汽车主动前轮转向系统的工作原理和方案

合集下载

转向系统工作原理

转向系统工作原理

转向系统工作原理
转向系统是汽车的重要组成部分,它负责控制车辆的转向方向和角度。

在驾驶
过程中,转向系统的工作原理对于车辆的操控性和安全性至关重要。

转向系统的工作原理可以简单地分为三个步骤,转向输入、转向传递和转向输出。

首先,当驾驶员转动方向盘时,转向输入被传递到转向系统中。

这个输入会触发转向系统内的一系列机械或电子装置,从而使车轮产生相应的转向动作。

在转向传递过程中,转向系统会根据车速、路况等因素进行调整,以确保车辆的转向动作平稳和准确。

最后,转向输出则是指车辆实际的转向动作,它由转向系统内的零部件和机械装置来完成。

转向系统的工作原理受到多种因素的影响,其中最主要的是车速和路况。

在高
速行驶时,转向系统需要更大的力量来控制车轮的转向,以确保车辆的稳定性和安全性。

而在复杂的路况下,如颠簸路面或弯道行驶,转向系统也需要更加灵敏的响应来应对车辆的转向需求。

另外,转向系统的工作原理还受到车辆类型和转向系统类型的影响。

不同类型
的车辆,如轿车、卡车或SUV,其转向系统的工作原理可能会有所不同。

而液压
转向系统、电动助力转向系统等不同类型的转向系统,也会在工作原理上有所区别。

总的来说,转向系统的工作原理是一个复杂而精密的过程,它需要多种因素的
协调和调节才能确保车辆的转向动作准确、平稳和安全。

因此,在日常驾驶中,我们应该注意保养转向系统,定期检查转向系统的工作状态,以确保车辆的操控性和安全性。

汽车转向系统工作原理

汽车转向系统工作原理

汽车转向系统工作原理
汽车转向系统是车辆行驶中至关重要的一部分,它的工作原理可以分为以下几个步骤:
1. 转向传感器:在车辆转向系统中,转向传感器起到了关键作用。

它通过感知司机的转向动作并将其转化为电信号,传递给转向控制单元。

2. 转向控制单元:转向控制单元接收到来自转向传感器的电信号后,会计算出车辆应该进行的转向角度,并将这个角度信号传递给转向执行器。

3. 转向执行器:转向执行器根据转向控制单元传递的信号来完成具体的转向动作。

在大多数汽车中,转向执行器通常是液压助力转向系统或电动助力转向系统。

4. 液压助力转向系统:在液压助力转向系统中,转向执行器包括一个液压泵、液压缸和减压阀等组件。

当转向控制单元传递转向角度信号后,液压泵会产生压力,使液压缸工作,然后通过减压阀将液压力传递给转向系统,从而实现对车轮的转向。

5. 电动助力转向系统:在电动助力转向系统中,转向执行器由一个电机和一个转向齿轮组成。

当转向控制单元传递转向角度信号后,电机会根据信号的大小和方向来转动转向齿轮,从而实现对车轮的转向。

总的来说,汽车转向系统的工作原理是将司机的转向动作通过
转向传感器转化为电信号,然后由转向控制单元计算转向角度,并通过转向执行器实现对车轮的转向。

不同的转向执行器可以是液压助力转向系统或电动助力转向系统,它们分别通过液压力或电力来帮助实现转向动作。

转向系统的工作原理

转向系统的工作原理

转向系统的工作原理转向系统是汽车的重要部件之一,它的作用是使车辆能够按照驾驶员的指令改变行驶方向。

在转向系统中,主要包括转向机构、转向传动装置和转向控制装置等组成部分。

下面我们将详细介绍转向系统的工作原理。

首先,转向系统的工作原理涉及到转向机构。

转向机构是转向系统的核心部件,它通过转向传动装置将驾驶员的操纵信号传递给车轮,从而改变车辆的行驶方向。

转向机构通常由齿条、齿轮、齿轮齿条、传动销等组成,当驾驶员转动方向盘时,转向机构会将转动力传递给车轮,实现车辆的转向。

其次,转向系统的工作原理还涉及到转向传动装置。

转向传动装置是将转向机构传递过来的操纵信号转化为车轮的实际转向动作的装置。

它通常由传动齿轮、万向节、传动杆等组成,当转向机构传递信号时,传动装置会将信号传递给车轮,使车辆按照驾驶员的指令改变行驶方向。

最后,转向系统的工作原理还包括转向控制装置。

转向控制装置是用来控制转向系统工作的装置,它通常由转向泵、转向阀、液压油箱等组成,通过液压原理来实现对转向系统的控制。

当驾驶员转动方向盘时,转向控制装置会根据操纵信号来控制转向机构和传动装置,从而实现车辆的转向。

总的来说,转向系统的工作原理是通过转向机构、转向传动装置和转向控制装置相互配合,实现对车辆行驶方向的改变。

驾驶员通过操纵方向盘,传递信号给转向系统,从而使车辆按照指令进行转向。

这样的设计能够确保车辆在行驶过程中能够灵活、准确地改变行驶方向,提高驾驶的安全性和舒适性。

总之,转向系统是汽车行驶过程中不可或缺的重要部件,它的工作原理涉及到转向机构、转向传动装置和转向控制装置的协同工作。

只有这三者相互配合,才能确保车辆能够按照驾驶员的指令灵活、准确地改变行驶方向,从而保障驾驶的安全和舒适。

汽车前轮转向原理

汽车前轮转向原理

汽车前轮转向原理
汽车前轮转向原理是指汽车在行驶过程中,通过转向系统使车辆前轮产生转向运动,从而改变车辆行驶方向的原理。

汽车前轮转向原理的实现,是通过转向系统和悬挂系统共同完成的。

下面将从转向系统和悬挂系统两个方面来详细介绍汽车前轮转向原理。

转向系统是汽车前轮转向的关键部件,它由方向盘、转向齿轮、传动杆、转向节、转向臂、转向销等组成。

当驾驶员通过方向盘施加转向力时,转向齿轮通过传动杆将转向力传递给转向节,再通过转向臂和转向销使车辆前轮产生转向运动。

转向系统通过这样的工作原理,实现了对车辆前轮的控制,从而改变了车辆的行驶方向。

悬挂系统是汽车前轮转向的支撑系统,它由弹簧、减震器、悬挂臂、横拉杆等组成。

在车辆行驶过程中,悬挂系统能够有效地减少路面颠簸对车辆的影响,保证车辆稳定性和行驶舒适性。

同时,悬挂系统还能够根据路面情况对车辆前轮进行调节,使车辆前轮保持与地面的良好接触,从而保证转向系统的正常工作。

汽车前轮转向原理的实现,需要转向系统和悬挂系统的协同配合。

当驾驶员通过方向盘施加转向力时,转向系统将转向力传递给车辆前轮,同时悬挂系统保证车辆前轮与地面的良好接触,从而使车辆前轮产生转向运动,改变车辆的行驶方向。

这样,汽车前轮转向原理就得以实现。

总的来说,汽车前轮转向原理是通过转向系统和悬挂系统的协同配合,使车辆前轮产生转向运动,从而改变车辆行驶方向的原理。

转向系统通过方向盘施加转向力,悬挂系统保证车辆前轮与地面的良好接触,两者共同完成了汽车前轮转向的任务。

汽车前轮转向原理的实现,不仅是汽车行驶的基础,也是驾驶员操控车辆的关键。

汽车前后轮转向液压控制原理

汽车前后轮转向液压控制原理

汽车前后轮转向液压控制原理
汽车前后轮转向液压控制原理主要涉及液压转向系统的应用。

液压转向系统的工作原理是通过使用液压力来提供转向力,并将驾驶员的转向指令传递给车辆前轮,从而实现转向的目的。

液压转向系统主要由液压泵、液压油箱、液压缸、液压阀及相关管路组成。

在汽车前后轮转向液压控制中,驾驶员施加转向力,这个力量通过一根连接杆传递给液压转向器的控制阀。

控制阀接收到转向信号后,会调节连接到液压泵的液压流量。

液压泵通常由发动机驱动,通过旋转产生液压压力。

首先位于转向机上的机械阀体(可随转向柱转动),在方向盘没有转动时,阀体保持原位,活塞两侧的油压相同,处于平衡状态。

当方向盘转动时,转向控制阀就会相应的打开或关闭,一侧油液不经过液压缸而直接回流至储油罐,另一侧油液继续注入液压缸内,这样活塞两侧就会产生压差而被推动,进而产生辅助力推动转向拉杆,使转向更加轻松。

以上内容仅供参考,建议查阅专业汽车书籍或咨询专业技术人员,获取更全面和准确的信息。

简述汽车转向系统的工作原理

简述汽车转向系统的工作原理

简述汽车转向系统的工作原理一、引言汽车转向系统是汽车的重要组成部分之一,它负责控制车辆的方向,使车辆能够按照驾驶员的意愿行驶。

本文将详细介绍汽车转向系统的工作原理。

二、汽车转向系统的组成部分汽车转向系统主要由以下几个部分组成:1. 转向盘:驾驶员通过转动转向盘来控制车辆的方向。

2. 转向柱:将转向盘上的旋转运动传递给转向齿轮。

3. 转向齿轮:将驾驶员通过转向柱传递过来的旋转运动,变为左右方向的运动。

4. 驱动轴:将左右方向的运动传递给前轮或后轮。

5. 车轮:根据驱动轴传递过来的力量,控制车辆行进方向。

三、液压式汽车转向系统工作原理液压式汽车转向系统是目前应用最广泛的一种。

它主要由以下几个部分组成:1. 动力源:通常是发动机带动液压泵工作,产生高压油液。

2. 油箱:存储液压油液。

3. 液压泵:将动力源产生的高压油液推送到转向器中。

4. 转向器:将高压油液转换为力矩,控制车辆的方向。

5. 液压缸:接收转向器传来的力矩,将其转化为车轮的左右方向运动。

6. 液压管路:连接以上各部分,传递高压油液。

具体工作原理如下:1. 驾驶员通过转动转向盘,让转向柱旋转。

2. 转向柱带动转向齿轮旋转,使得液压泵开始工作。

3. 液压泵产生高压油液,并将其推送到转向器中。

4. 转向器接收到高压油液后,将其转换为力矩,并传递给液压缸。

5. 液压缸接收到力矩后,将其转化为车轮的左右方向运动,从而改变车辆行进方向。

6. 当驾驶员停止操作时,液体回流至油箱中。

四、电动式汽车转向系统工作原理电动式汽车转向系统是近年来新兴的一种转向系统,它主要由以下几个部分组成:1. 电机:产生动力,控制车辆的方向。

2. 电池:为电机提供能量。

3. 控制器:控制电机的运转。

4. 方向盘角度传感器:检测驾驶员对方向盘的旋转角度。

5. 电动助力转向器:接收控制器的指令,将其转化为力矩,控制车辆的方向。

具体工作原理如下:1. 驾驶员通过转动转向盘,让方向盘角度传感器检测到旋转角度,并将其传递给控制器。

轿车前轮主动转向系统机械结构设计

轿车前轮主动转向系统机械结构设计

关键词:转向器;主动转向;前轮;机械设计;行星齿轮
ABSTRACT
Active steering system can ensure vehicles in any speed can provide the ideal steering control, while strengthening the cars in the safety of high-speed condition, improved driver when driving a car the flexibility and comfort, and compared with conventional methods, active steering system more reliable, failure to even lower. This design is based on the front-wheel existing active steering system, reference information of advanced active steering system and related data of some cars, redesign the theory of steering system with gear and rack and matching active steering system structure scheme of mechanical part. Design of the main content includes: the main steering system of parameters, the design of steering gear rack, active steering the controller design, including active steering is the difficulty in the design, use the stars to implement active steering gear control, finally I use Auto CAD software for the 2D drawings Key words: redirector; active steering; front wheel; mechanical design; planetary gear

汽车转向系统工作原理

汽车转向系统工作原理

汽车转向系统工作原理随着现代汽车工业的快速发展,汽车转向系统作为汽车的重要组成部分,对于驾驶安全和操控性能起到至关重要的作用。

本文将深入探讨汽车转向系统的工作原理。

一、概述汽车转向系统是指通过操纵转向装置,使汽车改变行驶方向的系统。

它由转向装置、转向机构和转向传动装置等组成。

传统的汽车转向系统通常采用机械传动的方式,而现代汽车转向系统则多采用液压或电动助力转向技术。

二、传统机械传动转向系统传统机械传动转向系统主要由转向装置、转向柱、转向齿轮、转向销和前轮转向节等组成。

其中,转向装置通过转向柱与驾驶员操纵的方向盘相连接,通过转向齿轮和转向销来改变车轮转向角度,从而实现车辆转向。

传统机械传动转向系统的工作原理如下:当驾驶员转动方向盘时,转向装置会传递方向盘转动的力量,使转向柱转动。

转向柱通过转动齿轮,将转动力量传递给转向销,使前轮转向角度发生变化。

随着前轮的转向角度变化,车辆的行驶方向也随之改变。

三、液压助力转向系统液压助力转向系统相比于传统机械传动转向系统,采用了辅助液压装置,使驾驶员在转向时需要的力量大大减小,提高了驾驶的舒适性和操控性能。

液压助力转向系统的工作原理如下:当驾驶员转动方向盘时,转向装置通过轴将力量传递给液压助力装置。

液压助力装置通过控制液压系统的压力变化,产生液压助力,并将助力传递给转向柱,从而减小驾驶员操纵方向盘所需的力量,使转向更加轻松。

四、电动助力转向系统电动助力转向系统是一种现代化的转向技术,其主要通过电机辅助转向,实现操纵力量的补充和控制。

电动助力转向系统的工作原理如下:当驾驶员转动方向盘时,转向装置通过电动助力装置将操纵力量传递给电机。

电机通过感应系统感应到转向角度的变化,并根据感应的信号控制助力大小,从而实现对操纵力的补充。

电动助力转向系统具有自动调节助力大小和响应速度快的特点,提高了驾驶的舒适性和安全性。

五、总结汽车转向系统的工作原理可以根据不同的技术原理进行分类,其中传统机械传动转向系统、液压助力转向系统和电动助力转向系统是常见的转向技术。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

汽车主动前轮转向系统的工作原理及方案崔海波工程技术学院机制5班摘要: “主动转向”技术为汽车操纵和稳定性控制提供了更好的控制方法和性能,很好的解决了转向中轻便性和灵敏性的矛盾问题。

本文通过对汽车主动前轮转向系统的简要概述和发展现状,对其结构和工作原理以及一些先进的方案进行了分析。

关键词:主动前轮转向系统可变传动比发展现状工作原理结构方案1.前言转向系统是控制汽车行驶路线和方向的重要装置,其性能直接影响到汽车的操纵性能和稳定性能。

在汽车转向系统的设计中,转向轻便性与转向灵敏性是一对矛盾。

转向轻便性要求驾驶员对方向盘施加的转向力要小、方向盘的总转动圈数要少;而转向灵敏性则要求驾驶员转动方向盘达到目标角度所耗费的时间要短。

显然对机械式转向系统来说,要想转向灵敏性好,就要减小转向系统传动比,但这必然导致转向力增大;反之,要想转向力小,就要增大转向传动比,这又将导致转向灵敏性下降。

主动转向系统具有可变传动比的功能,它很好地解决了转向轻便性与转向灵敏性之间的矛盾。

主动前轮转向通过电机根据车速和驾驶工况改变转向传动比。

低、中速时,转向传动比较小,转向直接,以减少转向盘的转动圈数,提高转向的灵敏性和操纵性;高速时,转向传动比较大,提高车辆的稳定性和安全性。

同时,系统中的机械连接使得驾驶员直接感受到真实的路面反馈信息。

【1】因此,主动前轮转向为车辆行驶的灵敏性、舒适性和安全性设定了新标准,代表着转向技术的发展趋势。

2.主动前轮转向系统概述主动前轮转向系统(Active Front Steering,AFS)最早由德国 BWM 和12ZF 两家公司联合开发完成,并装备于宝马 3 系和 5 系轿车上。

图为主动前轮转向系统基本结构。

主动前轮转向系统能够在最大程度执行驾驶员意愿的前提下,对整车施加一个可独立于驾驶员的转向干预,可以实现整车的主动安全性和操纵稳定性的结合。

主动前轮转向系统可在一定范围内实现变传动比控制,使汽车在低车速行驶时转向传动比较小,以减少转向盘的转动圈数,提高汽车的机动性和灵活性;而在高车速时转向传动比较大,以降低转向灵敏性,提高汽车的稳定性和安全性。

主动前轮转向实际上是介于传统的助力转向和线控转向之间的一种转向系统。

【2】它在传统的助力转向系统的结构基础上实现转向,同时又具有线传系统的优点,可以主动对车辆进行控制。

主动前轮转向系统可以实现变传动比和稳定性控制。

图.主动前轮转向系统2.1 可变传动比在汽车工业中,传动比定义为方向盘转角与前轮转角的比值。

对于传统车辆,该值为一常数。

观察普通汽车低速下的转向行为可以发现,降低传动比可以减少方向盘至左右极限位置的圈数。

因此对于驾驶员而言,在停车或大角度转弯时,可以提高操作上的轻便性。

然而对于处于高速行驶状态下的车辆,较低的传动比使转向过于灵敏,稳定性和安全性就会下降。

转向传动比是影响驾驶感受的关键因素。

为了克服传统车辆存在的上述缺陷,人们发明了一系列变传动比主动前轮转向装置。

【3】这类装置可以根据行驶状况增加或减小汽车前轮的转向角度,即低速时提供小传动比以提高车辆灵活性及操作轻便型,高速状态下提供较大传动比增加行车稳定性。

其大致分为两类:1.机械式(又可分为固定式与可调式)2.线传式。

2.2 稳定性控制稳定性是指汽车受到外界扰动(路面扰动或者阵风扰动)回到原来的运动状态的能力。

主动前轮转向系统从转向一开始就会判断转向后出现的情况,通过调节助转角电机自动修正转向角度,及时干预以降低偏离行驶路线的概率。

对于不可预料的侧向运动,主动前轮转向可以通过有效的利用轮胎特性,抵御阵风(尤其是离开隧道时的侧向风)、不对称制动和低摩擦系数路面所产生的横摆及侧倾干扰,自动产生补偿力矩帮助驾驶员,提高车辆的稳定性。

【4】3.主动前轮转向系统国内外的研究及发展现状当前,国内外对主动前轮转向系统的研究比较深入,已有大量相关文献发表。

主动前轮转向系统最早由德国宝马汽车公司和 ZF 公司联合开发,并将其应用于部分宝马3系列和5系列轿车,图为宝马主动前轮转向系统实物图。

之后,日本丰田汽车公司也开发了可装备于实际车辆的主动前轮转向系统。

Kim J. W.等人在论文《Development of an active front steering (AFS) system with QFT 》中,在分析主动前轮转向系统的工作原理的基础上,建立了基于定量反馈理论的主动前轮转向系统控制模型,并基于Matlab 和Adams/Car 建立联合仿真模型验证了其有效性。

Yasuo S.等人在论文Improvement in driver-vehicle system performance by varying steering3gain with vehicle speed and steering angle :VGS (variable gear-ratio steering system)》中,建立了驾驶员模型、转向系统模型和传动比调节装置的模型,并根据驾驶员的操纵经验和路上试车测试结果得出理想传动比。

Wolfgang R.等人在论文《Active front steering (Part 1): mathematical modeling and parameter estimation》和论文《Active front steering (Part 2): safety and functionality》中,建立了主动前轮转向系统执行器的数学模型,并验证了模型的有效性【5】。

Maniha N.等人在论文《Sliding mode control of active car steering with various boundary laver thickness and disturbance》中,将滑模变结构控制应用于主动前轮转向系统,并设计了滑模变结构控制器,其输入为横摆角速度的理想值与实际值之间的差值,输出为主动前轮转向系统附加的转向角【6】。

在国内方面,同济大学高晓杰等人在论文《机械式前轮主动转向系统的原理与应用》中,以宝马轿车上选装的主动转向系统为例,详细介绍了该系统的组成、双行星齿轮机构的结构及工作模式,以及该系统可变传动比、稳定车辆等功能的实现原理和系统安全性设计,并指出主动前轮转向与其他动力学控制系统一起实现底盘一体化集成控制的可能性【7】。

武汉理工大学的黄炳华等人在论文《汽车主动转向系统的特性研究》中,分析了主动转向系统的主要特性,并对其控制策略进行了探讨【8】。

南京航空航天大学的赵万忠等人在论文《力与位移耦合控制的主动转向系统协同优化》中,在对主动前轮转向系统的动力学分析和工作原理分析的基础上,建立了主动前轮转向系统的各个子系统的模型,并提出了主动前轮转向系统的三个性能指标及量化公式【9】。

同济大学的余卓平等人在论文《主动前轮转向对车辆操纵稳定性能的影响》中,研究主动前轮转向对车辆操纵稳定性能的影响,提出了主动前轮转向控制系统的目标及结构【10】。

南京航空航天大学的魏建伟等人在论文《基于人-车-路闭环系统的变传动比控制规律》研究了转向盘转角对汽车转向性能的影响,提出了改进的变传动比控制策略目前,对主动前轮转向系统的研究主要集中在动力学建模和理想传动比控制规律方面,对变传动比控制规律的研究还很少,尚处于定性的认识阶段,且变传动比的推理及控制策略还少有提及。

此外,对主动前轮转向稳定性控制的研究文献还较少,有限的几篇文献主要研究横摆角速度控制,对附加转角的控制还鲜4有报道。

然而,变传动比控制和干预稳定性控制是主动前轮转向的核心问题,是决定主动前轮转向系统性能好坏的关键因素。

因此,有必要在理想传动比控制规律基础上,探索变传动比控制和主动转向稳定性控制策略,为主动前轮转向系统的设计开发提供理论基础。

4.主动前轮转向系统结构及工作原理分析主动前轮转向系统的出现符合汽车技术的发展趋势。

AFS根据附加转角叠加方式的不同,又可分为机械式AFS和电子式AFS。

下面主要介绍汽车机械式主动前轮转向系统的构成及原理。

4.1 整体结构以宝马主动转向为例,主动前轮转向系统除保留了传统转向系统中的机械构件,包括转向盘、转向柱、齿轮齿条转向机以及转向横拉杆等之外,它的最大特点就是在转向盘和齿轮齿条转向机之间的转向柱上集成了一套双行星齿轮机构和电子伺服转向系统,用于向转向轮提供叠加转向角,通过叠加转向实现变传动比功能。

驾驶员的转向输入包括力矩输入和角输入两部分,将共同传递给到扭杆。

其中的力矩输入由电子伺服机构根据车速和转向角度进行助力控制,而角输入则通过由伺服电机驱动的双行星齿轮机构进行转向角叠加,经过叠加后的总转向角才是传递给齿轮齿条转向机构的最终转角。

与常规转向系统的显著差别在于,主动前轮转向系统不仅能够对转向力矩进行调节,而且还可以对转向角度进行调整,使其与当前的车速达到完美匹配。

4.2 新型主动前轮转向系统结构所谓的新型主动前轮转向系统,在电动助力转向系统机械机构的基础上,将转向轴截断后在中间增加行星齿轮机构,行星齿轮外圈与电机通过涡轮蜗杆机构相连接。

该电机用来增加或者减少驾驶员施加在转向轮上的转角,同时原电动助力转向系统中的电机对转向系统提供助力,对转向过程中的转向力矩进行调节。

因此,该主动前轮转向系统主要包括两部分:转向轴式电动助力转向机构,行星齿轮的主动转向机构。

54.2.1 转向轴式助力转向机构转向轴式电动助力转向系统的电机固定在转向管柱上,通过减速机构与转向轴相连,直接驱动转向轴,实现转向助力。

助力电机产生的动力协助驾车者进行转向,系统由转矩传感器、电动机、蜗轮蜗杆减速机构、电磁离合器、机械转向器等组成。

4.2.2 行星齿轮的主动前轮转向机构助转角机构由电机、蜗轮蜗杆机构和一套双排行星齿轮系机构组成。

行星架将两套行星齿轮连接在一起,齿圈通过自锁式蜗轮蜗杆驱动机构与助转角电机相连。

行星齿轮机构的输入轴与转向管柱上端相连,合成的运动由输出轴输出,输出轴与转向管柱下端相连。

根据车速和转向盘转角,电机提供相应的辅助转角,并利用行星齿轮机构的运动合成共同作用到下端的转向管柱上,最终输出的转向角是由转向盘角度和电机角度叠加而成。

当转向盘转角确定,而电机的转角改变时,合成后得到的前轮转角也随之改变,因此可通过独立地调整电机来获得不同的转向系统传动比,从而转向灵敏性可调。

整个主动前轮转向系统包括传感器,主动转向叠加机构(包括电机及行星齿轮机构),控制器(ECU),电动助力转向系统机械结构等。

4.3 工作原理以一种机械式的叠加主动前轮转向系统为研究对象,其原理如图所示。

AFS 的执行机构由电动机、蜗轮蜗杆机构和行星齿轮机构等组成,一般串联在转向盘和转向器之间。

相关文档
最新文档