人教版九年级上册数学 24章复习题含答案。
人教版九年级数学上册第24章《圆》单元练习题(含答案)

人教版九年级数学上册第24章《圆》单元练习题(含答案)一、单选题1.已知点P 在半径为8的O 外,则( )A .8OP >B .8OP =C .8OP <D .8OP ≥ 2.在O 中,AB ,CD 为两条弦,下列说法:①若AB CD =,则AB CD =;②若AB CD =,则2AB CD =;③若2AB CD =,则弧AB=2弧CD ;④若2AOB COD ∠=∠,则2AB CD =.其中正确的有( )A .1个B .2个C .3个D .4个 3.O 的半径为10cm ,弦//AB CD .若12cm,16cm AB CD ==,则AB 和CD 的距离为( ) A .2cm B .14cm C .2cm 或14cm D .2cm 或10cm 4.如图,正五边形ABCDE 和正三角形AMN 都是O 的内接多边形,则BOM ∠的度数是( )A .36︒B .45︒C .48︒D .60︒5.如图,,OA OB 是O 的两条半径,点C 在O 上,若80AOB ∠=︒,则C ∠的度数为( )A .30︒B .40︒C .50︒D .60︒ 6.如图1是一块弘扬“社会主义核心价值观”的扇面宣传展板,该展板的部分示意图如图2所示,它是以O 为圆心,OA ,OB 长分别为半径,圆心角120O ∠=︒形成的扇面,若3m OA =,1.5m OB =,则阴影部分的面积为( )A .24.25m πB .23.25m πC .23m πD .22.25m π 7.如图,点,,,,A B C DE 在O 上,,42AB CD AOB =∠=︒,则CED ∠=( )A .48︒B .24︒C .22︒D .21︒8.如图,ABC 内接于O ,CD 是O 的直径,40ACD ∠=︒,则B ∠=( )A .70°B .60°C .50°D .40°9.如图,△ABC 内接于⊙O ,∠A =50°.E 是边BC 的中点,连接OE 并延长,交⊙O 于点D ,连接BD ,则∠D 的大小为( )A .55°B .65°C .60°D .75°10.已知圆锥的母线长8cm ,底面圆的直径6cm ,则这个圆锥的侧面积是( )A .96πcm 2B .48πcm 2C .33πcm 2D .24πcm 211.将量角器按如图所示的方式放置在三角形纸板上,使点C 在半圆上.点A ,B 的读数分别为86°,30°,则∠ACB 的度数是( )A .28°B .30°C .36°D .56°12.如图,点A ,B 的坐标分别为(2,0),(0,2)A B ,点C 为坐标平面内一点,1BC =,点M 为线段AC 的中点,连接OM ,则OM 的最大值为( )A .21+B .122+C .221+D .1222- 二、填空题13.如图,在Rt ABC △甲,90ABC ︒∠=,2AB =,23BC =,以点B 为圆心,AB 的长为半径作圆,交AC 于点E ,交BC 于点F ,阴影部分的面积为__________(结果保留π).14.如图,在Rt AOB 中,23,30,OB A O =∠=︒的半径为1,点P 是AB 边上的动点,过点P 作O 的一条切线PQ (其中点Q 为切点),则线段PQ 长度的最小值为____.15.如图,将半径为10cm 的圆形纸片沿一条弦AB 折叠,折叠后弧AB 的中点C 与圆心O 重叠,则弦AB 的长度为________cm .16.如图,A 、B 是⊙O 上的两点,AC 是过A 点的一条直线,如果∠AOB =120°,那么当∠CAB 的度数等于________度时,AC 才能成为⊙O 的切线.17.如图,ABC 是O 的内接三角形.若=45ABC ∠︒,2AC =,则O 的半径是______.18.如图,在正五边形ABCDE 中,连结AC ,以点A 为圆心,AB 为半径画圆弧交AC 于点F ,连接DF .则∠FDC 的度数是 _____.三、解答题19.如图,AD ,BD 是O 的弦,AD BD ⊥,且28BD AD ==,点C 是BD 的延长线上的一CD=,求证:AC是O的切线.点,220.请用圆规、直尺作图,不写作法,但要保留作图痕迹.已知:如图,Rt△ABC中,∠C=90°.求作:一个⊙O,使⊙O与AB、BC所在直线都相切,且圆心O在边AC上.21.如图,四边形ABCD内接于120,,,求证:ABC是等边三角形.O AB AC ADC=∠=︒22.如图,AB 是O 的直径,过点A 作O 的切线AC ,点P 是射线AC 上的动点,连接OP ,过点B 作BD //OP ,交O 于点D ,连接PD .(1)求证:PD 是O 的切线;(2)当APO ∠的度数为______时,四边形POBD 是平行四边形.23.如图,Rt ABC △中,90C ∠=︒,点O 在AC 上,以OA 为半径的半圆O 分别交AB ,AC 于点D ,E ,过点D 作半圆O 的切线DF ,交BC 于点F .(1)求证:BF DF =;(2)若4AO CE ==,1CF =,求BF 的长.24.如图,AB 是⊙O 的直径,CD 是⊙O 的一条弦,AB ⊥CD ,连接AC ,OD .(1)求证:∠BOD =2∠A ;(2)连接DB ,过点C 作CE ⊥DB ,交DB 的延长线于点E ,延长DO ,交AC 于点F .若F 为AC 的中点,求证:直线CE 为⊙O 的切线.25.如图,AB 是O 的直径,CD 是O 的一条弦,,AB CD ⊥连接,.AC OD(1)求证:2;BOD A ∠=∠(2)连接DB ,过点C 作,CE DB ⊥交DB 的延长线于点E ,延长,DO 交AC 于点F ,若F 为AC 的中点,求证:直线CE 为O 的切线.26.石拱桥是我国古代人民勤劳和智慧的结晶(如图1),隋代建造的赵州桥距今约有1400年历史,是我国古代石拱桥的代表.如图2是根据某石拱桥的实物图画出的几何图形,桥的主桥拱是圆弧形,表示为AB .桥的跨度(弧所对的弦长)26m AB =,设AB 所在圆的圆心为O ,半径OC AB ⊥,垂足为D .拱高(弧的中点到弦的距离)5m CD =.连接OB .(1)直接判断AD 与BD 的数量关系;(2)求这座石拱桥主桥拱的半径(精确到1m )参考答案1.A2.A3.C4.C5.B6.D7.D8.C9.B10.D11.A12.B13.π33+ 14.2215.10316.6017.118.3619.证明:连接AB ,∵AD BD ⊥,且28BD AD ==∴AB 为直径,AB 2=82+42=80,∵CD =2,AD =4∴AC 2=22+42=20∵CD =2,BD =8,∴BC 2=102=100∴222AC AB CB +=,∴90BAC ∠=︒∴AC 是O 的切线.20.解:作∠ABC 的平分线交AC 于O 点,以O 点为圆心,OC 为半径作圆,则O 为所求作的圆.21.证明:∵四边形ABCD 内接于O , ∴180ADC ABC ∠+∠=︒,又∵120ADC ∠=︒,∴180********ABC ADC ∠=︒-∠=︒-︒=︒, ∵AB AC =,∴AB AC =,∴ABC 是等边三角形.22.解:证明:连接OD ,∵P A 切⊙O 于A ,∴P A ⊥AB ,即∠P AO =90°,∵OP ∥BD ,∴∠DBO =∠AOP ,∠BDO =∠DOP , ∵OD =OB ,∴∠BDO =∠DBO ,∴∠DOP =∠AOP ,在△AOP 和△DOP 中,AO DO AOP DOP PO PO =⎧⎪∠=∠⎨⎪=⎩,∴△AOP ≌△DOP (SAS ),∴∠PDO =∠P AO ,∵∠P AO =90°,∴∠PDO =90°,即OD ⊥PD ,∵OD 过O ,∴PD 是⊙O 的切线;(2)由(1)知:△AOP ≌△DOP ,∴P A =PD ,∵四边形POBD 是平行四边形,∴PD =OB ,∵OB =OA ,∴P A =OA ,∴∠APO =∠AOP ,∵∠P AO =90°,∴∠APO =∠AOP =45°.23.(1)证明:连接OD ,如图,∵半圆O 的切线DF ,∴90ODF ∠=︒.∴90ADO BDF ∠+∠=︒.∵90C ∠=︒,∴90OAD B ∠+∠=︒.∵OA OD =,∴OAD ADO ∠=∠.∴B BDF ∠=∠.∴BF DF =.(2)解:连接OF .∵4AO CE ==,AO OE =,∴8OC =.∵9090C ODF ∠=︒=∠=︒,1CF =,∴2222265OF OC CF OD DF =+=+=.又∵4OD =,∴7DF BF ==.24.(1)证明:如图,连接AD ,∵AB 是⊙O 的直径,AB ⊥CD ,∴BC BD =,∴∠CAB =∠BAD ,∵∠BOD =2∠BAD ,∴∠BOD =2∠CAB ;(2)证明:如图,连接OC ,AD ,∵F为AC的中点,∴DF⊥AC,∴AD=CD,∴∠ADF=∠CDF,∵BC BD=,∴∠CAB=∠DAB,∵OA=OD,∴∠OAD=∠ODA,∴∠CDF=∠CAB,∵OC=OD,∴∠CDF=∠OCD,∴∠OCD=∠CAB,∵BC BC=,∴∠CAB=∠CDE,∴∠CDE=∠OCD,∵∠E=90︒,∴∠CDE+∠DCE=90︒,∴∠OCD+∠DCE=90︒,即OC⊥CE,∵OC为半径,∴直线CE为⊙O的切线.25.(1)证明:设AB交CD于点H,连接OC,由题可知,∴=,90OC OD∠=∠=︒,OHC OHD()Rt Rt HL COH DOH ≅∴,COH DOH ∴∠=∠,BC BD ∴=,COB BOD ∴∠=∠,2COB A ∠=∠,2BOD A ∴∠=∠;(2)证明:连接AD ,OA OD =,OAD ODA ∠=∠∴,同理可得:OAC OCA ∠=∠,OCD ODC ∠=∠, ∵点H 是CD 的中点,点F 是AC 的中点,OAD ODA OAC OCA OCD ODC ∴∠=∠=∠=∠=∠=∠, 180OAD ODA OAC OCA OCD ODC ∠+∠+∠+∠+∠+∠=︒, 30OAD ODA OAC OCA OCD ODC ∴∠=∠=∠=∠=∠=∠=︒, 223060COB CAO ∴∠=∠=⨯︒=︒, AB 为O 的直径,90ADB ∴∠=︒,90903060ABD DAO ∴∠=-∠=︒-︒=︒,60ABD COB ∴∠=∠=︒,OC DE ∴∥,CE BE ⊥,∴直线CE 为O 的切线. 26.解:∵半径OC AB ⊥, ∴AD BD =.故答案为:AD BD =.(2)设主桥拱半径为R ,由题意可知26AB =,5CD =, ∴11261322BD AB ==⨯=,5OD OC CD R =-=-, 在Rt OBD △中,由勾股定理,得222OB BD OD =+, 即22213(5)R R =+-, 解得19.4R =,∴19R ≈,因此,这座石拱桥主桥拱半径约为19m。
九上数学24复习题答案

九上数学24复习题答案一、选择题1. 下列哪个选项是正确的?A. 2x + 3 = 5x - 1B. 3x - 2 = 2x + 1C. 4x - 5 = 2x + 3D. 5x + 1 = 3x - 2答案:B2. 哪个方程的解是x = 2?A. 2x - 4 = 0B. 3x + 6 = 0C. 4x - 8 = 0D. 5x + 10 = 0答案:A3. 以下哪个表达式可以被简化为x + 3?A. 2x - 5 + 8B. 3x + 2 - 5C. 4x + 6 - 2D. 5x - 1 + 4答案:D二、填空题1. 如果一个数的三倍加上5等于15,那么这个数是______。
答案:22. 一个两位数,十位数字是x,个位数字是y,这个两位数可以表示为______。
答案:10x + y3. 如果一个三角形的两边长分别为3和4,那么第三边的长度x满足的条件是______。
答案:1 < x < 7三、解答题1. 解方程:3x - 7 = 2x + 8。
答案:首先将方程两边的x项合并,得到x = 15。
2. 一个工厂生产了x个零件,其中10%是次品。
如果次品数量是5个,那么总共生产了多少个零件?答案:首先根据次品率建立方程0.1x = 5,解得x = 50。
所以工厂总共生产了50个零件。
3. 一个长方形的长是宽的两倍,如果宽是4厘米,那么这个长方形的周长是多少?答案:首先根据题意,长是8厘米。
然后根据周长公式2(长+宽)计算,得到周长是24厘米。
人教版(2024)数学九年级上册第二十四章 圆 本章复习与测试(含答案)

第二十四章圆一、选择题1. 已知⊙O的半径为3 cm,OP=4 cm,则点P与⊙O的位置关系是( )A.点P在圆内B.点P在圆上C.点P在圆外D.无法确定2. 已知圆锥的底面半径为3 cm,母线长为4 cm,则圆锥的全面积是( )A.15π cm2B.21π cm2C.20π cm2D.24π cm23. 下列说法:①平分弦的直径垂直于弦;②三点确定一个圆;③相等的圆心角所对的弧相等;④垂直于半径的直线是圆的切线;⑤三角形的内心到三条边的距离相等.其中不正确的有( )个.A.1B.2C.3D.44. 如图,AB为⊙O的直径,CD是⊙O的弦,∠ADC=35∘,则∠CAB的度数为( )A.35∘B.45∘C.55∘D.65∘5. 如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,连接AD,若∠C=22∘,则∠CDA的大小为( )A.112∘B.124∘C.129∘D.136∘6. 如图,在⊙O中,OC⊥AB,∠ADC=32∘,则∠OBA的度数是( )A.64∘B.58∘C.32∘D.26∘7. 在截面为半圆形的水槽内装有一些水,如图,水面宽AB为6分米,如果再注入一些水后,水面上升1分米,此时水面宽变为8分米,则该水槽面半径为( )A.3分米B.4分米C.5分米D.10分米8. 设P为⊙O外一点,若点P到⊙O的最短距离为3,最长距离为7,则⊙O的半径为( )A.3B.2C.4或10D.2或59. 如图,正方形ABCD内接于⊙O,点P在劣弧AB上,连接DP,交AC于点Q.若的值为( )QP=QO,则QCQAA.23−1B.23C.3+2D.3+210. 如图,在Rt△AOB中,OA=OB=4,⊙O的半径为1,点P是AB边上的动点,过点P作⊙O的一条切线PQ,Q为切点,则线段PQ长度的最小值为( )A.5B.7C.23D.32二、填空题11. 如图,AB是⊙O的直径,C,D,E都是⊙O上的点,则∠1+∠2=.12. 如图:四边形ABCD内接于⊙O,E为BC延长线上一点,若∠A=n∘,则∠DCE=.13. 如图,CD是⊙O的直径,弦AB⊥CD于点E,若AB=6,CE:ED=1:9,则⊙O的半径是.14. 如图,菱形OABC的边长为2,且点A,B,C在⊙O上,则劣弧BC的长度为.15. 如图,AB是⊙O的直径,AC与⊙O相切于点A,CE∥AB交⊙O于点D,E,CD=2,AB=8.则AD=.16. 如图,矩形ABCD中,AB=2,BC=2,以B为圆心,BC为半径画弧,交AD于点E,则图中阴影部分的面积是.17. 如图所示,边长为2的正方形ABCD的顶点A,B在一个半径为2的圆上,顶点C,D在该圆内,将正方形ABCD绕点A逆时针旋转,当点D第一次落在圆上时,点C运动的路线长为.18. 在⊙O中,AB是⊙O的直径,AB=8 cm,AC=CD=BD,M是AB上一动点,CM+DM的最小值是cm.三、解答题19. 如图,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3).(1) 请画出△ABC绕点O逆时针旋转90∘后的△A1B1C1;并写出A1,B1,C1三点的坐标.(2) 求出(1)中C点旋转到C1点所经过的路径长(结果保留π).20. 已知AB是半圆O的直径,OD⊥弦AC于D,过点O作OE∥AC交半圆O于点E,过点E作EF⊥AB于F,若AC=2,求OF的长.21. 如图,点O为Rt△ABC斜边AB上一点,以OA为半径的⊙O与BC切于点D,与AC交于点E,连接AD.(1) 求证:AD平分∠BAC.(2) 若∠BAC=60∘,OA=2,求阴影部分的面积(结果保留π).22. 如图,已知AB是⊙O的直径,C,D是⊙O上的点,OC∥BD,交AD于点E,连接BC.(1) 求证:AE=ED;(2) 若AB=10,∠CBD=36∘,求AC的长.23. 如图,半圆O的直径DE=12 cm,△ABC中,∠ACB=90∘,∠ABC=30∘,BC=12 cm,半圆O以2 cm/s的速度从左向右运动,在运动的过程中,点D,E始终在直线BC上,设运动时间为t(s),当t=0 s时,半圆O在△ABC的左侧,OC=8 cm.(1) 当t=8(s)时,试判断点A与半圆O的位置关系;(2) 当t为何值时,直线AB与半圆O所在的圆相切.24. 如图,点A是半径为12cm的⊙O上的一点,动点P从点A出发,以2πcm/s的速度沿圆周逆时针运动,当点P回到A点立即停止运动.(1) 在点P运动过程中,当∠POA=90∘时,求点P的运动时间.(2) 如图,点B是OA延长线上一点,AB=OA,当点P运动的时间为2s时,试判断直线BP与⊙O的位置关系,并说明理由.25. 已知四边形ABCD内接于⊙O,BC=CD,连接AC,BD.(1) 如图①,若∠CBD=36∘,求∠BAD的大小.(2) 如图②,若点E在对角线AC上,且EC=BC,∠EBD=24∘,求∠ABE的大小.答案一、选择题1. C2. B3. D4. C5. B6. D7. C8. B9. D10. B二、填空题11. 90∘12. n13. 514. 23π15. 416. 22−1−π217. 2π318. 8三、解答题19.(1) 如图,△A1B1C1为所作,A1,B1,C1三点的坐标分别为(−4,2),(−1,1),(−3,4);(2) OC=32+42=5,所以C点旋转到C1点所经过的路径长=90×π×5180=52π.20. ∵OD⊥AC,AC=2,∴AD=CD=1,∵OD⊥AC,EF⊥AB,∴∠ADO=∠OFE=90∘,∵OE∥AC,∴∠DOE=∠ADO=90∘,∴∠DAO+∠DOA=90∘,∠DOA+∠EOF=90∘,∴∠DAO=∠EOF,在△ADO和△OFE中,{∠DAO=∠EFO,∠DAO=∠FOE,OA=OE,∴△ADO≌△OFE(AAS),∴OF=AD=1.21.(1) ∵⊙O切BC于D,∴OD⊥BC,∵AC⊥BC,∴AC∥OD,∴∠CAD=∠ADO,∵OA=OD,∴∠OAD=∠ADO,∴∠OAD=∠CAD,即AD平分∠CAB.(2) 设EO与AD交于点M,连接ED.∵∠BAC=60∘,OA=OE,∴△AEO是等边三角形,∴AE=OA,∠AOE=60∘,∴AE=AO=OD,又由(1)知,AC∥OD,即AE∥OD,∴四边形AEDO是菱形,则△AEM≌△DMO,∠EOD=60∘,∴S△AEM=S△DMO,∴S阴影=S扇形EOD=60π×22360=2π3.22.(1) ∵AB是⊙O的直径,∴∠ADB=90∘,∵OC∥BD,∴∠AEO=∠ADB=90∘,即OC⊥AD,∴AE=ED.(2) ∵OC⊥AD,∴AC=CD,∴∠ABC=∠CBD=36∘,∴∠AOC=2∠ABC=2×36∘=72∘,∴AC=72π×5180=2π.23.(1) ∵△ABC中,∠ACB=90∘,∠ABC=30∘,BC=12 cm,∴AC=tan30∘BC=43,当t=8时,如图,此时OC=8,在Rt△ACO中,AC=43,∴AO=AC2+OC2=47,∵半圆O的直径DE=12 cm,47>6,∴点A在半圆外;(2) ①如图1,过C点作CF⊥AB,交AB于F点;∵∠ABC=30∘,BC=12 cm,∴FO=6 cm;当半圆O与△ABC的边AB相切时,又∵圆心O到AB的距离等于6 cm,且圆心O又在直线BC上,∴O与C重合,即当O点运动到C点时,半圆O与△ABC的边AB相切;此时点O运动了8 cm,所求运动时间为t=82=4(s),②当点O运动到B点的右侧,且OB=12 cm时,如图2,过点O作OQ⊥直线AB,垂足为Q.在Rt△QOB中,∠OBQ=30,则OQ=6 cm,即OQ与半圆O所在的圆相切.此时点O运动了32 cm.所求运动时间为:t=32÷2=16 s,综上可知当t=4 s或16 s时,AB与半圆O所在的圆相切.24.(1) 当∠POA=90∘时,根据弧长公式可知点P运动的路程为⊙O周长的14或34,设点P运动的时间为t s,当点P运动的路程为⊙O周长的14时,2π⋅t=14⋅2π⋅12,解得t=3,当点P运动的路程为⊙O周长的34时,2π⋅t=34⋅2π⋅12,解得t=9,∴当∠POA=90∘时,点P运动的时间为3s或9s.(2) 如图,当点P运动的时间为2s时,直线BP与⊙O相切.理由如下:当点P运动的时间为2s时,点P运动的路程为4πcm,连接OP,PA,∵半径AO=12cm,∴⊙O的周长为24πcm,∴AP的长为⊙O周长的16,∴∠POA=60∘,∵OP=OA,∴△OAP是等边三角形,∴OP=OA=AP,∠OAP=60∘,∵AB=OA,∴AP=AB,∵∠OAP=∠APB+∠B,∴∠APB=∠B=30∘,∴∠OPB=∠OPA+∠APB=90∘,∴OP⊥BP,∴直线BP与⊙O相切.25.(1) ∵BC=CD,∴∠BDC=∠CBD=36∘,∴∠BAC=∠BDC=36∘,∵BC=CD,∴BC=CD,∴∠CAD=∠CBD=36∘,∠BAD=∠BAC+∠CAD=36∘+36∘=72∘.(2) ∠CEB=∠EAB+∠ABE(外角的应用),∵CE=CB,∴∠CEB=∠CBE=∠CBD+∠EBD,∴∠EAB+∠ABE=∠CBD+∠EBD,∵BC=CD,∴BC=CD,∴∠EAB=∠CBD,∴∠ABE=∠EBD=24∘.。
人教版九年级上册数学 24章复习题含答案。

24.1垂直于弦的直径1. 在⊙O 中,AB 为弦,AB OC ⊥于点C ,交⊙O 于点D ,若5=AO ,2=CD ,则弦AB 的长为( )A.4B.6C.8D.102.如图,⊙O 的弦AB 垂直平分半径OC ,则四边形OACB ( ) A.是正方形 B.是长方形 C.是菱形 D.以上答案都不对3.设P 为半径6cm 的圆内的一点,它到圆心的距离为3.6cm,则经过点P 的最短弦的长度是 ( ).A .4.8cmB .7.2cmC .6.4cmD .9.6cm4.在直径是20cm 的⊙O 中,∠AOB 是60°,那么弦AB 的弦心距是( )5.若圆的半径3,圆中一条弦为52,则此弦中点到弦所对劣弧的中点的距离为 .6.兴隆蔬菜基地建圆弧形蔬菜大棚的剖面如右图所示,已知AB =16m ,半径OA =10m ,高度CD 为_____m.7.圆中一弦把和它垂直的直径分成3 cm 和4 cm 两部分,则这条弦长为________. 8.工程上常用钢珠来测量零件上小孔的直径,假设钢珠的直径是10mm ,测得钢珠顶端离零件表面的距离为8mm ,如图所示, 则这个小孔的直径是 mm.9.已知:如图,AB 是⊙O 的弦,半径OC ,OD 分别交AB 于点E ,F ,且BF AE =.求证:OF OE =.10.已知:如图, ⊙O 的直径CD 垂直弦AB 于P , 且PA =4cm, PD =2cm .AB 第2题图第6题图DBAO CBA 8mm第8题图求:⊙O的半径长.11.如图,已知:⊙O中,弦AB与弦CD互相垂直,垂足为E,又AE=3,EB=7,求O点到CD的距离.12.已知:如图,AB,CD是⊙O的弦,且AB⊥CD于H,A H=4,B H=6,C H=3,D H=8.求:⊙O 的半径.13. 如图弓形的弦AB=6cm,弓形的高是1cm,求其所在圆的半径.14.某机械传动装置在静止时如图所示,连杆PB与B的运动所形成的⊙O交于点A,测量得PA=4cm,AB=8cm,⊙O的半径是5cm,求点P到圆心O 的距离.人教版九年级数学 24.2 点和圆、直线和圆的位置关系一、选择题1. 如图,AB为☉O的切线.切点为A,连接AO,BO,BO与☉O交于点C,延长BO与☉O交于点D,连接AD.若∠ABO=36°,则∠ADC的度数为()A.54°B.36°C.32°D.27°2. 2018·眉山如图所示,AB是⊙O的直径,PA切⊙O于点A,线段PO交⊙O于点C,连接BC,若∠P=36°,则∠B等于( )A.27° B.32° C.36° D.54°3. 在数轴上,点A所表示的实数为5,点B所表示的实数为a,⊙A的半径为3,要使点B 在⊙A内,则实数a的取值范围是( )A.a>2 B.a>8C.2<a<8 D.a<2或a>84. (2019•益阳)如图,PA、PB为圆O的切线,切点分别为A、B,PO交AB于点C,PO的延长线交圆O于点D,下列结论不一定成立的是A.PA=PB B.∠BPD=∠APDC.AB⊥PD D.AB平分PD5. 选择用反证法证明“已知:在△ABC中,∠C=90°.求证:∠A,∠B中至少有一个角不大于45°.”时,应先假设( )A.∠A>45°,∠B>45° B.∠A≥45°,∠B≥45°C.∠A<45°,∠B<45° D.∠A≤45°,∠B≤45°6. 《九章算术》是我国古代内容极为丰富的数学名著,书中有下列问题:“今有勾八步,股十五步,问勾中容圆径几何.”其意思是:“今有直角三角形(如图),勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能容纳的圆形(内切圆)的直径是多少.”答案是 ( )A.3步B.5步C.6步D.8步7. 已知⊙O的半径为2,点P在⊙O内,则OP的长可能是( )A.1 B.2C.3 D.48. 2020·武汉模拟在平面直角坐标系中,圆心为坐标原点,⊙O的半径为10,则P(-10,1)与⊙O的位置关系为( )A.点P在⊙O上B.点P在⊙O外C.点P在⊙O内D.无法确定二、填空题9. 如图,在平面直角坐标系中,已知C(3,4),以点C为圆心的圆与y轴相切.点A,B在x轴上,且OA=OB.P为⊙C上的动点,∠APB=90°,则AB长的最大值为________.10. 已知在△ABC中,AB=AC=5,BC=6,以点A为圆心,4为半径作⊙A,则直线BC与⊙A 的位置关系是________.11. 如图,菱形ABOC的边AB,AC分别与☉O相切于点D,E,若点D是AB的中点,则∠DOE= .12. 如图,边长为1的正方形ABCD的对角线相交于点O,以点A为圆心,以1为半径画圆,则点O,B,C,D中,点________在⊙A内,点________在⊙A上,点________在⊙A外.13. (2019•河池)如图,PA、PB是的切线,A、B为切点,∠OAB=38°,则∠P=_______ ___.14. 如图,在矩形ABCD中,AB=8,AD=12,过A,D两点的⊙O与BC边相切于点E.则⊙O 的半径为________.15. 如图,在扇形ABC中,CD⊥AB,垂足为D,⊙E是△ACD的内切圆,连接AE,BE,则∠AEB的度数为________.O16. 在Rt△ABC中,∠C=90°,AC=6,BC=8.若以C为圆心,R为半径所作的圆与斜边AB 只有一个公共点,则R的取值范围是______________.三、解答题17. 2020·凉山州模拟如图,⊙O的直径AB=10 cm,弦BC=6 cm,∠ACB的平分线交⊙O 于点D,交AB于点E,P是AB延长线上一点,且PC=PE.(1)求证:PC是⊙O的切线;(2)求AC,AD的长.18. 已知直线l与⊙O,AB是⊙O的直径,AD⊥l于点D.(1)如图①,当直线l与⊙O相切于点C时,求证:AC平分∠DAB;(2)如图②,当直线l与⊙O相交于点E,F时,求证:∠BAF=∠DAE.19. 已知:如图,在Rt△ABC中,∠C=90°,AC=8,AB=10.点P在AC上,AP=2.若⊙O的圆心在线段BP上,且⊙O与AB,AC分别切于点D,E.求:(1)△BAP的面积S;(2)⊙O的半径.人教版九年级数学 24.2 点和圆、直线和圆的位置关系课时训练-答案一、选择题1. 【答案】D[解析]∵AB为☉O的切线,∴∠OAB=90°.∵∠ABO=36°,∴∠AOB=90°-∠ABO=54°.∵OA=OD,∴∠ADC=∠OAD,∵∠AOB=∠ADC+∠OAD,∴∠ADC=∠AOB=27°,故选D.2. 【答案】A3. 【答案】C4. 【答案】D【解析】∵PA,PB是⊙O的切线,∴PA=PB,所以A成立;∠BPD=∠APD,所以B成立;∴AB⊥PD,所以C成立;∵PA,PB是⊙O的切线,∴AB⊥PD,且AC=BC,只有当AD∥PB,BD∥PA时,AB平分PD,所以D不一定成立,故选D.5. 【答案】A6. 【答案】C7. 【答案】A8. 【答案】B二、填空题9. 【答案】1610. 【答案】相切11. 【答案】60°[解析]连接OA,∵四边形ABOC是菱形,∴BA=BO,∵AB与☉O相切于点D,∴OD⊥AB.∵D是AB的中点,∴OD是AB的垂直平分线,∴OA=OB,∴△AOB是等边三角形,∴∠AOD=∠AOB=30°,同理∠AOE=30°,∴∠DOE=∠AOD+∠AOE=60°,故答案为60°.112. 【答案】O B,D C [解析] ∵四边形ABCD为正方形,∴AC⊥BD,AO=BO=CO=DO. 设AO=BO=x.由勾股定理,得AO2+BO2=AB2,即x2+x2=12,解得x=22(负值已舍去),∴AO =22<1,AC =2>1,∴点O 在⊙A 内,点B ,D 在⊙A 上,点C 在⊙A 外.13. 【答案】76【解析】∵是的切线,∴, ∴,∴,∴,故答案为:76.14. 【答案】254【解析】如解图,连接EO 并延长交AD 于点F ,连接OD 、OA ,则OD =OA.∵BC与⊙O 相切于点E ,∴OE ⊥BC ,∵四边形ABCD 是矩形,∴AD ∥BC ,∴EF ⊥AD ,∴DF =AF =12AD =6,在Rt △ODF 中,设OD =r ,则OF =EF -OE =AB -OE =8-r ,在Rt △ODF 中,由勾股定理得DF 2+OF 2=OD 2,即62+(8-r)2=r 2,解得r =254.∴⊙O 的半径为254.解图15. 【答案】135° [解析] 连接CE.∵∠ADC =90°,∴∠DAC +∠DCA =90°.∵⊙E 内切于△ADC ,∴∠EAC +∠ECA =45°,∴∠AEC =135°.由“边角边”可知△AEC ≌△AEB ,∴∠AEB =∠AEC =135°.16. 【答案】R =4.8或6<R ≤8 [解析] 当⊙C 与AB 相切时,如图①,过点C 作CD ⊥AB 于点D .根据勾股定理,得AB =AC 2+BC 2=62+82=10.根据三角形的面积公式,得12AB ·CD=12AC ·BC ,解得CD =4.8,所以R =4.8;当⊙C 与AB 相交时,如图②,此时R 大于AC 的长,而小于或等于BC 的长,即6<R ≤8.PA PB 、O PA PB PA OA =⊥,90PAB PBA OAP ∠=∠∠=︒,90903852PBA PAB OAB ∠=∠=︒-∠=︒-︒=︒180525276P ∠=︒-︒-︒=︒三、解答题17. 【答案】解:(1)证明:连接OC,如图所示.∵AB是⊙O的直径,∴∠ACB=90°.∵CD平分∠ACB,∴∠ACD=∠BCD=45°.∵PC=PE,∴∠PCE=∠PEC.∵∠PEC=∠EAC+∠ACE=∠EAC+45°,而∠EAC=90°-∠ABC,∠ABC=∠OCB,∴∠PCE=90°-∠OCB+45°=90°-(∠OCE+45°)+45°,∴∠OCE+∠PCE=90°,即∠PCO=90°,∴OC⊥PC,∴PC为⊙O的切线.(2)连接BD,如图所示.在Rt△ACB中,AB=10 cm,BC=6 cm,∴AC=AB2-BC2=102-62=8(cm).∵∠ACD=∠BCD=45°,∴∠DAB=∠DBA=45°,∴△ADB为等腰直角三角形,∴AD=22AB=5 2(cm).18. 【答案】证明:(1)如图①,连接OC.∵直线l与⊙O相切于点C,∴OC⊥l.又∵AD ⊥l ,∴AD ∥OC ,∴∠DAC =∠ACO.∵OA =OC ,∴∠ACO =∠CAO ,∴∠DAC =∠CAO ,即AC 平分∠DAB.(2)如图②,连接BF.∵AB 是⊙O 的直径,∴∠AFB =90°,∴∠BAF =90°-∠B.∵∠AEF =∠ADE +∠DAE =90°+∠DAE ,又由圆内接四边形的性质,得∠AEF +∠B =180°,∴90°+∠DAE +∠B =180°, ∴∠DAE =90°-∠B ,∴∠BAF =∠DAE.19. 【答案】解:(1)∵∠C =90°,AC =8,AB =10,∴在Rt △ABC 中,由勾股定理,得BC =6,∴△BAP 的面积S =12AP ·BC =12×2×6=6. (2)连接OD ,OE ,OA.设⊙O 的半径为r ,则S △BAP =12AB ·r +12AP ·r =6r , ∴6r =6,解得r =1.故⊙O 的半径是1.24.3 正多边形和圆(满分120分;时间:120分钟)一、选择题(本题共计 9 小题,每题 3 分,共计27分,)1. 如图,要拧开一个边长为a=6cm的正六边形螺帽,扳手张开的开口b至少为()A.6√2cmB.12cmC.6√3cmD.4√3cm2. 已知△ABC是⊙O的内接正三角形,△ABC的面积等于a,DEFG是半圆O的内接正方形,面积等于b,ab的值为()A.2B.√62C.3√35D.15√3163. 如图,已知四边形ABCD内接于⊙O,∠ABC=70∘,则∠ADC的度数是( )A.70∘B.110∘C.130∘D.140∘4. 已知正多边形的边心距与边长的比是√3:2,则此正多边形是()A.正三角形B.正方形C.正六边形D.正十二边形5. 四边形ABCD内接于⊙O.如果∠D=80∘,那么∠B等于()A.80∘B.100∘C.120∘D.160∘6. 若一个正九边形的边长为a,则这个正九边形的半径是()A.acos20B.asin20C.a2cos20D.a2sin207. 如图,四边形ABCD为⊙O的内接四边形,若∠BCD=110∘,则∠BAD为()A.140∘B.110∘C.90∘D.70∘8. 如图,把正△ABC的外接圆对折,使点A与劣弧的中点M重合,若BC=5,则折痕在△ABC 内的部分DE的长为()A.5√33B.10√33C.103D.529. 如图,某学校欲建一个喷泉水池,底面是半径为4m的正六边形,池底是水磨石地面,所要用的磨光机是半径为2dm的圆形砂轮,磨池底时,磨头磨不到的正六边形的部分为(单位:dm2)()A.2400√3−1200πB.8√3−400πC.8√3−23π D.24√3−23π二、填空题(本题共计 10 小题,每题 3 分,共计30分,)10. 圆内接正六边形的半径为2cm,则其边长等于________.11. 如图,四边形ABCD内接于⊙O,∠A=62∘,则∠C=________∘.12. 如图,四边形ABCD是⊙O的内接四边形,∠CBE是它的外角,若∠D=120∘,则∠CBE的度数是________.13. 如图,ABCDEF是⊙O的内接正六边形,若△BCF的面积为18√3cm2,则六边形ABCDEF的面积为________cm2.14 半径为1的圆的内接正三角形的边长为________.15 如图,四边形ABCD外切于⊙O,且AB=16,CD=10,则四边形的周长是________.16. 已知四边形ABCD内接于圆,且弧AB、BC的度数分别为140∘和100∘,若弧AD=2•弧DC,则∠BCD=________.17. 已知AB,AC分别是同一圆的内接正方形和内接正六边形的边,那么∠ACB度数为________ .18. 如图,四边形ABCD是⊙O的内接四边形,∠DCE=60∘,则∠BAD=________度.19. 小刚要在边长为10的正方形内设计一个有共同中心O的正多边形,使其边长最大且能在正方形内自由旋转.如图1,若这个正多边形为正六边形,此时EF=________;若这个正多边形为正三角形,如图2,当正△EFG可以绕着点O在正方形内自由旋转时,EF的取值范围为_________.三、解答题(本题共计 6 小题,共计63分,)20. (1)请你用直尺和圆规作出△ABC的外接圆(保留作图痕迹);(2)当AB=AC=4√5,BC=16,求△ABC的外接圆半径.21. 延长圆内接四边形ABCD的边AD和边BC,相交于点E,求证:△ABE∽△CDE.22. 如图,圆内接四边形ABCD,两组对边的延长线分别相交于点E、F,且∠E=40∘,∠F= 60∘,求∠A的度数.23. 如图,在等腰△PAD中,PA=PD,B是边AD上的一点,以AB为直径的⊙O经过点P,C是⊙O上一动点,连接AC,PC,PC交AB于点E,且∠ACP=60∘.(1)求证:PD是⊙O的切线.(2)连结OP,PB,BC,OC,若⊙O的直径是4,则:①当四边形APBC是矩形时,求DE的长;②当DE=________时,四边形OPBC是菱形.24 如图,四边形ABCD是⊙O的内接四边形,∠CBE是它的一个外角.求证:∠D=∠CBE.25. 问题提出(1)如图①,在⊙O中,点M、N分别是⊙O上的点,若OM=4,则MN的最大值为________.问题探究(2)如图②,在△ABC中,AB=BC,∠ABC=120∘,AC=6,求△ABC外接圆的半径及AB+BC 的长;问题解决(3)如图③.某旅游区有一个形状为四边形ABCD的人工湖,已知AD//BC,AD⊥AB,AB= 180m,BC=300m,AD>BC,为了营造更加优美的旅游环境,旅游区管委员会决定在四边形ABCD内建一个湖心小岛P,并分别修建观光长廊PB和PC,且PB和PC相互垂直.为了容纳更多的游客,要使线段PB、PC之和尽可能的大.试问PB+PC是否存在最大值?若存在,请求出PB+PC的最大值,若不存在,请说明理由.(观光长廊的宽度忽略不计)24.3 正多边形和圆(满分120分;时间:120分钟)一、选择题(本题共计 9 小题,每题 3 分,共计27分,)1. 如图,要拧开一个边长为a=6cm的正六边形螺帽,扳手张开的开口b至少为()A.6√2cmB.12cmC.6√3cmD.4√3cm2. 已知△ABC是⊙O的内接正三角形,△ABC的面积等于a,DEFG是半圆O的内接正方形,的值为()面积等于b,abA.2B.√62C.3√35D.15√3163. 如图,已知四边形ABCD内接于⊙O,∠ABC=70∘,则∠ADC的度数是( )A.70∘B.110∘C.130∘D.140∘4. 已知正多边形的边心距与边长的比是√3:2,则此正多边形是()A.正三角形B.正方形C.正六边形D.正十二边形5. 四边形ABCD内接于⊙O.如果∠D=80∘,那么∠B等于()A.80∘B.100∘C.120∘D.160∘6. 若一个正九边形的边长为a,则这个正九边形的半径是()A.acos20B.asin20C.a2cos20D.a2sin207. 如图,四边形ABCD为⊙O的内接四边形,若∠BCD=110∘,则∠BAD为()A.140∘B.110∘C.90∘D.70∘8. 如图,把正△ABC的外接圆对折,使点A与劣弧的中点M重合,若BC=5,则折痕在△ABC内的部分DE的长为()A.5√33B.10√33C.103D.529. 如图,某学校欲建一个喷泉水池,底面是半径为4m的正六边形,池底是水磨石地面,所要用的磨光机是半径为2dm的圆形砂轮,磨池底时,磨头磨不到的正六边形的部分为(单位:dm2)()A.2400√3−1200πB.8√3−400πC.8√3−23π D.24√3−23π二、填空题(本题共计 10 小题,每题 3 分,共计30分,)10. 圆内接正六边形的半径为2cm,则其边长等于________.11. 如图,四边形ABCD内接于⊙O,∠A=62∘,则∠C=________∘.12. 如图,四边形ABCD是⊙O的内接四边形,∠CBE是它的外角,若∠D=120∘,则∠CBE的度数是________.13. 如图,ABCDEF是⊙O的内接正六边形,若△BCF的面积为18√3cm2,则六边形ABCDEF的面积为________cm2.14 半径为1的圆的内接正三角形的边长为________.15 如图,四边形ABCD外切于⊙O,且AB=16,CD=10,则四边形的周长是________.16. 已知四边形ABCD内接于圆,且弧AB、BC的度数分别为140∘和100∘,若弧AD=2•弧DC,则∠BCD=________.17. 已知AB,AC分别是同一圆的内接正方形和内接正六边形的边,那么∠ACB度数为________ .18. 如图,四边形ABCD是⊙O的内接四边形,∠DCE=60∘,则∠BAD=________度.19. 小刚要在边长为10的正方形内设计一个有共同中心O的正多边形,使其边长最大且能在正方形内自由旋转.如图1,若这个正多边形为正六边形,此时EF=________;若这个正多边形为正三角形,如图2,当正△EFG可以绕着点O在正方形内自由旋转时,EF的取值范围为_________.三、解答题(本题共计 6 小题,共计63分,)20. (1)请你用直尺和圆规作出△ABC的外接圆(保留作图痕迹);(2)当AB=AC=4√5,BC=16,求△ABC的外接圆半径.21. 延长圆内接四边形ABCD的边AD和边BC,相交于点E,求证:△ABE∽△CDE.22. 如图,圆内接四边形ABCD,两组对边的延长线分别相交于点E、F,且∠E=40∘,∠F= 60∘,求∠A的度数.23. 如图,在等腰△PAD中,PA=PD,B是边AD上的一点,以AB为直径的⊙O经过点P,C是⊙O上一动点,连接AC,PC,PC交AB于点E,且∠ACP=60∘.(1)求证:PD是⊙O的切线.(2)连结OP,PB,BC,OC,若⊙O的直径是4,则:①当四边形APBC是矩形时,求DE的长;②当DE=________时,四边形OPBC是菱形.24 如图,四边形ABCD是⊙O的内接四边形,∠CBE是它的一个外角.求证:∠D=∠CBE.25. 问题提出(1)如图①,在⊙O中,点M、N分别是⊙O上的点,若OM=4,则MN的最大值为________.问题探究 (2)如图②,在△ABC 中,AB =BC,∠ABC =120∘,AC =6,求△ABC 外接圆的半径及AB +BC 的长;问题解决(3)如图③.某旅游区有一个形状为四边形ABCD 的人工湖,已知AD//BC ,AD ⊥AB ,AB =180m ,BC =300m ,AD >BC ,为了营造更加优美的旅游环境,旅游区管委员会决定在四边形ABCD 内建一个湖心小岛P ,并分别修建观光长廊PB 和PC ,且PB 和PC 相互垂直.为了容纳更多的游客,要使线段PB 、PC 之和尽可能的大.试问PB +PC 是否存在最大值?若存在,请求出PB +PC 的最大值,若不存在,请说明理由.(观光长廊的宽度忽略不计)人教版 九年级数学 24.4 弧长和扇形面积一、选择题1. 如图在等边三角形ABC 中,将边AC 逐渐变成以BA 为半径的AC ︵,其他两边的长度不变,则∠ABC 的度数由60°变为( )图A .(180π)°B .(120π)°C .(90π)°D .(60π)°2. 一个扇形的半径为6,圆心角为120°,则该扇形的面积是( )A .2πB .4πC .12πD .24π3. (2020·聊城)如图,有一块半径为1m ,圆心角为90°的扇形铁皮,要把它做成一个圆锥形容器(接缝忽略不计),那么这个圆锥形容器的高为( )A .41m B .43m C .415m D .23m 4. (2020·聊城)如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为点M ,连接OC ,DB ,如果OC∥DB ,OC =23,那么图中阴影部分的面积是( )A .πB .2πC .3πD .4π5. 2019·天水模拟 一个圆锥的轴截面是一个正三角形,则圆锥侧面展开图形的圆心角是( ) A .60° B .90° C .120° D .180°6. 用圆心角为120°,半径为6 cm 的扇形纸片卷成一个圆锥形无底纸帽(如图所示),则这个纸帽的高是( )A. 2 cm B .3 2 cm C .4 2 cm D .4 cm7. (2020·苏州)如图,在扇形OAB 中,已知90AOB ∠=︒,2OA =,过AB 的中点C作CD OA ⊥,CE OB ⊥,垂足分别为D 、E ,则图中阴影部分的面积为( )AM CBDA.1π-B.12π- C.12π-D.122π-8. 2018·黑龙江 如图在△ABC 中,AB =5,AC =3,BC =4,将△ABC 绕点A 按逆时针方向旋转40°得到△ADE ,点B 经过的路径为弧BD ,则图阴影部分的面积为( )图A.143π-6B.259π C.338π-3D.33+π二、填空题9. (2020·湘潭)如图,在半径为6的⊙O 中,圆心角60AOB ︒∠=,则阴影部分面积为________.10. (2020·绥化)已知圆锥的底面圆的半径是2.5,母线长是9,其侧面展开图的圆心角是______度.11. 如图所示,在△ABC 中,AB =BC =2,∠ABC =90°,则图中阴影部分的面积是________.12. 如图,以点O 为圆心的两个同心圆中,大圆的弦AB 是小圆的切线,点P 为切点,AB =123,OP =6,则劣弧AB ︵的长为________.(结果保留π)13. 如图所示,有一直径是 2 米的圆形铁皮,现从中剪出一个圆心角是90°的最大扇形ABC ,则:(1)AB 的长为________米;(2)用该扇形铁皮围成一个圆锥,所得圆锥的底面圆的半径为________米.14. 已知一个圆心角为270°,半径为3 m 的扇形工件未搬动前如图示,A ,B 两点触地放置,搬动时,先将扇形以点B 为圆心,做如图示的无滑动翻转,再使它紧贴地面滚动,当A ,B 两点再次触地时停止,则圆心O 所经过的路线长为________m .(结果用含π的式子表示)15. (2020·新疆)如图,⊙O 的半径是2,扇形BAC 的圆心角为60°,若将扇形BAC 剪下转成一个圆锥,则此圆锥的底面圆的半径为____________.16. 如图中的小方格都是边长为1的正方形,则以格点为圆心,半径为1和2的两种弧围成的“叶状”(阴影部分)图案的面积为________.三、解答题17. 如图,AB 是半圆O 的直径,C 是半圆O 上的一点,AC 平分∠DAB ,AD ⊥CD ,垂足为D ,AD 交半圆O 于点E ,连接CE.(1)判断CD 与半圆O 的位置关系,并证明你的结论;(2)若E 是AC ︵的中点,半圆O 的半径为1,求图中阴影部分的面积.18. (2020·内江)如图,AB 是⊙O 的直径,C 是⊙O 上一点,ODBC 于点D ,过点C 作⊙O 的切线,交OD 的延长线于点E ,连结BE . (1)求证:BE 是⊙O 的切线;(2)设OE 交⊙O 于点F ,若2DF BC ==,EF 的长; (3)在(2)的条件下,求阴影部分的面积.19. 如图,在正方形ABCD 中,AD =2,E 是AB 的中点,将△BEC 绕点B 逆时针旋转90°后,点E 落在CB 的延长线上的点F 处,点C 落在点A 处,再将线段AF 绕点F 顺时针旋转90°得线段FG ,连接EF ,CG. (1)求证:EF ∥CG ;(2)求点C ,A 在旋转过程中形成的AC ︵,AG ︵与线段CG 所围成的阴影部分的面积.人教版 九年级数学 24.4 弧长和扇形面积 课时训练-答案一、选择题1. 【答案】A [解析] 设变形后的∠B =n °,AB =AC ︵的长=a .由题意可得n180π·a =a ,解得n =180π.2. 【答案】C [解析] 根据扇形的面积公式,S =120×π×62360=12π.故选C.3. 【答案】C 【解析】先利用弧长公式求得圆锥的底面半径,再利用勾股定理求圆锥的高.设圆锥形容器底面圆的半径为r ,则有2πr=180190⋅π,解得r =41,则圆锥的高为22)41(1-=415(m).4. 【答案】B【解析】借助圆的性质,利用等积转化求解阴影部分的面积.由垂径定理,得CM =DM ,∵OC ∥DB ,∴∠C =∠D ,又∵∠OMC =∠BMD ,∴△OMC ≌△BMD(ASA),∴OM =BM =21OB =21OC ,∴cos ∠COM =OC OM =21,∴∠COM =60°.∴S 阴影=S 扇形BOC =360)32(602⋅π=2π.5. 【答案】D6. 【答案】C [解析] 设纸帽底面圆的半径为r cm ,则2πr =120×π×6180,解得r =2.设圆锥的高为h cm ,由勾股定理得h2+r2=62,所以h2+22=62,解得h =4 2.7. 【答案】B【解析】本题考查了不规则图形面积的计算,连接OC ,由题意得∠DOC=∠BOC=45°,四边形OECD 为正方形,OC=2,由特殊角的三角函数得OE=OD=1,S 阴影=S 扇形OAB -S 正方形CEOD =290(2)360π⨯-12=2π-1,因此本题选B .8. 【答案】B [解析] ∵AB =5,AC =3,BC =4,∴AC 2+BC 2=25=AB 2,∴△ABC 为直角三角形.由旋转的性质得,△ADE 的面积=△ABC 的面积,由图可知,阴影部分的面积=△ADE 的面积+扇形ADB 的面积-△ABC 的面积, ∴阴影部分的面积=扇形ADB 的面积=40π×52360=259π.二、填空题9. 【答案】6π【解析】本题考查了扇形面积的计算,解题的关键是熟记扇形面积的计算公式.阴影部分面积为26066360ππ⨯=,故答案为:6π.10. 【答案】100【解析】设圆心角的度数是n ,则2π×2.5=9180n π.解得n =100.11. 【答案】π-2 [解析] ∵在△ABC 中,AB =BC =2,∠ABC =90°,∴△ABC 是等腰直角三角形,∴S 阴影=S 半圆AB +S 半圆BC -S △ABC=12π×(22)2+12π×(22)2-12×2×2 =π-2.12. 【答案】 8π 【解析】∵AB 是小圆的切线,∴OP ⊥AB ,∴AP =12AB =6 3.如解图,连接OA ,OB ,∵OA =OB ,∴∠AOB =2∠AOP.在Rt △AOP 中,OA =OP 2+AP 2=12,tan ∠AOP =AP OP =636=3,∴∠AOP =60°.∴∠AOB =120°,∴劣弧AB 的长为120π·12180=8π.13. 【答案】(1)1 (2)14[解析] (1)如图,连接BC.∵∠BAC =90°,∴BC 为⊙O 的直径,即BC = 2. ∵AB =AC ,AB2+AC2=BC2=2, ∴AB =1(米).(2)设所得圆锥的底面圆的半径为r 米. 根据题意,得2πr =90·π·1180,解得r =14.14. 【答案】6π [解析] 由题意易知∠AOB =90°,OA =OB ,∴∠ABO =45°,圆心O 旋转的长度为2×45π×3180=3π2(m),圆心O 平移的距离为270π×3180=9π2(m),则圆心O 经过的路线长为3π2+9π2=6π(m).15.【解析】本题考查了垂径定理,弧长公式,圆锥的侧面展开图.连接OA ,OB ,OC ,过点O 作OD ⊥AC 于点D .∵AB =AC ,OB =OC ,OA =OA ,所以△OAB ≌△OAC ,所以∠OAB =∠OAC =12∠BAC =12×60°=30°.在Rt △OAD 中,因为∠OAC =30°,OA =2,所以OD =1,AD 因为OD ⊥AC ,所以AC =2AD =BC l =60180×π×π.设此圆锥的底面圆的半径为r ,则r .16. 【答案】2π-4 [解析] 如图所示,由题意,得阴影部分的面积=2(S 扇形OAB -S △OAB)=2(90π×22360-12×2×2)=2π-4. 故答案为2π-4.三、解答题17. 【答案】解:(1)CD 与半圆O 相切.证明:∵AC 平分∠DAB ,∴∠DAC =∠BAC.∵OA =OC ,∴∠BAC =∠OCA ,∴∠DAC =∠OCA ,∴OC ∥AD.∵AD ⊥CD ,∴OC ⊥CD.又∵OC 为半圆O 的半径,∴CD 与半圆O 相切.(2)连接OE.∵AC 平分∠DAB ,∴∠DAC =∠BAC ,∴EC ︵=BC ︵.又∵E 是AC ︵的中点,∴AE ︵=EC ︵=BC ︵,S 弓形AE =S 弓形CE ,∴∠BOC =∠EOC =60°.又∵OE =OC ,∴△OEC 是等边三角形,∴∠ECO =60°,CE =OC =1.由(1)得OC ⊥CD ,∴∠OCD =90°,∴∠DCE =30°,∴DE =12,DC =32, ∴S 阴影=S △DEC =12×12×32=38.18. 【答案】(1)证明:连接OC ,如图,∵OD ⊥BC ,∴CD=BD ,∴OE 为BC 的垂直平分线,∴EB=EC ,∴∠EBC=∠ECB ,∵OB=OC ,∴∠OBC=∠OCB ,∴∠OBC+∠EBC=∠OCB+∠ECB ,即∠OBE=∠OCE ,∵CE 为⊙O 的切线,∴OC ⊥CE ,∴∠OCE=90°, ∴∠OBE=90°,∴OB ⊥BE ,∴BE 与⊙O 相切.(2)设⊙O 的半径为R ,则OD=R-DF=R-2,OB=R ,在Rt △OBD 中,BD=12BC=∵OD2+BD2=OB2,∴222(2)R R -+=,解得R=4,∴OD=2,OB=4,∴∠OBD=30°,∴∠BOD=60°,∴在Rt △OBE 中,∠BEO=30º,OE=2OB=8,∴EF=OE-OF=8-4=4,即EF=4;(3)由∠OCD=∠OBD=30º和OD ⊥BC 知:∠COD=∠BOD=60º,∴∠BOC=120º,又BC=OE=8,∴=S OBEC S S -阴影四边形扇形OBC =21120482360π⨯⨯ 163π=,【解析】本题考查了切线的判定与性质、垂径定理、扇形面积的计算、含30º角的直角三角形边角关系、勾股定理等知识,熟练掌握每个知识点是解答的关键.(1)连接OC ,如图,根据垂径定理由OD ⊥BC 得到CD=BD ,则OE 为BC 的垂直平分线,所以EB=EC ,根据等腰三角形的性质得∠EBC=∠ECB ,加上∠OBC=∠OCB ,则∠OBE=∠OCE ;再根据切线的性质得∠OCE=90°,所以∠OBE=90°,然后根据切线的判定定理得BE 与⊙O 相切;(2)设⊙O 的半径为R ,则OD=R-DF=R-2,OB=R ,在Rt △OBD ,利用勾股定理解得R=4,再利用含30º角的直角三角形边角关系可求得OE ,利用EF=OE-OF 即可解答;(3)利用(2)中可求得∠BOC=120º,然后利用=S OBEC S S 阴影四边形扇形OBC 代入数值即可求解.19. 【答案】解:(1)证明:∵四边形ABCD 是正方形,∴AB =BC =AD =2,∠ABC =90°.∵△BEC 绕点B 逆时针旋转90°得△BFA ,∴△BFA ≌△BEC ,∴∠FAB =∠ECB ,∠ABF =∠CBE =90°,AF =CE ,∴∠AFB +∠FAB =90°.∵线段AF 绕点F 顺时针旋转90°得线段FG ,∴∠AFB +∠CFG =∠AFG =90°,AF =FG ,∴∠CFG =∠FAB =∠ECB ,CE =FG ,∴CE 綊FG ,∴四边形EFGC 是平行四边形,∴EF ∥CG.(2)∵E 是AB 的中点,∴AE =BE =12AB. ∵△BFA ≌△BEC ,∴BF =BE =12AB =1, ∴AF =AB2+BF2= 5.由(1)知四边形EFGC 是平行四边形,FC 为其对角线,∴点G 到FC 的距离等于点E 到FC 的距离,即BE 的长,∴S 阴影=S 扇形BAC +S △ABF +S △FGC -S 扇形FAG =90π·22360+12×2×1+12×(1+2)×1-90π·(5)2360=52-π4.。
【期末专项复习】人教版数学九年级(上)第24章:圆 压轴题专项训练(附详细解答)

【期末专项复习】第24章:圆压轴题专项训练1.如图,Rt△ABC中,∠ABC=90°,以AB为直径作⊙O,点D为⊙O上一点,且CD=CB,连接DO并延长交CB的延长线于点E.(1)判断直线CD与⊙O的位置关系,并说明理由;(2)若BE=4,DE=8,求AC的长.2.如图,AB是⊙O的直径,AC平分∠DAB交⊙O于点C,过点C的直线垂直于AD 交AB的延长线于点P,弦CE交AB于点F,连接BE.(1)求证:PD是⊙O的切线;(2)若PC=PF,试证明CE平分∠ACB.3.如图,已知点E在△ABC的边AB上,∠C=90°,∠BAC的平分线交BC于点D,且D在以A为直径的⊙O上.(1)求证:BC是⊙O的切线;(2)若DC=4,AC=6,求圆心O到AD的距离.4.在直角三角形ABC中,∠C=90°,∠BAC的角平分线AD交BC于D,作AD的中垂线交AB于O,以O为圆心,OA为半径画圆,则BC与⊙O的位置关系为证明你的猜想.5.如图,AB为⊙O的直径,直线BM⊥AB于点B,点C在⊙O上,分别连接BC,AC,且AC的延长线交BM于点D,CF为⊙O的切线交BM于点F.(1)求证:CF=DF;(2)连接OF,若AB=10,BC=6,求线段OF的长.6.如图,△ABC内接于⊙O,且AB为⊙O的直径,OD⊥AB,与AC交于点E,∠D =2∠A.(1)求证:CD是⊙O的切线;(2)求证:DE=DC;(3)若OD=5,CD=3,求AC的长.7.如图,直角坐标系中,⊙M经过原点O(0,0),点A(,0)与点B(0,﹣1),点D在劣弧OA上,连接BD交x轴于点C,且∠COD=∠CBO.(1)请直接写出⊙M的直径,并求证BD平分∠ABO;(2)在线段BD的延长线上寻找一点E,使得直线AE恰好与⊙M相切,求此时点E 的坐标.8.如图,在△ABC中,BA=BC,以AB为直径作⊙O,交AC于点D,连接DB,过点D作DE⊥BC,垂足为E.(1)求证:AD=CD.(2)求证:DE为⊙O的切线.(3)若∠C=60°,DE=,求⊙O半径的长.9.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC、AC交于点D、E,过点D作DF⊥AC于点F.(1)若⊙O的半径为3,∠CDF=15°,求阴影部分的面积;(2)求证:DF是⊙O的切线;(3)求证:∠EDF=∠DAC.10.已知:△ABC内接于⊙O,AB是⊙O的直径,作EG⊥AB于H,交BC于F,延长GE交直线MC于D,且∠MCA=∠B,求证:(1)MC是⊙O的切线;(2)△DCF是等腰三角形.11.如图,AB是⊙O的直径,弦CD⊥AB,垂足为H,连接AC,过上一点E作EG∥AC交CD的延长线于点G,连接AE交CD于点F,且EG=FG,连接CE.(1)求证:EG是⊙O的切线;(2)延长AB交GE的延长线于点M,若AH=3,CH=4,求EM的值.12.如图,D是△ABC外接圆上的动点,且B,D位于AC的两侧,DE⊥AB,垂足为E,DE的延长线交此圆于点F.BG⊥AD,垂足为G,BG交DE于点H,DC,FB 的延长线交于点P,且PC=PB.(1)求证:BG∥CD;(2)设△ABC外接圆的圆心为O,若AB=DH,∠OHD=80°,求∠BDE的大小.13.已知:AB为⊙O的直径,AB=AC,BC交⊙O于点D,DE⊥AC于E.(1)求证:DE为⊙O的切线;(2)连接BE交圆于F,连AF并延长ED于G,若GE=2,AF=3,求∠EAF的度数.14.如图,AB是⊙O的直径,DO⊥AB于点O,连接DA交⊙O于点C,过点C作⊙O 的切线交DO于点E,连接BC交DO于点F.(1)求证:CE=EF;(2)连接AF并延长,交⊙O于点G.填空:①当∠D的度数为时,四边形ECFG为菱形;②当∠D的度数为时,四边形ECOG为正方形.15.如图,以△ABC的边AB为直径画⊙O,交AC于点D,半径OE∥BD,连接BE,DE,BD,设BE交AC于点F,若∠DEB=∠DBC.(1)求证:BC是⊙O的切线;(2)若BF=BC=2,求图中阴影部分的面积.16.已知BC是⊙O的直径,点D是BC延长线上一点,AB=AD,AE是⊙O的弦,∠AEC=30°.(1)求证:直线AD是⊙O的切线;(2)若AE⊥BC,垂足为M,⊙O的半径为4,求AE的长.17.如图,以△ABC的边AC为直径的⊙O恰为△ABC的外接圆,∠ABC的平分线交⊙O于点D,过点D作DE∥AC交BC的延长线于点E.(1)求证: DE是⊙O的切线;(2)若AB=2,BC=,求DE的长.18.如图,在△ABC中,AB=AC,AO⊥BC于点O,OE⊥AB于点E,以点O为圆心,OE为半径作半圆,交AO于点F.(1)求证:AC是⊙O的切线;(2)若点F是OA的中点,OE=3,求图中阴影部分的面积;(3)在(2)的条件下,点P是BC边上的动点,当PE+PF取最小值时,直接写出BP的长.参考答案1.(1)证明:连接OC.∵CB=CD,CO=CO,OB=OD,∴△OCB≌△OCD,∴∠ODC=∠OBC=90°,∴OD⊥DC,∴DC是⊙O的切线.(2)解:设⊙O的半径为r.在Rt△OBE中,∵OE2=EB2+OB2,∴(8﹣r)2=r2+42,∴r=3,∵tan∠E==,∴=,∴CD=BC=6,在Rt△ABC中,AC===6.2.证明:(1)连接OC,如图,∵AC平分∠DAB,∴∠1=∠2,∵OA=OC,∴∠1=∠3,∴∠2=∠3,∴OC∥AD,∵AD⊥CD,∴OC⊥CD,∴PD是⊙O的切线;(2)∵OC⊥PC,∴∠PCB+∠BCO=90°,∵AB为直径,∴∠ACB=90°,即∠3+∠BCO,∴∠3=∠PCB,而∠1=∠3,∴∠1=∠PCB,∵PC=PF,∴∠PCF=∠PFC,而∠PCF=∠PCB+∠BCF,∠PFC=∠1+∠ACF,∴∠BCF=∠ACF,即CE平分∠ACB.3.(1)证明:连接OD,∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠BAC,∴∠OAD=∠CAD,∴∠ODA=∠CAD,∴OD∥AC,又∵∠C=90°,∴∠ODB=∠C=90°,∴OD⊥BC,(2)过O作OF⊥AD于F,由勾股定理得:AD==2,∴DF=AD=,∵∠OFD=∠C=90°,∠ODA=∠CAD,∴△ACD∽△DFO,∴,∴,∴FO=,即圆心O到AD的距离是.4.解:BC与⊙O相切.理由如下:连接OD,如图,∵AD平分∠CAB,∴∠1=∠2,∵AD的中垂线交AB于O,∴OA=OD,∴∠2=∠3,∴∠1=∠3,∴OD∥AC,∵AC⊥BC,∴OD⊥BC,故答案为相切.5.(1)证明:连接OC,如图,∵CF为切线,∴OC⊥CF,∴∠1+∠3=90°,∵BM⊥AB,∴∠2+∠4=90°,∵OC=OB,∴∠1=∠2,∴∠3=∠4,∵AB为直径,∴∠ACB=90°,∴∠3+∠5=90°,∠4+∠BDC=90°,∴∠BDC=∠5,∴CF=DF;(2)解:在Rt△ABC中,AC==8,∵∠BAC=∠DAB,∴△ABC∽△ABD,∴=,即=,∴AD=,∵∠3=∠4,∴FC=FB,而FC=FD,而BO=AO,∴OF为△ABD的中位线,∴OF=AD=.6.(1)证明:连接OC,如图,∵OA=OC,∴∠ACO=∠A,∴∠COB=∠A+∠ACO=2∠A,又∵∠D=2∠A,∴∠D=∠COB.又∵OD⊥AB,∴∠COB+∠COD=90°.∴∠D+∠COD=90°.即∠DCO=90°,∴OC⊥DC,又点C在⊙O上,∴CD是⊙O的切线;(2)证明:∵∠DCO=90°,∴∠DCE+∠ACO=90°.又∵OD⊥AB,∴∠AEO+∠A=90°,又∵∠A=∠ACO,∠DEC=∠AEO,∴∠DEC=∠DCE,∴DE=DC;(3)解:∵∠DCO=90°,OD=5,DC=3,∴AB=2OC=8,又DE=DC=3,∴OE=OD﹣DE=2,∵∠A=∠A,∠AOE=∠ACB=90°,∴△AOE∽△ACB,∴=,即===,∴BC=AC,在△ABC中,∵AC2+BC2=AB2,∴AC2+AC2=82,∴AC=.7.解:∵点A(,0)与点B(0,﹣1),∴OA=,OB=1,∴AB==2,∵AB是⊙M的直径,∴⊙M的直径为2,∵∠COD=∠CBO,∠COD=∠CBA,∴∠CBO=∠CBA,即BD平分∠ABO;(2)如图,过点A作AE⊥AB于E,交BD的延长线于点E,过E作EF⊥OA于F,即AE是切线,∵在Rt△ACB中,tan∠OAB===,∴∠OAB=30°,∵∠ABO=90°,∴∠OBA=60°,∴∠ABC=∠OBC==30°,∴OC=OB•tan30°=1×=,∴AC=OA﹣OC=,∴∠ACE=∠ABC+∠OAB=60°,∴∠EAC=60°,∴△ACE是等边三角形,∴AE=AC=,∴AF=AE=,EF==1,∴OF=OA﹣AF=,∴点E的坐标为(,1).8.(1)证明:∵AB为直径,∴∠ADB=90°,∵BA=BC,∴AD=CD;(2)证明:连接OD,如图,∵AD=CD,AO=OB,∴OD为△BAC的中位线,∴OD∥BC,∴DE⊥BC,∴OD⊥DE,∴DE为⊙O的切线;(3)解:在Rt△CDE中,∠C=60°,DE=,∴CE=DE=×2=2,∴CD=2CE=4,∵∠A=∠C=60°,AD=CD=4,在Rt△ADB中,AB=2AD=8,即⊙O半径的长为4.9.(1)解:连接OE,过O作OM⊥AC于M,则∠AMO=90°,∵DF⊥AC,∴∠DFC=90°,∵∠FDC=15°,∴∠C=180°﹣90°﹣15°=75°,∵AB=AC,∴∠ABC=∠C=75°,∴∠BAC=180°﹣∠ABC﹣∠C=30°,∴OM=OA==,AM=OM=,∵OA=OE,OM⊥AC,∴AE=2AM=3,∴∠BAC=∠AEO=30°,∴∠AOE=180°﹣30°﹣30°=120°,∴阴影部分的面积S=S扇形AOE﹣S△AOE=﹣=3π﹣;(2)证明:连接OD,∵AB=AC,OB=OD,∴∠ABC=∠C,∠ABC=∠ODB,∴∠ODB=∠C,∴AC∥OD,∵DF⊥AC,∴DF⊥OD,∵OD过O,∴DF是⊙O的切线;(3)证明:连接BE,∵AB为⊙O的直径,∴∠AEB=90°,∴BE⊥AC,∵DF⊥AC,∴BE∥DF,∴∠FDC=∠EBC,∵∠EBC=∠DAC,∴∠FDC=∠DAC,∵A、B、D、E四点共圆,∴∠DEF=∠ABC,∵∠ABC=∠C,∴∠DEC=∠C,∵DF⊥AC,∴∠EDF=∠FDC,∴∠EDF=∠DAC.10.证明:(1)连接OC,如图,∵AB是⊙O的直径,∴∠ACB=90°,即∠2+∠3=90°,∵OB=OC,∴∠B=∠3,而∠1=∠B,∴∠1=∠3,∴∠1+∠2=90°,即∠OCM=90°,∴OC⊥CM,∴MC是⊙O的切线;(2)∵EG⊥AB,∴∠B+∠BFH=90°,而∠BFH=∠4,∴∠4+∠B=90°,∵MD为切线,∴OC⊥CD,∴∠5+∠3=90°,而∠3=∠B,∴∠4=∠5,∴△DCF是等腰三角形.11.解:(1)如图,连接OE,∵FG=EG,∴∠GEF=∠GFE=∠AFH,∵OA=OE,∴∠OAE=∠OEA,∵CD⊥AB,∴∠AFH+∠FAH=90°,∴∠GEF+∠AEO=90°,∴∠GEO=90°,∴GE⊥OE,∴EG是⊙O的切线;(2)连接OC,设⊙O的半径为r,∵AH=3、CH=4,∴OH=r﹣3,OC=r,则(r﹣3)2+42=r2,解得:r=,∵GM∥AC,∴∠CAH=∠M,∵∠OEM=∠AHC,∴△AHC∽△MEO,∴=,即=,解得:EM=.12.(1)证明:如图1,∵PC=PB,∴∠PCB=∠PBC,∵四边形ABCD内接于圆,∴∠BAD+∠BCD=180°,∵∠BCD+∠PCB=180°,∴∠BAD=∠PCB,∵∠BAD=∠BFD,∴∠BFD=∠PCB=∠PBC,∴BC∥DF,∵DE⊥AB,∴∠DEB=90°,∴∠ABC=90°,∴AC是⊙O的直径,∴∠ADC=90°,∵BG⊥AD,∴∠AGB=90°,∴∠ADC=∠AGB,∴BG∥CD;(2)由(1)得:BC∥DF,BG∥CD,∴四边形BCDH是平行四边形,∴BC=DH,在Rt△ABC中,∵AB=DH,∴tan∠ACB==,∴∠ACB=60°,∠BAC=30°,∴∠ADB=60°,BC=AC,∴DH=AC,①当点O在DE的左侧时,如图2,作直径DM,连接AM、OH,则∠DAM=90°,∴∠AMD+∠ADM=90°∵DE⊥AB,∴∠BED=90°,∴∠BDE+∠ABD=90°,∵∠AMD=∠ABD,∴∠ADM=∠BDE,∵DH=AC,∴DH=OD,∴∠DOH=∠OHD=80°,∴∠ODH=20°∵∠ADB=60°,∴∠ADM+∠BDE=40°,∴∠BDE=∠ADM=20°,②当点O在DE的右侧时,如图3,作直径DN,连接BN,由①得:∠ADE=∠BDN=20°,∠ODH=20°,∴∠BDE=∠BDN+∠ODH=40°,综上所述,∠BDE的度数为20°或40°.13.(1)证明:连接OD,如图,∵OB=OD,∴∠OBD=∠ODB,∵AB=AC,∴∠ABC=∠C,∴∠ODB=∠C,∴OD∥AC,∵DE⊥AC,∴OD⊥DE,∴DE为⊙O的切线;(2)解:∵AB为直径,∴∠AFB=90°,∵∠EGF=∠AGF,∴Rt△GEF∽△Rt△GAE,∴=,即=,整理得GF2+3GF﹣4=0,解得GF=1或GF=﹣4(舍去),在Rt△AEG中,sin∠EAG===,∴∠EAG=30°,即∠EAF的度数为30°.14.(1)证明:连接OC,如图,∵CE为切线,∴OC⊥CE,∴∠OCE=90°,即∠1+∠4=90°,∵DO⊥AB,∴∠3+∠B=90°,而∠2=∠3,∴∠2+∠B=90°,而OB=OC,∴∠4=∠B,∴∠1=∠2,∴CE=FE;(2)解:①当∠D=30°时,∠DAO=60°,而AB为直径,∴∠ACB=90°,∴∠B=30°,∴∠3=∠2=60°,而CE=FE,∴△CEF为等边三角形,∴CE=CF=EF,同理可得∠GFE=60°,利用对称得FG=FC,∵FG=EF,∴△FEG为等边三角形,∴EG=FG,∴EF=FG=GE=CE,∴四边形ECFG为菱形;②当∠D=22.5°时,∠DAO=67.5°,而OA=OC,∴∠OCA=∠OAC=67.5°,∴∠AOC=180°﹣67。
秋季人教版九年级数学上册第24章 圆知识点总结与练习 含答案

2.直线和圆的位置关系 设 r 为圆的半径,d 为圆心到直线的距离
(1)直线和圆相离? d r ,直线与圆没有交点; (2)直线和圆相切? d r ,直线与圆有唯一交点; (3)直线和圆相交? d r ,直线与圆有两个交点。
【答案】 4 159
【例 8】如图,F 是以 O 为圆心,BC 为直径的半圆上任意一点,A 是 的中点,AD⊥BC
1 于 D,求证:AD= 2 BF.
F A
E
BD O
C
【答案】提示:连接 OF,证明 ADO, FOE, BOE 是全等三角形。
圆周角定理
1、圆周角定理:同弧所对的圆周角等于它所对的圆心的角的一半。
2. 弧长: l =
np R 180 ;
3. 圆面积: S = p R2;
1 np R2
4. 扇形面积: S = lR =
;
扇形 2
360
【例 11】如图,扇形纸扇完全打开后,外侧两竹条 AB,AC 夹角为 120°,AB 的长为 30c m,贴纸部分 BD 的长为 20cm,则贴纸部分的面积为( ).
M
A
N
【例2】 已知⊙O 的半径为 1,点 P 到圆心 O 的距离为 d,若关于 x 的方程 x2-2x+d=0 有
实根,则点 P( ).
A.在⊙O 的内部
B.在⊙O 的外部
C.在⊙O 上
D.在⊙O 上或⊙O 的内部
【答案】D
【例3】 已知:如图,PA,PB 分别与⊙O 相切于 A,B 两点.求证:OP 垂直平分线段 AB.
A.100 πcm 2 C. 800πcm2
400 B. 3 πcm2
人教版 九年级数学上册 第24章 圆的概念及弧、弦、圆心角和圆周角 专题练习(含答案)

圆的概念及弧、弦、圆心角和圆周角专题练习(含答案)例1. 如图,线段AB是⊙O的直径,弦CD丄AB,∠CAB=20°,则∠AOD等于()A.160°B.150°C.140°D.120°例2. 如图,以AB为直径的⊙O与弦CD相交于点E,且AC=2,AE CE=1.则弧BD 的长是()B C D例3.如图,已知A,B,C在⊙O上,ACB为优弧,下列选项中与∠AOB相等的是()A.2∠C B.4∠B C.4∠A D.∠B+∠C例4. 如图,已知⊙O的半径为13,弦AB长为24,则点O到AB的距离是()A.6 B.5 C.4 D.3巩固练习1.如下图,(1)若点O为⊙O的圆心,则线段__________是圆O的半径;线段________是圆O的弦,其中最长的弦是______;______是劣弧;______是半圆.(2)若∠A=40°,则∠ABO=______,∠C=______,∠ABC=______.2.如图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为________.3.⊙O中,∠AOB=100°,若C是AB上一点,则∠ACB等于( ).A.80°B.100°C.120°D.130°4.已知:如图,在同心圆中,大圆的弦AB交小圆于C,D两点.(1)求证:∠AOC=∠BOD;(2)试确定AC与BD两线段之间的大小关系,并证明你的结论.5. 已知:如图,AB为⊙O的直径,C,D为⊙O上的两点,且C为AD的中点,若∠BAD=20°,求∠ACO的度数6.如图,以ABCD的顶点A为圆心,AB为半径作⊙A,分别交BC、AD于E、F,交BA的延长线于G,试说明弧EF和弧FG相等.7. ⊙O中,M为AB的中点,则下列结论正确的是( ).A.AB>2AM B.AB=2AM C.AB<2AM D.AB与2AM的大小不能确定8. 如图,⊙O中,AB为直径,弦CD交AB于P,且OP=PC,试猜想AD与CB之间的关系,并证明你的猜想.9. 如图,⊙O中,直径AB=15cm,有一条长为9cm的动弦CD在ANB上滑动(点C与A,点D与B不重合),CF⊥CD交AB于F,DE⊥CD交AB于E.(1)求证:AE=BF;(2)在动弦CD滑动的过程中,四边形CDEF的面积是否为定值?若是定值,请给出证明并求这个定值;若不是,请说明理由.10.如图,若五边形ABCDE是⊙O的内接正五边形,则∠BOC=______,∠ABE=______,∠ADC=______,∠ABC=______.10题图11题图12题图11.如图,若六边形ABCDEF是⊙O的内接正六边形,则∠AED=______,∠FAE=______,∠DAB=______,∠EFA=______.12.如图,ΔABC是⊙O的内接正三角形,若P是AB上一点,则∠BPC=______;若M是BC上一点,则∠BMC=______.13.在⊙O中,若圆心角∠AOB=100°,C是AB上一点,则∠ACB等于( ).A.80°B.100°C.130°D.140°14.在圆中,弦AB,CD相交于E.若∠ADC=46°,∠BCD=33°,则∠DEB等于( ).A.13°B.79°C.38.5°D.101°15.如图,AC 是⊙O 的直径,弦AB ∥CD ,若∠BAC =32°,则∠AOD 等于( ).A .64°B .48°C .32°D .76°16.如图,弦AB ,CD 相交于E 点,若∠BAC =27°,∠BEC =64°,则∠AOD 等于( ).A .37°B .74°C .54°D .64°17.如图,四边形ABCD 内接于⊙O ,则x = 。
人教版九年级上册数学第二十四章 圆含答案完整版

人教版九年级上册数学第二十四章圆含答案一、单选题(共15题,共计45分)1、正六边形的半径与边心距之比为()A.1:B. :1C. :2D.2:2、如图,线段AB经过⊙O的圆心,AC,BD分别与⊙O相切于点C,D。
若AC=BD=2 ,∠A=30°,则的长度为( )A.πB. πC. πD.2π3、若圆的内接正六边形的半径为R,则该正六边形的内切圆的半径为()A.RB.C. RD. R4、如图,在矩形ABCD中,AB=4,BC=6,E是矩形内部的一个动点,且AE⊥BE,则线段CE的最小值为()A. B.2 ﹣2 C.2 ﹣2 D.45、如图,已知正五边形 ABCDE内接于⊙O,连结BD,则∠ABD的度数是()A.60°B.70°C.72°D.144°6、用反证法证明“若a⊥c,b⊥c,则a∥b”时,应假设()A.a不垂直于cB.a,b都不垂直于cC.a与b相交D.a⊥b7、如图,将含60°角的直角三角板ABC绕顶点A顺时针旋转45°度后得到△AB′C′,点B经过的路径为弧BB′,若∠BAC=60°,AC=1,则图中阴影部分的面积是()A. B. C. D.π8、如图,是正六边形的外接圆,是弧上一点,则的度数是()A. B. C. D.9、如图,在⊙O中,CD为⊙O的切线,切点为C,已知∠B=25°,那么∠D为()A.30°B.40°C.50°D.60°10、已知正三角形的边长为12,则这个正三角形外接圆的半径是()A.2B.C.4D.311、如图,在直角坐标系中,以点O为圆心,半径为4的圆与y轴交于点B,点A(8,4)是圆外一点,直线AC与⊙O切于点C,与x轴交于点D,则点C的坐标为()A.(2 ,﹣2 )B.(,﹣)C.(,﹣) D.(2 ,﹣2)12、若⊙P的半径为5,圆心P的坐标为(-3,4),则平面直角坐标系的原点O 与⊙P的位置关系是( )A.在⊙P内B.在⊙P上C.在⊙P外D.无法确定13、已知扇形的半径为2,圆心角为60°,则扇形的弧长为( )A. B. C. D.14、如图,在Rt△ABC中,BC 2,∠BAC 30°,斜边AB的两个端点分别在相互垂直的射线OM,ON上滑动,下列结论:①若C,O两点关于AB对称,则OA ;②C,O两点距离的最大值为4;③若AB平分CO,则AB⊥CO;④斜边AB的中点D运动路径的长为.其中正确的是()A.①②B.①②③C.①③④D.①②④15、下列各图中,∠1=∠2的图形的个数有()A.3B.4C.5D.6二、填空题(共10题,共计30分)16、如图,正六边形内接于⊙O,小明向圆内投掷飞镖一次,则飞镖落在阴影部分的概率是________.17、已知扇形的半径为3,圆心角为120°,它的弧长为________18、如图,A,B,C,D是⊙O上的四个点,∠C=110°,则∠BOD=________度.19、如图,AB是圆O的直径,弧=弧=弧,∠COD=48°,则∠AOE 的度数为________.20、如图,AB为△ADC的外接圆⊙O的直径,若∠BAD=50°,则∠ACD=________°.21、如图,点,,在上,顺次连接,,,.若四边形为平行四边形,则________ .22、在⊙O中,弦AB等于⊙O的半径,OC⊥AB交⊙O于点C,则∠AOC=________°.23、如图,点A、B、C都在⊙O上,OC⊥OB,点A在劣弧BC上,且OA=AB,则∠ABC=________.24、如图,⊙O是△ABC的外接圆,BC=2,∠BAC=30°,则劣弧的长为________(保留π)25、如图,在△ABC中,AB=CB,以AB为直径的⊙O交AC于点D,过点C作CF∥AB,在CF上取一点E,使DE=CD,连接AE,对于下列结论:①AD=DC;②△CBA∽△CDE;③ = ;④AE为⊙O的切线,一定正确的结论选项是________.三、解答题(共5题,共计25分)26、圆锥的底面半径为3cm,侧面展开图是圆心角为120º的扇形,求圆锥的全面积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
24.1垂直于弦的直径1. 在⊙O 中,AB 为弦,AB OC ⊥于点C ,交⊙O 于点D ,若5=AO ,2=CD ,则弦AB 的长为( )A.4B.6C.8D.102.如图,⊙O 的弦AB 垂直平分半径OC ,则四边形OACB ( ) A.是正方形 B.是长方形 C.是菱形 D.以上答案都不对3.设P 为半径6cm 的圆内的一点,它到圆心的距离为3.6cm,则经过点P 的最短弦的长度是 ( ).A .4.8cmB .7.2cmC .6.4cmD .9.6cm 4.在直径是20cm 的⊙O 中,∠AOB 是60°,那么弦AB 的弦心距是( )5.若圆的半径3,圆中一条弦为52,则此弦中点到弦所对劣弧的中点的距离为 .6.兴隆蔬菜基地建圆弧形蔬菜大棚的剖面如右图所示,已知AB =16m ,半径OA =10m ,高度CD 为_____m.7.圆中一弦把和它垂直的直径分成3 cm 和4 cm 两部分,则这条弦长为________. 8.工程上常用钢珠来测量零件上小孔的直径,假设钢珠的直径是10mm ,测得钢珠顶端离零件表面的距离为8mm ,如图所示, 则这个小孔的直径是 mm.AB 第2题图第6题图DBAOC BA 8mm第8题图AE=.9.已知:如图,AB是⊙O的弦,半径OC,OD分别交AB于点E,F,且BFOE=.求证:OF10.已知:如图, ⊙O的直径CD垂直弦AB于P, 且PA=4cm, PD=2cm.求:⊙O的半径长.11.如图,已知:⊙O中,弦AB与弦CD互相垂直,垂足为E,又AE=3,EB=7,求O点到CD的距离.12.已知:如图,AB,CD是⊙O的弦,且AB⊥CD于H,A H=4,B H=6,C H=3,D H=8.求:⊙O 的半径.13. 如图弓形的弦AB=6cm,弓形的高是1cm,求其所在圆的半径.14.某机械传动装置在静止时如图所示,连杆PB与B的运动所形成的⊙O交于点A,测量得PA=4cm,AB=8cm,⊙O的半径是5cm,求点P到圆心O 的距离.人教版九年级数学 24.2 点和圆、直线和圆的位置关系一、选择题1. 如图,AB为☉O的切线.切点为A,连接AO,BO,BO与☉O交于点C,延长BO与☉O交于点D,连接AD.若∠ABO=36°,则∠ADC的度数为()A.54°B.36°C.32°D.27°2. 2018·眉山如图所示,AB是⊙O的直径,PA切⊙O于点A,线段PO交⊙O于点C,连接BC,若∠P=36°,则∠B等于( )A.27° B.32° C.36° D.54°3. 在数轴上,点A所表示的实数为5,点B所表示的实数为a,⊙A的半径为3,要使点B 在⊙A内,则实数a的取值范围是( )A.a>2 B.a>8C.2<a<8 D.a<2或a>84. (2019•益阳)如图,PA、PB为圆O的切线,切点分别为A、B,PO交AB于点C,PO的延长线交圆O于点D,下列结论不一定成立的是A.PA=PB B.∠BPD=∠APDC.AB⊥PD D.AB平分PD5. 选择用反证法证明“已知:在△ABC中,∠C=90°.求证:∠A,∠B中至少有一个角不大于45°.”时,应先假设( )A.∠A>45°,∠B>45° B.∠A≥45°,∠B≥45°C.∠A<45°,∠B<45° D.∠A≤45°,∠B≤45°6. 《九章算术》是我国古代内容极为丰富的数学名著,书中有下列问题:“今有勾八步,股十五步,问勾中容圆径几何.”其意思是:“今有直角三角形(如图),勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能容纳的圆形(内切圆)的直径是多少.”答案是 ( )A.3步B.5步C.6步D.8步7. 已知⊙O的半径为2,点P在⊙O内,则OP的长可能是( )A.1 B.2C.3 D.48. 2020·武汉模拟在平面直角坐标系中,圆心为坐标原点,⊙O的半径为10,则P(-10,1)与⊙O的位置关系为( )A.点P在⊙O上B.点P在⊙O外C.点P在⊙O内D.无法确定二、填空题9. 如图,在平面直角坐标系中,已知C(3,4),以点C为圆心的圆与y轴相切.点A,B在x 轴上,且OA =OB.P 为⊙C 上的动点,∠APB =90°,则AB 长的最大值为________.10. 已知在△ABC 中,AB =AC =5,BC=6,以点A 为圆心,4为半径作⊙A ,则直线BC 与⊙A的位置关系是________.11. 如图,菱形ABOC 的边AB ,AC 分别与☉O 相切于点D ,E ,若点D 是AB 的中点,则∠DOE= .12. 如图,边长为1的正方形ABCD 的对角线相交于点O ,以点A 为圆心,以1为半径画圆,则点O ,B ,C ,D 中,点________在⊙A 内,点________在⊙A 上,点________在⊙A 外.13. (2019•河池)如图,PA 、PB 是的切线,A 、B 为切点,∠OAB=38°,则∠P=__________.O14. 如图,在矩形ABCD中,AB=8,AD=12,过A,D两点的⊙O与BC边相切于点E.则⊙O 的半径为________.15. 如图,在扇形ABC中,CD⊥AB,垂足为D,⊙E是△ACD的内切圆,连接AE,BE,则∠AEB的度数为________.16. 在Rt△ABC中,∠C=90°,AC=6,BC=8.若以C为圆心,R为半径所作的圆与斜边AB 只有一个公共点,则R的取值范围是______________.三、解答题17. 2020·凉山州模拟如图,⊙O的直径AB=10 cm,弦BC=6 cm,∠ACB的平分线交⊙O 于点D,交AB于点E,P是AB延长线上一点,且PC=PE.(1)求证:PC是⊙O的切线;(2)求AC,AD的长.18. 已知直线l与⊙O,AB是⊙O的直径,AD⊥l于点D.(1)如图①,当直线l与⊙O相切于点C时,求证:AC平分∠DAB;(2)如图②,当直线l与⊙O相交于点E,F时,求证:∠BAF=∠DAE.19. 已知:如图,在Rt△ABC中,∠C=90°,AC=8,AB=10.点P在AC上,AP=2.若⊙O 的圆心在线段BP上,且⊙O与AB,AC分别切于点D,E.求:(1)△BAP的面积S;(2)⊙O的半径.人教版九年级数学 24.2 点和圆、直线和圆的位置关系课时训练-答案一、选择题1. 【答案】D[解析]∵AB为☉O的切线,∴∠OAB=90°.∵∠ABO=36°,∴∠AOB=90°-∠ABO=54°.∵OA=OD,∴∠ADC=∠OAD,∵∠AOB=∠ADC+∠OAD,∴∠ADC=∠AOB=27°,故选D.2. 【答案】A3. 【答案】C4. 【答案】D【解析】∵PA,PB是⊙O的切线,∴PA=PB,所以A成立;∠BPD=∠APD,所以B成立;∴AB⊥PD,所以C成立;∵PA,PB是⊙O的切线,∴AB⊥PD,且AC=BC,只有当AD∥PB,BD∥PA时,AB平分PD,所以D不一定成立,故选D.5. 【答案】A6. 【答案】C7. 【答案】A8. 【答案】B二、填空题9. 【答案】1610. 【答案】相切11. 【答案】60°[解析]连接OA,∵四边形ABOC是菱形,∴BA=BO ,∵AB 与☉O 相切于点D , ∴OD ⊥AB. ∵D 是AB 的中点,∴OD 是AB 的垂直平分线,∴OA=OB , ∴△AOB 是等边三角形,∴∠AOD=∠AOB=30°, 同理∠AOE=30°,∴∠DOE=∠AOD +∠AOE=60°, 故答案为60°. 112. 【答案】O B ,D C [解析] ∵四边形ABCD 为正方形,∴AC ⊥BD ,AO =BO =CO =DO.设AO =BO =x.由勾股定理,得AO2+BO2=AB2,即x2+x2=12,解得x =22(负值已舍去), ∴AO =22<1,AC =2>1,∴点O 在⊙A 内,点B ,D 在⊙A 上,点C 在⊙A 外.13. 【答案】76【解析】∵是的切线,∴, ∴,∴,∴,故答案为:76.PA PB 、O PA PB PA OA =⊥,90PAB PBA OAP ∠=∠∠=︒,90903852PBA PAB OAB ∠=∠=︒-∠=︒-︒=︒180525276P ∠=︒-︒-︒=︒14. 【答案】254【解析】如解图,连接EO 并延长交AD 于点F ,连接OD 、OA ,则OD =OA.∵BC与⊙O 相切于点E ,∴OE ⊥BC ,∵四边形ABCD 是矩形,∴AD ∥BC ,∴EF ⊥AD ,∴DF =AF =12AD =6,在Rt △ODF 中,设OD =r ,则OF =EF -OE =AB -OE =8-r ,在Rt △ODF 中,由勾股定理得DF 2+OF 2=OD 2,即62+(8-r)2=r 2,解得r =254.∴⊙O 的半径为254.解图15. 【答案】135° [解析] 连接CE.∵∠ADC =90°,∴∠DAC +∠DCA =90°.∵⊙E 内切于△ADC ,∴∠EAC +∠ECA =45°,∴∠AEC =135°.由“边角边”可知△AEC ≌△AEB ,∴∠AEB =∠AEC =135°.16. 【答案】R =4.8或6<R ≤8 [解析] 当⊙C 与AB 相切时,如图①,过点C 作CD ⊥AB 于点D .根据勾股定理,得AB =AC 2+BC 2=62+82=10.根据三角形的面积公式,得12AB ·CD=12AC ·BC ,解得CD =4.8,所以R =4.8;当⊙C 与AB 相交时,如图②,此时R 大于AC 的长,而小于或等于BC 的长,即6<R ≤8.三、解答题17. 【答案】解:(1)证明:连接OC,如图所示.∵AB是⊙O的直径,∴∠ACB=90°.∵CD平分∠ACB,∴∠ACD=∠BCD=45°.∵PC=PE,∴∠PCE=∠PEC.∵∠PEC=∠EAC+∠ACE=∠EAC+45°,而∠EAC=90°-∠ABC,∠ABC=∠OCB,∴∠PCE=90°-∠OCB+45°=90°-(∠OCE+45°)+45°,∴∠OCE+∠PCE=90°,即∠PCO=90°,∴OC⊥PC,∴PC为⊙O的切线.(2)连接BD,如图所示.在Rt△ACB中,AB=10 cm,BC=6 cm,∴AC=AB2-BC2=102-62=8(cm).∵∠ACD=∠BCD=45°,∴∠DAB=∠DBA=45°,∴△ADB为等腰直角三角形,∴AD=22AB=5 2(cm).18. 【答案】证明:(1)如图①,连接OC.∵直线l与⊙O相切于点C,∴OC⊥l. 又∵AD⊥l,∴AD∥OC,∴∠DAC=∠ACO.∵OA=OC,∴∠ACO=∠CAO,∴∠DAC=∠CAO,即AC平分∠DAB.(2)如图②,连接BF.∵AB是⊙O的直径,∴∠AFB=90°,∴∠BAF=90°-∠B.∵∠AEF=∠ADE+∠DAE=90°+∠DAE,又由圆内接四边形的性质,得∠AEF +∠B =180°,∴90°+∠DAE +∠B =180°, ∴∠DAE =90°-∠B , ∴∠BAF =∠DAE.19. 【答案】解:(1)∵∠C =90°,AC =8,AB =10, ∴在Rt △ABC 中,由勾股定理,得BC =6, ∴△BAP 的面积S =12AP ·BC =12×2×6=6.(2)连接OD ,OE ,OA.设⊙O 的半径为r , 则S △BAP =12AB ·r +12AP ·r =6r ,∴6r =6,解得r =1. 故⊙O 的半径是1.24.3 正多边形和圆(满分120分;时间:120分钟)一、 选择题 (本题共计 9 小题 ,每题 3 分 ,共计27分 , )1. 如图,要拧开一个边长为a =6cm 的正六边形螺帽,扳手张开的开口b 至少为( )A.6√2cmB.12cmC.6√3cmD.4√3cm2. 已知△ABC 是⊙O 的内接正三角形,△ABC 的面积等于a ,DEFG 是半圆O 的内接正方形,面积等于b,ab的值为()A.2B.√62C.3√35D.15√3163. 如图,已知四边形ABCD内接于⊙O,∠ABC=70∘,则∠ADC的度数是( )A.70∘B.110∘C.130∘D.140∘4. 已知正多边形的边心距与边长的比是√3:2,则此正多边形是()A.正三角形B.正方形C.正六边形D.正十二边形5. 四边形ABCD内接于⊙O.如果∠D=80∘,那么∠B等于()A.80∘B.100∘C.120∘D.160∘6. 若一个正九边形的边长为a,则这个正九边形的半径是()A.acos20B.asin20C.a2cos20D.a2sin207. 如图,四边形ABCD为⊙O的内接四边形,若∠BCD=110∘,则∠BAD为()A.140∘B.110∘C.90∘D.70∘8. 如图,把正△ABC的外接圆对折,使点A与劣弧的中点M重合,若BC=5,则折痕在△ABC内的部分DE的长为()A.5√33B.10√33C.103D.529. 如图,某学校欲建一个喷泉水池,底面是半径为4m的正六边形,池底是水磨石地面,所要用的磨光机是半径为2dm的圆形砂轮,磨池底时,磨头磨不到的正六边形的部分为(单位:dm2)()A.2400√3−1200πB.8√3−400πC.8√3−23π D.24√3−23π二、填空题(本题共计 10 小题,每题 3 分,共计30分,)10. 圆内接正六边形的半径为2cm,则其边长等于________.11. 如图,四边形ABCD内接于⊙O,∠A=62∘,则∠C=________∘.12. 如图,四边形ABCD是⊙O的内接四边形,∠CBE是它的外角,若∠D=120∘,则∠CBE的度数是________.13. 如图,ABCDEF是⊙O的内接正六边形,若△BCF的面积为18√3cm2,则六边形ABCDEF的面积为________cm2.14 半径为1的圆的内接正三角形的边长为________.15 如图,四边形ABCD外切于⊙O,且AB=16,CD=10,则四边形的周长是________.16. 已知四边形ABCD内接于圆,且弧AB、BC的度数分别为140∘和100∘,若弧AD=2•弧DC,则∠BCD=________.17. 已知AB,AC分别是同一圆的内接正方形和内接正六边形的边,那么∠ACB度数为________ .18. 如图,四边形ABCD是⊙O的内接四边形,∠DCE=60∘,则∠BAD=________度.19. 小刚要在边长为10的正方形内设计一个有共同中心O的正多边形,使其边长最大且能在正方形内自由旋转.如图1,若这个正多边形为正六边形,此时EF=________;若这个正多边形为正三角形,如图2,当正△EFG可以绕着点O在正方形内自由旋转时,EF的取值范围为_________.三、解答题(本题共计 6 小题,共计63分,)20. (1)请你用直尺和圆规作出△ABC的外接圆(保留作图痕迹);(2)当AB=AC=4√5,BC=16,求△ABC的外接圆半径.21. 延长圆内接四边形ABCD的边AD和边BC,相交于点E,求证:△ABE∽△CDE.22. 如图,圆内接四边形ABCD,两组对边的延长线分别相交于点E、F,且∠E=40∘,∠F= 60∘,求∠A的度数.23. 如图,在等腰△PAD中,PA=PD,B是边AD上的一点,以AB为直径的⊙O经过点P,C是⊙O上一动点,连接AC,PC,PC交AB于点E,且∠ACP=60∘.(1)求证:PD是⊙O的切线.(2)连结OP,PB,BC,OC,若⊙O的直径是4,则:①当四边形APBC是矩形时,求DE的长;②当DE=________时,四边形OPBC是菱形.24 如图,四边形ABCD是⊙O的内接四边形,∠CBE是它的一个外角.求证:∠D=∠CBE.25. 问题提出(1)如图①,在⊙O中,点M、N分别是⊙O上的点,若OM=4,则MN的最大值为________.问题探究(2)如图②,在△ABC中,AB=BC,∠ABC=120∘,AC=6,求△ABC外接圆的半径及AB+BC 的长;问题解决(3)如图③.某旅游区有一个形状为四边形ABCD的人工湖,已知AD//BC,AD⊥AB,AB= 180m,BC=300m,AD>BC,为了营造更加优美的旅游环境,旅游区管委员会决定在四边形ABCD内建一个湖心小岛P,并分别修建观光长廊PB和PC,且PB和PC相互垂直.为了容纳更多的游客,要使线段PB、PC之和尽可能的大.试问PB+PC是否存在最大值?若存在,请求出PB+PC的最大值,若不存在,请说明理由.(观光长廊的宽度忽略不计)24.3 正多边形和圆(满分120分;时间:120分钟)一、选择题(本题共计 9 小题,每题 3 分,共计27分,)1. 如图,要拧开一个边长为a=6cm的正六边形螺帽,扳手张开的开口b至少为()A.6√2cmB.12cmC.6√3cmD.4√3cm2. 已知△ABC是⊙O的内接正三角形,△ABC的面积等于a,DEFG是半圆O的内接正方形,面积等于b,ab的值为()A.2B.√62C.3√35D.15√3163. 如图,已知四边形ABCD内接于⊙O,∠ABC=70∘,则∠ADC的度数是( )A.70∘B.110∘C.130∘D.140∘4. 已知正多边形的边心距与边长的比是√3:2,则此正多边形是()A.正三角形B.正方形C.正六边形D.正十二边形5. 四边形ABCD内接于⊙O.如果∠D=80∘,那么∠B等于()A.80∘B.100∘C.120∘D.160∘6. 若一个正九边形的边长为a,则这个正九边形的半径是()A.acos20B.asin20C.a2cos20D.a2sin207. 如图,四边形ABCD为⊙O的内接四边形,若∠BCD=110∘,则∠BAD为()A.140∘B.110∘C.90∘D.70∘8. 如图,把正△ABC的外接圆对折,使点A与劣弧的中点M重合,若BC=5,则折痕在△ABC内的部分DE的长为()A.5√33B.10√33C.103D.529. 如图,某学校欲建一个喷泉水池,底面是半径为4m的正六边形,池底是水磨石地面,所要用的磨光机是半径为2dm的圆形砂轮,磨池底时,磨头磨不到的正六边形的部分为(单位:dm2)()A.2400√3−1200πB.8√3−400πC.8√3−23π D.24√3−23π二、填空题(本题共计 10 小题,每题 3 分,共计30分,)10. 圆内接正六边形的半径为2cm,则其边长等于________.11. 如图,四边形ABCD内接于⊙O,∠A=62∘,则∠C=________∘.12. 如图,四边形ABCD是⊙O的内接四边形,∠CBE是它的外角,若∠D=120∘,则∠CBE的度数是________.13. 如图,ABCDEF是⊙O的内接正六边形,若△BCF的面积为18√3cm2,则六边形ABCDEF的面积为________cm2.14 半径为1的圆的内接正三角形的边长为________.15 如图,四边形ABCD外切于⊙O,且AB=16,CD=10,则四边形的周长是________.16. 已知四边形ABCD内接于圆,且弧AB、BC的度数分别为140∘和100∘,若弧AD=2•弧DC,则∠BCD=________.17. 已知AB,AC分别是同一圆的内接正方形和内接正六边形的边,那么∠ACB度数为________ .18. 如图,四边形ABCD是⊙O的内接四边形,∠DCE=60∘,则∠BAD=________度.19. 小刚要在边长为10的正方形内设计一个有共同中心O的正多边形,使其边长最大且能在正方形内自由旋转.如图1,若这个正多边形为正六边形,此时EF=________;若这个正多边形为正三角形,如图2,当正△EFG可以绕着点O在正方形内自由旋转时,EF的取值范围为_________.三、解答题(本题共计 6 小题,共计63分,)20. (1)请你用直尺和圆规作出△ABC的外接圆(保留作图痕迹);(2)当AB=AC=4√5,BC=16,求△ABC的外接圆半径.21. 延长圆内接四边形ABCD的边AD和边BC,相交于点E,求证:△ABE∽△CDE.22. 如图,圆内接四边形ABCD,两组对边的延长线分别相交于点E、F,且∠E=40∘,∠F= 60∘,求∠A的度数.23. 如图,在等腰△PAD中,PA=PD,B是边AD上的一点,以AB为直径的⊙O经过点P,C是⊙O上一动点,连接AC,PC,PC交AB于点E,且∠ACP=60∘.(1)求证:PD是⊙O的切线.(2)连结OP,PB,BC,OC,若⊙O的直径是4,则:①当四边形APBC是矩形时,求DE的长;②当DE=________时,四边形OPBC是菱形.24 如图,四边形ABCD是⊙O的内接四边形,∠CBE是它的一个外角.求证:∠D=∠CBE.25. 问题提出(1)如图①,在⊙O中,点M、N分别是⊙O上的点,若OM=4,则MN的最大值为________.问题探究(2)如图②,在△ABC 中,AB =BC,∠ABC =120∘,AC =6,求△ABC 外接圆的半径及AB +BC 的长;问题解决(3)如图③.某旅游区有一个形状为四边形ABCD 的人工湖,已知AD//BC ,AD ⊥AB ,AB =180m ,BC =300m ,AD >BC ,为了营造更加优美的旅游环境,旅游区管委员会决定在四边形ABCD 内建一个湖心小岛P ,并分别修建观光长廊PB 和PC ,且PB 和PC 相互垂直.为了容纳更多的游客,要使线段PB 、PC 之和尽可能的大.试问PB +PC 是否存在最大值?若存在,请求出PB +PC 的最大值,若不存在,请说明理由.(观光长廊的宽度忽略不计)人教版 九年级数学 24.4 弧长和扇形面积一、选择题1. 如图在等边三角形ABC 中,将边AC 逐渐变成以BA 为半径的AC ︵,其他两边的长度不变,则∠ABC 的度数由60°变为( )图A .(180π)° B .(120π)° C .(90π)°D .(60π)° 2. 一个扇形的半径为6,圆心角为120°,则该扇形的面积是( )A .2πB .4πC .12πD .24π3. (2020·聊城)如图,有一块半径为1m ,圆心角为90°的扇形铁皮,要把它做成一个圆锥形容器(接缝忽略不计),那么这个圆锥形容器的高为( )A .41mB .43mC .415m D .23m 4. (2020·聊城)如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为点M ,连接OC ,DB ,如果OC ∥DB ,OC =23,那么图中阴影部分的面积是( )A .πB .2πC .3πD .4πA CD5. 2019·天水模拟 一个圆锥的轴截面是一个正三角形,则圆锥侧面展开图形的圆心角是( )A .60°B .90°C .120°D .180°6. 用圆心角为120°,半径为6 cm 的扇形纸片卷成一个圆锥形无底纸帽(如图所示),则这个纸帽的高是( )A. 2 cmB .3 2 cmC .4 2 cmD .4 cm7. (2020·苏州)如图,在扇形OAB 中,已知90AOB ∠=︒,OA =过AB 的中点C 作CD OA ⊥,CE OB ⊥,垂足分别为D 、E ,则图中阴影部分的面积为( )A.1π- B.12π- C.12π- D.122π-8. 2018·黑龙江 如图在△ABC 中,AB =5,AC =3,BC =4,将△ABC 绕点A 按逆时针方向旋转40°得到△ADE ,点B 经过的路径为弧BD ,则图阴影部分的面积为( )图A.143π-6 B.259πC.338π-3 D.33+π二、填空题 9. (2020·湘潭)如图,在半径为6的⊙O 中,圆心角60AOB ︒∠=,则阴影部分面积为________.10. (2020·绥化)已知圆锥的底面圆的半径是2.5,母线长是9,其侧面展开图的圆心角是______度.11. 如图所示,在△ABC 中,AB =BC =2,∠ABC =90°,则图中阴影部分的面积是________.12. 如图,以点O 为圆心的两个同心圆中,大圆的弦AB 是小圆的切线,点P 为切点,AB =123,OP =6,则劣弧AB ︵的长为________.(结果保留π)13. 如图所示,有一直径是 2 米的圆形铁皮,现从中剪出一个圆心角是90°的最大扇形ABC,则:(1)AB的长为________米;(2)用该扇形铁皮围成一个圆锥,所得圆锥的底面圆的半径为________米.14. 已知一个圆心角为270°,半径为3 m的扇形工件未搬动前如图示,A,B两点触地放置,搬动时,先将扇形以点B为圆心,做如图示的无滑动翻转,再使它紧贴地面滚动,当A,B 两点再次触地时停止,则圆心O所经过的路线长为________m.(结果用含π的式子表示)15. (2020·新疆)如图,⊙O的半径是2,扇形BAC的圆心角为60°,若将扇形BAC剪下转成一个圆锥,则此圆锥的底面圆的半径为____________.16. 如图中的小方格都是边长为1的正方形,则以格点为圆心,半径为1和2的两种弧围成的“叶状”(阴影部分)图案的面积为________.三、解答题17. 如图,AB 是半圆O 的直径,C 是半圆O 上的一点,AC 平分∠DAB ,AD ⊥CD ,垂足为D ,AD 交半圆O 于点E ,连接CE.(1)判断CD 与半圆O 的位置关系,并证明你的结论;(2)若E 是AC ︵的中点,半圆O 的半径为1,求图中阴影部分的面积.18. (2020·内江)如图,AB 是⊙O 的直径,C 是⊙O 上一点,ODBC 于点D ,过点C 作⊙O 的切线,交OD 的延长线于点E ,连结BE . (1)求证:BE 是⊙O 的切线;(2)设OE 交⊙O 于点F ,若2DF BC ==,EF 的长; (3)在(2)的条件下,求阴影部分的面积.19. 如图,在正方形ABCD 中,AD =2,E 是AB 的中点,将△BEC 绕点B 逆时针旋转90°后,点E 落在CB 的延长线上的点F 处,点C 落在点A 处,再将线段AF 绕点F 顺时针旋转90°得线段FG ,连接EF ,CG. (1)求证:EF ∥CG ;(2)求点C ,A 在旋转过程中形成的AC ︵,AG ︵与线段CG 所围成的阴影部分的面积.人教版 九年级数学 24.4 弧长和扇形面积 课时训练-答案一、选择题1. 【答案】A [解析] 设变形后的∠B =n °,AB =AC ︵的长=a .由题意可得n180π·a =a ,解得n =180π.2. 【答案】C [解析] 根据扇形的面积公式,S =120×π×62360=12π.故选C.3. 【答案】C 【解析】先利用弧长公式求得圆锥的底面半径,再利用勾股定理求圆锥的高.设圆锥形容器底面圆的半径为r ,则有2πr=180190⋅π,解得r =41,则圆锥的高为22)41(1-=415(m).4. 【答案】B【解析】借助圆的性质,利用等积转化求解阴影部分的面积.由垂径定理,得CM =DM ,∵OC ∥DB ,∴∠C =∠D ,又∵∠OMC =∠BMD ,∴△OMC ≌△BMD(ASA),∴OM =BM =21OB =21OC ,∴cos ∠COM =OC OM =21,∴∠COM =60°.∴S 阴影=S 扇形BOC =360)32(602⋅π=2π.5. 【答案】D6. 【答案】C [解析] 设纸帽底面圆的半径为r cm ,则2πr =120×π×6180,解得r =2.设圆锥的高为h cm ,由勾股定理得h2+r2=62,所以h2+22=62,解得h =4 2.7. 【答案】B【解析】本题考查了不规则图形面积的计算,连接OC ,由题意得∠DOC=∠BOC=45°,四边形OECD 为正方形,OC=2,由特殊角的三角函数得OE=OD=1,S 阴影=S 扇形OAB -S 正方形CEOD =290(2)360π⨯-12=2π-1,因此本题选B .8. 【答案】B [解析] ∵AB =5,AC =3,BC =4,∴AC 2+BC 2=25=AB 2,∴△ABC 为直角三角形.由旋转的性质得,△ADE 的面积=△ABC 的面积,由图可知,阴影部分的面积=△ADE 的面积+扇形ADB 的面积-△ABC 的面积, ∴阴影部分的面积=扇形ADB 的面积=40π×52360=259π.二、填空题9. 【答案】6π【解析】本题考查了扇形面积的计算,解题的关键是熟记扇形面积的计算公式.阴影部分面积为26066360ππ⨯=,故答案为:6π.10. 【答案】100【解析】设圆心角的度数是n ,则2π×2.5=9180n π.解得n =100.11. 【答案】π-2 [解析] ∵在△ABC 中,AB =BC =2,∠ABC =90°,∴△ABC 是等腰直角三角形,∴S 阴影=S 半圆AB +S 半圆BC -S △ABC =12π×(22)2+12π×(22)2-12×2×2 =π-2.12. 【答案】 8π 【解析】∵AB 是小圆的切线,∴OP ⊥AB ,∴AP =12AB =6 3.如解图,连接OA ,OB ,∵OA =OB ,∴∠AOB =2∠AOP.在Rt △AOP 中,OA =OP 2+AP 2=12,tan ∠AOP =AP OP =636=3,∴∠AOP =60°.∴∠AOB =120°,∴劣弧AB 的长为120π·12180=8π.13. 【答案】(1)1 (2)14[解析] (1)如图,连接BC.∵∠BAC =90°,∴BC 为⊙O 的直径,即BC = 2. ∵AB =AC ,AB2+AC2=BC2=2, ∴AB =1(米).(2)设所得圆锥的底面圆的半径为r 米. 根据题意,得2πr =90·π·1180,解得r =14.14. 【答案】6π [解析] 由题意易知∠AOB =90°,OA =OB ,∴∠ABO =45°,圆心O 旋转的长度为2×45π×3180=3π2(m),圆心O 平移的距离为270π×3180=9π2(m),则圆心O 经过的路线长为3π2+9π2=6π(m).15.【解析】本题考查了垂径定理,弧长公式,圆锥的侧面展开图.连接OA ,OB ,OC ,过点O 作OD ⊥AC 于点D .∵AB =AC ,OB =OC ,OA =OA ,所以△OAB ≌△OAC ,所以∠OAB =∠OAC =12∠BAC =12×60°=30°.在Rt △OAD 中,因为∠OAC =30°,OA =2,所以OD =1,AD 因为OD ⊥AC ,所以AC =2AD =BC l =60180×π×π.设此圆锥的底面圆的半径为r ,则r .16. 【答案】2π-4 [解析] 如图所示,由题意,得阴影部分的面积=2(S 扇形OAB -S △OAB)=2(90π×22360-12×2×2)=2π-4.故答案为2π-4.三、解答题17. 【答案】解:(1)CD 与半圆O 相切. 证明:∵AC 平分∠DAB , ∴∠DAC =∠BAC.∵OA =OC ,∴∠BAC =∠OCA , ∴∠DAC =∠OCA ,∴OC ∥AD. ∵AD ⊥CD ,∴OC ⊥CD. 又∵OC 为半圆O 的半径, ∴CD 与半圆O 相切. (2)连接OE. ∵AC 平分∠DAB ,∴∠DAC =∠BAC ,∴EC ︵=BC ︵. 又∵E 是AC ︵的中点,∴AE ︵=EC ︵=BC ︵,S 弓形AE =S 弓形CE , ∴∠BOC =∠EOC =60°.又∵OE =OC ,∴△OEC 是等边三角形, ∴∠ECO =60°,CE =OC =1. 由(1)得OC ⊥CD ,∴∠OCD =90°, ∴∠DCE =30°, ∴DE =12,DC =32,∴S 阴影=S △DEC =12×12×32=38.18. 【答案】(1)证明:连接OC ,如图,∵OD ⊥BC ,∴CD=BD ,∴OE 为BC 的垂直平分线, ∴EB=EC ,∴∠EBC=∠ECB ,∵OB=OC ,∴∠OBC=∠OCB ,∴∠OBC+∠EBC=∠OCB+∠ECB ,即∠OBE=∠OCE ,∵CE 为⊙O 的切线,∴OC ⊥CE ,∴∠OCE=90°, ∴∠OBE=90°,∴OB ⊥BE ,∴BE 与⊙O 相切.(2)设⊙O 的半径为R ,则OD=R-DF=R-2,OB=R ,在Rt △OBD 中,BD=12BC=∵OD2+BD2=OB2,∴222(2)R R -+=,解得R=4,∴OD=2,OB=4, ∴∠OBD=30°,∴∠BOD=60°,∴在Rt △OBE 中,∠BEO=30º,OE=2OB=8, ∴EF=OE-OF=8-4=4,即EF=4;(3)由∠OCD=∠OBD=30º和OD ⊥BC 知:∠COD=∠BOD=60º,∴∠BOC=120º,又BC=OE=8,∴=S OBECS S -阴影四边形扇形OBC =21120482360π⨯⨯163π=,【解析】本题考查了切线的判定与性质、垂径定理、扇形面积的计算、含30º角的直角三角形边角关系、勾股定理等知识,熟练掌握每个知识点是解答的关键.(1)连接OC ,如图,根据垂径定理由OD ⊥BC 得到CD=BD ,则OE 为BC 的垂直平分线,所以EB=EC ,根据等腰三角形的性质得∠EBC=∠ECB ,加上∠OBC=∠OCB ,则∠OBE=∠OCE ;再根据切线的性质得∠OCE=90°,所以∠OBE=90°,然后根据切线的判定定理得BE 与⊙O 相切; (2)设⊙O 的半径为R ,则OD=R-DF=R-2,OB=R ,在Rt △OBD ,利用勾股定理解得R=4,再利用含30º角的直角三角形边角关系可求得OE ,利用EF=OE-OF 即可解答;(3)利用(2)中可求得∠BOC=120º,然后利用=S OBEC S S -阴影四边形扇形OBC 代入数值即可求解.19. 【答案】解:(1)证明:∵四边形ABCD 是正方形, ∴AB =BC =AD =2,∠ABC =90°. ∵△BEC 绕点B 逆时针旋转90°得△BFA , ∴△BFA ≌△BEC ,∴∠FAB =∠ECB ,∠ABF =∠CBE =90°, AF =CE ,∴∠AFB +∠FAB =90°.∵线段AF 绕点F 顺时针旋转90°得线段FG , ∴∠AFB +∠CFG =∠AFG =90°,AF =FG , ∴∠CFG =∠FAB =∠ECB ,CE =FG ,∴CE 綊FG ,∴四边形EFGC 是平行四边形,∴EF ∥CG.(2)∵E 是AB 的中点,∴AE =BE =12AB. ∵△BFA ≌△BEC ,∴BF =BE =12AB =1, ∴AF =AB2+BF2= 5.由(1)知四边形EFGC 是平行四边形,FC 为其对角线, ∴点G 到FC 的距离等于点E 到FC 的距离,即BE 的长,∴S 阴影=S 扇形BAC +S △ABF +S △FGC -S 扇形FAG =90π·22360+12×2×1+12×(1+2)×1-90π·(5)2360=52-π4.。