用梁板分离技术。
在混凝土结构中设置伸缩缝或分离缝,将结构分成若干个独立的部分,从而减少裂缝的产生。
2.采用预应力混凝土技术。
预应力混凝土可以提高混凝土的承载能力和抗裂性能,从而减少裂缝的产生。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
混凝土温度变形裂缝的成因与控制
砼是多种材料组成的非匀质材料,其抗拉强度远小于抗压强度,当拉应力超过砼的抗拉强度,就产生了裂缝。
大体积结构砼的裂缝,有表面裂缝和贯穿裂缝两种,这两种裂缝都有一定的危害性。
而贯穿裂缝会影响结构的整体性、耐久性和正常使用,甚至结构安全。
大体积砼结构由于在水泥水化过程中释放的水化热引起的温度变化和砼本身的收缩,会在砼内部产生温度应力和收缩应力,当应力超过砼的抗拉极限,裂缝随之产生。
这些裂缝会给工程带来不同程度的危害,因此控制温度应力和温度变形裂缝是大体积砼结构施工中面临的重大课题。
一、大体积商品混凝土施工裂缝的成因
砼是多种材料组成的非匀质材料,其抗拉强度远小于抗压强度,当拉应力超过砼的抗拉强度,就产生了裂缝。
大体积结构砼的裂缝,有表面裂缝和贯穿裂缝两种,这两种裂缝都有一定的危害性。
而贯穿裂缝会影响结构的整体性、耐久性和正常使用,甚至结构安全。
裂缝产生的主要原因有以下几种:
1.由于外荷载引起的,这种裂缝发生最为普遍。
2.结构次应力引起的,这种裂缝是由于结构的实际工作状态与计算假设模型存在差异而引起的。
3.变形变化引起的,这种裂缝由于温度、收缩、膨胀、不均匀沉降等因素引起变形。
砼结构的内部,结构与结构之间常常是相互影响,相互制约的。
如果砼结构截面尺寸较大,内部的温度和湿度分布不均匀,这样就约束了砼结构内部不同部位的变形。
同样砼结构的变形也有来自外部结构的影响。
大体积砼由于水泥用量多,水泥水化所释放的水化热会产生较大的温度变化和收缩作用,此种温度应力是导致砼产生裂缝的主要原因。
二、防止裂缝产生的主要措施
(一)控制砼温升
1.选用水化热低的水泥。
水化热是水泥熟料水化所放出的热量。
为使砼减少升温,可以在满足设计强度要求的前提下,减少水泥用量,尽量选用中低热水泥。
一般工程可选用矿渣水泥或粉煤灰水泥。
2.利用砼的后期强度。
据试验数据表明,每立方米的砼水泥用量,每增减10公斤,砼温度受水化热影响相应升降1℃。
因此根据结构实际情况,对结构的刚度和强度进行复算并取得设计和质检部门的认可后,可用f45、f60或f90替代f28作为砼设计强度,这样每立方米砼的水泥用量会减少40~70千克/立方米。
相应的水化热温升也减少4℃~7℃。
利用砼后期强度主要是从配合比设计入手,并通过试验证明28天之后砼强度能继续增长。
到预计的时间能达到或超过设计强度。
3.掺入减水剂和微膨胀剂。
掺加一定数量的减水剂或缓凝剂,可以减少水泥用量,改善和易性,推迟水化热的峰值期。
而掺入适量的微膨胀剂或膨胀水泥,也可以减少砼的温度应力。
4.掺入粉煤灰外掺剂。
在砼中加入少量的磨细粉煤灰取代部分水泥,不仅可降低水化热,还改善砼的塑性。
5.骨料的选用。
连续级配粗骨料配制的砼具有较好的和易性,较少的用水量和水泥用量以及较高的抗压强度。
另外砂、石含泥量要严格控制。
砂的含泥量小于2%,石的含泥量小于1%。
6.降低砼的出机温度和浇筑温度。
首先要降低砼拌合温度。
降低砼出机温度的最有效的办法是降低石子的温度,在气温较高时,要避免太阳直接照射骨料,必要时向骨料喷射水雾或使用前用冷水冲洗骨料。
另外砼在装卸、运输、浇筑等工序都对温度有影响。
为此,在炎热的夏季应尽量减少从商砼站到入模的时间。
(二)采用保温或保湿养护,延缓砼降温速度
为减少砼浇筑后所产生的内外温差,夏季应采用保湿养护,冬季应保温养护。
大体积砼结构终凝后,其表面蓄存一定深度的水,具有一定的隔热保温效果,缩小了砼内外温差,从而控制裂缝的开展。
而基础工程大体积砼结构拆模后,宜尽快回填土,避免气温骤变,亦可延缓降温速率,避免产生裂缝。
(三)改善施工工艺,提高砼抗裂能力
1.采用分层分段法浇筑砼,有利于砼消化热的散失,减小内外温差。
2.改善配筋,避免应力集中,增强抵抗温度应力的能力。
孔洞周围、变断面转角部位、转角处都会产生应力集中。
为此,在孔洞四周增配斜向钢筋、钢筋网片,在变截面作局部处理使截面逐渐过渡,同时增配抗裂钢筋都能防止裂缝的产生。
值得注意的是,配筋要尽可能应用小直径和小间距,按全截面对称配置。
3.设置后浇带。
对于平面尺寸过大的大体积砼应设置后浇带,以减少外约束力和温度应力;同时也有利于散热,降低砼的内部温度。
4.做好温度监测工作,及时反映温差,随时指导养护,控制砼内外温差不超过25摄氏度。