带电粒子在有界匀强磁场中的运动归类

带电粒子在有界匀强磁场中的运动归类
带电粒子在有界匀强磁场中的运动归类

带电粒子在有界匀强磁场中的运动归类

命题人:罗 通 审题人:李吉彬

一、单直线边界磁场

1.进入型:带电粒子以一定速度υ

垂直于磁感应强度B 进入磁场. 规律要点:

(1)对称性:若带电粒子以与边界成θ角的速度进入磁场,则一定以与边界成θ角的速度离开磁场.如图1所示.

(2)完整性:比荷相等的正、负带电粒子以相同速度进入同一匀强磁场,则它们运动的圆弧轨道恰构成一个完整的圆;

正、负带电粒子以相同速度进入同一匀强磁场时,两粒子轨道圆弧对应的圆心角之和等于2π rad ,即2+-+=??π,且2-=?θ(或

2+=?θ).

2.射出型:粒子源在磁场中,且可以向纸面内各个方向以相同速率发射同种带电粒子. 规律要点:(以图2中带负电粒子的运动轨迹为例) (1)最值相切:当带电粒子的运动轨迹小于

1

2

圆周时且与边界相切(如图2中a 点),则切点为带电粒子不能射出磁场的最值点(或恰能射出磁场的临界点);

(2)最值相交:当带电粒子的运动轨迹大于或等于

1

2

圆周时,直径与边界相交的点(图2中的b 点)为带电粒子射出边界的最远点.

图2中,在ab 之间有带电粒子射出,设ab 距离为x ,粒子源到磁场边界的距离为d ,带电粒子的质量为m ,速度为υ,则

m υr=

Bq

()22

22aO=r -d-r =dr-d ()

2

22Ob=r -d

22224x=ab=aO+Ob=dr-d +r -d

例1.如图所示,在y <0的区域内存在匀强磁场,磁场方向垂直于xy 平面并指向纸面外,磁感应强度为B.一带正电的粒子以速度υ0从O 点射入磁场,入射方向在xy 平面内,与x 轴正向的夹角为θ.若粒子射出磁场的位置与O 点的距离为l ,求该粒子的电量和质量之比

m

q 。

υ

υ θ θ υ

υ

O -

O + θ φ+ φ- 图1

图2

d S

b

O 2

O 1 a O

二、双直线边界磁场

规律要点: 最值相切:当粒子源在一条边界上向纸面内各个方向以相同速率发射同一种粒子时,粒子能从另一边界射出的上、下最远点对应的轨道分别与两直线相切.图3所示.

对称性:过粒子源S 的垂线为ab 的中垂线. 在图3中,ab 之间有带电粒子射出,可求得222ab=dr-d

最值相切规律可推广到矩形区域磁场中.

例2.一足够长的矩形区域abcd 内充满磁感应强度为B 、方向垂直纸面向里的匀强磁场,矩形区域的左边界ad 宽为L ,现从ad 中点O 垂直于磁场射入一带电粒子,速度大小为0υ方向与ad

边夹角为30°,如图所示。已知粒子的电荷量为q ,质量为m (重力不计)。 (1)若粒子带负电,且恰能从d 点射出磁场,求0υ的大小;

(2)若粒子带正电,使粒子能从ab 边射出磁场,求0υ的取值范围以及此范围内粒子在磁场中运动时间t 的范围。

三、圆形边界

1.圆形磁场区域:

(1)相交于圆心:带电粒子沿指向圆心的方向进入磁场,则出磁场时速度矢量的反向延长线一定过圆心,即两速度矢量相交于圆心;(如图4所示)

(2)直径最小:带电粒子从圆与某直径的一个交点射入磁场则从该直径与圆的另一交点射出时,磁场区域最小.(如图5所示) 2.环状磁场区域:

(1)带电粒子沿(逆)半径方向射入磁场,若能返回同一边界,则一定逆(沿)半径方向射出磁场; (2)最值相切:(如图6所示)当带电粒子的运动轨迹与圆相切时,粒子有最大速度υm 或磁场有最小磁感应强度B .

图3

d O 2

O 1 a

b υ S

例3.地磁场可以“屏蔽”来自太空的带电粒子,防止这些高速运动的带电粒子对地球带来的危害.在高能物理实验中,为了避免宇宙射线中的带电粒子对实验的影响,可在实验装置外加磁场予以屏蔽.如图所示,半径为r 2的圆管形实验通道为实验中高能带电粒子的通道,在r 2到r 1的圆环形加有匀强磁场.假设来自太空的带电粒子的最大速度为υ,粒子均沿半径方向射入磁场区,为了使这些粒子均不能进入实验通道,则磁感应强度B 至少为多大?已知带电粒子的质量均为m ,电荷量均为-q .

四、带电粒子在磁场中运动的极值问题

寻找产生极值的条件: ① 直径是圆的最大弦;

② 同一圆中大弦对应大的圆心角; ③ 由轨迹确定半径的极值。

例4.如图半径r =10cm 的圆形区域内有匀强磁场,其边界跟y 轴在坐标原点O 处相切;磁场B =0.33T 垂直于纸面向内,在O 处有一放射源S 可沿纸面向各个方向射出速率均为v=3.2×106m/s 的α粒子;已知α粒子质量为m=6.6×10-27kg ,电量q=3.2×10-19c ,则α粒子通过磁场空间的最大偏转角θ及在磁场中运动的最长时间t 各多少?

练习

1.如图所示,一束电子(电量为e )以速度v 垂直射入磁感强度为B ,宽度为d 的匀强磁场中,穿透磁场时速度方向与电子原来入射方向的夹角是

30°,则电子的质量是 ,穿透磁场的时间

r 1

O ’

r

r υ

υ

r 2 图6 B

b a O

θ B

R b a

O

υ

υ r 图5

B

O

r R b a O ’

υ υ

图4

m

υ

是。

2.长为L的水平极板间,有垂直纸面向内的匀强磁场,如图所示,磁感强度为B,板间距离也为L,板不带电,现有质量为m,电量为q的带正电粒子(不计重力),从左边极板间中点处垂直磁感线以速度v水

平射入磁场,欲使粒子不打在极板上,可采用的办法是()

A.使粒子的速度v

B.使粒子的速度v>5BqL/4m;

C.使粒子的速度v>BqL/m;

D.使粒子速度BqL/4m

3.如图所示,带负电的粒子垂直磁场方向进入圆形匀强磁场区域,出磁场时速度偏离原方向60°角,已知

=105m/s,磁场区域的半径R=3×10-1m,不计重力,带电粒子质量m=3×10-20kg,电量q=10-13C,速度v

求磁场的磁感应强度。

4.圆心为O、半径为r的圆形区域中有一个磁感强度为B、方向为垂直于纸面向里的匀强磁场,与区域边缘的最短距离为L的O'处有一竖直放置的荧屏MN,今有一质量为m的电子以速率v从左侧沿OO'方向垂直射入磁场,越出磁场后打在荧光屏上之P点,如图所示,求O'P的长度和电子通过磁场所用

的时间。

M

L

O'

N

带电粒子在有界匀强磁场中的运动归类参考答案

例1.解析:根据带电粒子在有界磁场的对称性作出轨迹,找出圆心A ,向x 轴作垂线,垂足为H ,由与几何关系得: R L sin θ=

12

带电粒子在磁场中作圆周运动,由 qv B mv R

00

2

=

解得R mv qB

=

①②联立解得

q m v LB

=

20sin θ

例2.解析:此例包括单直线边界进入型、双直线边界中的最值相切两种类型。(1)为单直线边界进入型,由图可知:O 1为轨道圆心,由于对称性,速度的偏转角θ1=60°,故轨道半径12

L

r =

据2

001m υq υB r =, 则102qBr qBL

υm m

==

(2)当0υ最大时,轨道与cd 相切:

11cos602

L

R R -?=,得R 1=L

则1max qBR qBL

υm m

==

当0υ最小时,轨道与ab 相切:

22sin302

L

R R +?=,得23L R =

则2min 3qBR qBL υm m == 03qBL qBL

υm m

∴<≤

带电粒子从ab 边射出磁场,当速度为max υ时,运动时间最短。

min 15053606m t T Bq

π==

速度为min υ时,运动时间最长 max 24043603m

t T Bq

π== ∴粒子运动时间t 的范围5463m m

t Bq Bq

ππ≤<

O 3

O 2

O 1 60°

例 3.解析:要使带电粒子不进入实验通道,则粒子运动的轨道只能与半径为r 2的内圆相切,因此由几何关系可得

()

2

2221r+r =r +r ① m υ

r=

Bq

② 联立解得 221222r -r m υ=r Bq ,即(

)

2

2212

2m υr B=q r -r

例4.解析:α粒子在匀强磁场后作匀速圆周运动的运动半径:r 2m 2.0qB

m v

R ===

α粒子从点O 入磁场而从点P 出磁场的轨迹如图圆O /所对应的圆弧所示,该弧所对的圆心角即为最大偏转角θ。 由上面计算知△SO /P 必为等边三角形,故θ=60° 此过程中粒子在磁场中运动的时间由

即粒子在磁场中运动的最长时间。

带电粒子在匀强磁场中的运动知识小结

带电粒子在匀强磁场中的运动(知识小结) 一.带电粒子在磁场中的运动 (1)带电粒子在磁场中运动时,若速度方向与磁感线平行,则粒子不受磁场力,做匀速直线运动;即 ① 为静止状态。 ② 则粒子做匀速直线运动。 (2)若速度方向与磁感线垂直,带电粒子在匀强磁场中做匀速圆周运动,洛伦兹力起向心力作用。 (3)若速度方向与磁感线成任意角度,则带电粒子在与磁感线平行的方向上做匀速直线运动,在与磁感 线垂直的方向上做匀速圆周运动,它们的合运动是螺线运动。 二、带电粒子在匀强磁场中的圆周运动 1.运动分析:洛伦兹力提供向心力,使带电粒子在匀强磁场中做匀速圆周运动. (4)运动时间: (Θ 用弧度作单位 ) 1.只有垂直于磁感应强度方向进入匀强磁场的带电粒子,才能在磁场中做匀速圆周运动. 2.带电粒子做匀速圆周运动的半径与带电粒子进入磁场时速率的大小有关,而周期与速率、半径都无关. 三、带电粒子在有界匀强磁场中的匀速圆周运动(往往有临界和极值问题) (一)边界举例: 1、直线边界(进出磁场有对称性) 规律:如从同一直线边界射入的粒子,再从这一边射出时,速 度与边界的夹角相等。 速度与边界的夹角等于圆弧所对圆心角的一半, 并且如果把两个速度移到共点时,关于直线轴对称。 2、平行边界(往往有临界和极值问题) (在平行有界磁场里运动,轨迹与边界相切时,粒子恰好不射出边界) 3、矩形边界 磁场区域为正方形,从a 点沿ab 方向垂直射入匀强磁场: 若从c 点射出,则圆心在d 处 若从d 点射出,则圆心在ad 连线中点处 4. (从平面几何的角度看,是粒子轨迹圆与磁场边界圆的两圆相交问题。) 特殊情形:在圆形磁场内,沿径向射入时,必沿径向射出 2.其特征方程为:F 洛=F 向. 3.三个基本公式: (1)向心力公式:qvB =m v 2R ; (2)半径公式:R =mv qB ; (3)周期和频率公式:T =2πm qB =1f ; 222m t qB m qB T θππθπθ==?=?v L =t

带电粒子在有界匀强磁场中的运动归类

带电粒子在有界匀强磁场中的运动归类 命题人:罗 通 审题人:李吉彬 一、单直线边界磁场 1.进入型:带电粒子以一定速度υ垂直于磁感应强度B 进入磁场. 规律要点: (1)对称性:若带电粒子以与边界成θ角的速度进入磁场,则一定以与边界成θ角的速度离开磁场.如图1所示. (2)完整性:比荷相等的正、负带电粒子以相同速度进入同一匀强磁场,则它们运动的圆弧轨道恰构成一个完整的圆; 正、负带电粒子以相同速度进入同一匀强磁场时,两粒子轨道圆弧对应的圆心角之和等于2πrad ,即2+-+=??π,且2-=?θ(或 2+=?θ). 2.射出型:粒子源在磁场中,且可以向纸面内各个方向以相同速率发射同种带电粒子. 规律要点:(以图2中带负电粒子的运动轨迹为例) (1)最值相切:当带电粒子的运动轨迹小于 1 2 圆周时且与边界相切(如图2中a 点),则切点为带电粒子不能射出磁场的最值点(或恰能射出磁场的临界点); (2)最值相交:当带电粒子的运动轨迹大于或等于 1 2 圆周时,直径与边界相交的点(图2中的b 点)为带电粒子射出边界的最远点. 图2中,在ab 之间有带电粒子射出,设ab 距离为x ,粒子源到磁场边界的距离为d ,带电粒子的质量为m ,速度为υ,则 m υr= Bq ()2 222aO=r -d-r =dr-d () 2 22Ob=r -d 22224x=ab=aO+Ob=dr-d +r -d 例1.如图所示,在y <0的区域内存在匀强磁场,磁场方向垂直于xy 平面并指向纸面外,磁感应强度为B.一带正电的粒子以速度υ0从O 点射入磁场,入射方向在xy 平面内,与x 轴正向的夹角为θ.若粒子射出磁场的位置与O 点的距离为l ,求该粒子的电量和质量之比 m q 。 υ υ θ θ υ υ O - O + θ φ+ φ- 图1 图2 d S b O 2 O 1 a O

有界磁场习题汇总专题

有界磁场专题复习 一、带电粒子在圆形磁场中的运动 例1、圆心为O 、半径为r 的圆形区域中有一个磁感强度为B 、方向为垂直于纸面向里的匀强磁场,与区域边缘的最短距离为L 的O '处有一竖直放置的荧屏MN ,今有一质量为m 的电子以速率v 从左侧沿OO'方向垂直射入磁场,越出磁场后打在荧光屏上之P 点,如图1所示,求O 'P 的长度和电子通过磁场所用的时间. 例2、如图2,半径为cm r 10=的匀强磁场区域边界跟y 轴相切于坐标原点O ,磁感强度T B 332.0=,方向垂直纸面向里.在O 处有一放射源S ,可向纸面各个方向射出速度为s m v /102.36 ?=的粒子.已知α粒子质量 kg m 271064.6-?=,电量C q 19102.3-?=,试画出α粒子通过磁场 空间做圆周运动的圆心轨道,求出α粒子通过磁场空间的最大偏角. 二、带电粒子在半无界磁场中的运动 例3、如图3中虚线MN 是一垂直纸面的平面与纸面的交线, 在平面右侧的半空间存在一磁感应强度为B 、方向垂直纸面向外的匀强磁场.O是MN上的一点,从O点可以向磁场区域发射电荷量为+q 、质量为m 、速率为v 的粒子,粒子射入磁场时 的速度可在纸面内各个方向,已知先后射入的两个粒子恰好在磁场中给定的P点相遇,P到O点的距离为L,不计重力和粒子间的相互作用. (1)求所考察的粒子在磁场中的轨道半径. (2)求这两个粒子从O点射入磁场的时间间隔. 例4、如图4所示,在真空中坐标xoy 平面的0>x 区域内, M N O , 图1 M N . . . . . . . . . . . . 图4 o cm x /cm y /p ??? ??? ? ????? ?? ? ? ?

有界磁场带答案

有界磁场专题 1.如图所示,有界匀强磁场边界线SP ∥MN ,速率不同的同种带电粒子(重力不计且忽略粒子间的相互作用)从S 点沿SP 方向同时射入磁场。其中穿过a 点的粒子速度v 1与MN 垂直;穿过b 点的粒子速度v 2与MN 成60°角,则粒子从S 点分别到a 、b 所需时间之比为 A .1∶3 B .4∶3 C .3∶2 D .1∶1 2.如图所示的虚线框为一长方形区域,该区域内有一垂直于纸面向里的匀强磁场,一束电子以不同的速率从O 点垂直于磁场方向、沿图中方向射入磁场后,分别从a 、b 、c 、d 四点射出磁场,比较它们在磁场中的运动时间t a 、t b 、t c 、t d ,其大小关系是 A .t a t d >t c D .t a =t b >t c >t d 3.如图所示,正方形abcd 区域内有垂直于纸面向里的匀强磁场,O 点是cd 边的中点一个带正电的粒子(重力忽略不计)若从O 点沿纸面以垂直于cd 边的速度射入正方形内,经过时间t 0刚好从c 点射出磁场。现设法使该带电粒子从O 点沿纸面以与Od 成30°的方向(如图中虚线所示),以各种不同的速率射入正方形内,那么下列说法中正确的是 A .该带电粒子不可能刚好从正方形的某个顶点射出磁场 B .若该带电粒子从ab 边射出磁场,它在磁场中经历的时间可能是t 0 C .若该带电粒子从bc 边射出磁场,它在磁场中经历的时间可能是 2 30 t D .若该带电粒子从cd 边射出磁场,它在磁场中经历的时间 一定是350t 4.如图所示,在平面直角坐标系中有一个垂直纸面向里的圆形匀强磁场,其边界过原点O 和y 轴上的点a (0,L )。一质量为m 、电荷量为e 的电子从a 点以初速度v 0平行于x 轴正方向射入磁场,并从x 轴上的b 点射出磁场,此时速度的方向与x 轴正方向的夹角为60°。下列说法正确的是( ) A .电子在磁场中运动的半径为 B .电子在磁场中运动的时间为 23L v π C .磁场的磁感应强度0 2mv B eL = D .电子在磁场中做圆周运动的速度不变 5.如图所示,在直角坐标系的第一象限内有垂直纸面向里的匀强磁场,正、负离子分别以相同的速度从原点O 进入磁场,进入磁场的速度方向与x 轴正方向夹角为30°。已知正离子运动的轨迹半径大于负离子,则可以判断出 ( ) A .正离子的比荷大于负离子 B .正离子在磁场中运动的时间等于负离子 C .正离子在磁场中受到的向心力大于负离子 D .正离子离开磁场时的位置到原点的距离大于负离子 6.如图所示,以直角三角形AOC 为边界的有界匀强磁场区域,磁感应强度为B , ∠A.=60o , AO=L ,在O 点放置一个粒子源,可以向各个方向发射某种带负电粒子。已知粒子的比荷为 q m ,发射速度大小都为0qBL v m =。设粒子发射方向与OC 边的夹角为θ,不计粒子间相互作用及重力。对于粒子进入磁场后的运动,下列说法正确的是 O x B 30v y

2021高考物理新高考版一轮习题:第九章 微专题64 掌握“语言翻译”求解有界磁场问题(二)(含解析)

1.(多选)(2019·湖南长沙、望城、浏阳、宁乡四个县市区3月调研)如图1所示,直角三角形ABC中存在一匀强磁场,比荷相同的两个粒子沿AB方向自A点射入磁场,分别从AC边上的P、Q两点射出,不计粒子重力,则() 图1 A.从P点射出的粒子速度大 B.从Q点射出的粒子速度大 C.从P点射出的粒子,在磁场中运动的时间长 D.两粒子在磁场中运动的时间一样长 2.(2019·闽粤赣三省十校下学期联考)如图2所示,正六边形abcdef区域内有垂直于纸面向外的匀强磁场.一带电粒子从a点沿ad方向射入磁场,当速度大小为v1时,粒子从b点离开磁场;当速度大小为v2时,粒子从c点离开磁场,不计粒子重力,则v1与v2的大小之比为()

图2 A .1∶3 B .1∶2 C .2∶1 D.3∶2 3.(多选)(2019·山东德州市上学期期末)如图3所示,直角三角形 AOC 内有磁感应强度为B 的匀强磁场,方向垂直纸面向里,∠A =60°,AO =L .在O 点放置一个粒子源,可以向各个方向发射某种带负电的粒子,粒子的比荷为q m ,发射速度大小都为qBL m ,粒子重力忽略不计.对 于粒子进入磁场后的运动,下列说法正确的是( ) 图3 A .粒子在磁场中运动最长的时间为πm 3Bq B .粒子在磁场中运动最长的时间为πm Bq C .粒子在 AC 边界上可以射出的区域长度为L

D .粒子可以从 A 点射出 4.(多选)(2020·山东济宁市模拟)如图4所示,等腰直角三角形abc 区域内(包含边界)有垂直纸面向外的匀强磁场,磁感应强度的大小为B ,在bc 的中点O 处有一粒子源,可沿与ba 平行的方向发射大量速率不同的同种粒子,这些粒子均带负电、质量均为m 、电荷量均为q ,已知这些粒子均可以从ab 边离开abc 区域,ab =2l ,不考虑粒子的重力及粒子间的相互作用.关于这些粒子,下列说法正确的是( ) 图4 A .速度的最大值为 ( )2+1qBl m B .速度的最小值为qBl m C .在磁场中运动的最短时间为πm 4qB D .在磁场中运动的最长时间为πm qB 5.(2019·福建三明市期末质量检测)如图5所示,在一边长为a 的正方形区域内存在方向垂直纸面向里的匀强磁场.两个相同的带电荷量为-q (q >0)的粒子,质量均为m ,先后从P 点和Q 点以相同的速度v 0沿垂直于边界方向射入磁场,两粒子在图中M 点相遇.不计粒子的重力及粒子之间的相互作用,已知PO = 32a ,QO =36a ,OM =1 2 a ,则( )

带电粒子在匀强磁场中的运动

带电粒子在匀强磁场中的运动 四会中学邱又香 知识与能力目标 1.理解洛伦兹力对粒子不做功 2.理解带电粒子的初速度方向与磁感应强度垂直时,粒子在匀强磁场中做匀速圆周运动 3.推导半径,周期公式并解决相关问题 道德目标 培养学生热爱科学,探究科学的价值观 教学重点 带电粒子在匀强磁场中做匀速圆周运动的半径公式和周期公式, 并能用来解决有关问题。 教学难点 带电粒子在匀强磁场中做匀速圆周运动的条件 对周期公式和半径公式的定性的理解。 教学方法 在教师指导下的启发式教学方法 教学用具 电子射线管,环行线圈,电源,投影仪, 教学过程 一引入新课 复习:1 当带电粒子以速度v平行或垂直射入匀强磁场后,粒子的受力情况; 2 回顾带电粒子垂直飞入匀强电场时的运动特点,让学生猜想带电粒子垂直飞入匀强磁场的运动情况。 二.新课 1.运动轨迹 演示实验利用洛伦兹力演示仪,演示电子射线管内的电子在匀强磁场中的运动轨迹,让学生观察存在磁场和不存在磁场时电子的径迹。 现象:圆周运动。 提问:是匀速圆周运动还是非匀速圆周运动呢? 分析:(1)首先回顾匀速圆周运动的特点:速率不变,向心力和速度垂直且始终在同一平面,向心力大小不变始终指向圆心。 (2)带电粒子在匀强磁场中的圆周运动的受力情况是否符合上面3个特点呢? 带电粒子的受力为F洛=qvB ,与速度垂直故洛伦兹力不做功,所以速度v不变,即可得洛伦兹力不变,且F洛与v同在垂直与磁场的平面内,故得到结论:带电粒子在匀强磁场中做匀速圆周运动 结论:1、带电微观粒子的质量很小,在磁场中运动受到洛伦兹力远大于它的重

力,因此可以把重力忽略不计,认为只受洛伦兹力作用。 2、沿着与磁场垂直的方向射入磁场的带电粒子,在匀强磁场中做匀速圆周运动,洛伦兹力提供做向心力,只改变速度的方向,不改变速度的大小。 2.轨道半径和周期 ? 例:一带电粒子的质量为m ,电荷量为q ,速率为v ,它在磁感应强度为B 的匀强磁场中做匀速圆周运动,求轨道半径有多大? 由 得 可知速度越大,r 越大。 周期呢? 由 得 与速度半径无关。 实验:改变速度和磁感强度观测半径r 。 例1:一个质量为m 、电荷量为q 的粒子,从容器下方的小孔S1飘入电势差为U的加速电场,然后经过S3沿着与磁场垂直的方向进入磁感应强度为B的匀强磁场中,最后打到照相底片D上求: (1)求粒子进入磁场时的速率 (2)求粒子在磁场中运动的轨道半径 解:由动能定理得:qU = mv 2 /2, 解得: m qU v 2= 粒子在磁场中做匀速圆周运动得半径为:R =mv/qB=m m qU /2/qB=B q mU 2/2 ? 例2:如图,从粒子源S 处发出不同的粒子其初动量相同,则表示电荷量最小的带正电粒子在匀强磁场中的径迹应是( ) S mv R qB =2m T qB π=2v qvB m R =2R T v π=

高中物理复合场专题复习(有界磁场)

习题课一 带电粒子在匀强磁场中的运动 一、带电粒子在直线边界磁场中的运动 1.基本问题 【例题1】如图所示,一束电子(电量为e)以速度V 垂直射入磁感应强度为B 、宽度为d 的匀强磁场,穿透磁场时的速度与电子原来的入射方向的夹角为300 .求: (1)电子的质量m (2)电子在磁场中的运动时间t 【小结】处理带电粒子在匀强磁场中的运动的方法: 1、 找圆心、画轨迹(利用F ⊥v 或利用弦的中垂线); 2、 定半径(几何法求半径或向心力公式求半径) 3、 求时间(t= 0360θ ×T或t= v s ) 注意:带电粒子在匀强磁场中的圆周运动具有对称性。 ① 带电粒子如果从一直线边界进入又从该边界射出,则其轨迹关于入射点和出射点线段的中垂线对称,入射速度方向、出射速度方向与边界的夹角相等; ② 在圆形磁场区域内,沿径向射入的粒子,必沿径向射出。 2.应用对称性可以快速地确定运动的轨迹。 【例题2】如图—所示,在y <0的区域内存在匀强磁场,磁场方向垂直于xy 平面并指向纸面外,磁感应强度为B.一带正电的粒子以速度υ0从O 点射入磁场,入射方向在xy 平面内,与x 轴正向的夹角为θ.若粒子射出磁场的位置与O 点的距离为l ,求该粒子的电量和质量之比 m q 。 【审题】本题为一侧有边界的匀强磁场,粒子从一侧射入,一定从边界射出,只要根据对称规律①画出轨迹,并应用弦切角等于回旋角的一半,构建直角三角形即可求解。 【解析】根据带电粒子在有界磁场的对称性作出轨迹,如图9-5所示,找出圆心A ,向x 轴作垂线,垂足为H ,由与几何关系得: R L s i n θ=1 2 ① 带电粒子在磁场中作圆周运动,由 qv B mv R 00 2 = 解得R mv qB = ② ①②联立解得 q m v LB =20sin θ 【总结】在应用一些特殊规律解题时,一定要明确规律适用的条件,准确地画出轨迹是关键。 2qBd m v = 303603d t T v π= =

带电粒子在有界磁场中运动的临界问题

带电粒子在有界磁场中运动的临界问题 当某种物理现象变化为另一种物理现象或物体从一种状态变化为另一种状态时,发生这种质的飞跃的转折状态通常称为临界状态。粒子进入有边界的磁场,由于边界条件的不同,而出现涉及临界状态的临界问题,如带电粒子恰好不能从某个边界射出磁场,可以根据边界条件确定粒子的轨迹、半径、在磁场中的运动时间等。如何分析这类相关的问题是本文所讨论的内容。 一、带电粒子在有界磁场中运动的分析方法 1.圆心的确定 因为洛伦兹力F指向圆心,根据F⊥v,画出粒子运动轨迹中任意两点(一般是射入和射出磁场两点),先作出切线找出v的方向再确定F的方向,沿两个洛伦兹力F的方向画其延长线,两延长线的交点即为圆心,或利用圆心位置必定在圆中一根弦的中垂线上,作出圆心位置,如图1所示。 2.半径的确定和计算 利用平面几何关系,求出该圆的可能半径(或圆心角),并注意以下两个重要的几何特点: ①粒子速度的偏向角φ等于转过的圆心角α,并等于AB弦与切线的夹角(弦切角)θ的2倍,如图2所示,即φ=α=2θ。 ②相对的弦切角θ相等,与相邻的弦切角θ′互补,即θ+θ′=180°。 3.粒子在磁场中运动时间的确定

若要计算转过任一段圆弧所用的时间,则必须确定粒子转过的圆弧所对的圆心角,利用圆心角α与弦切角的关系,或者利用四边形内角和等于360°计算出 圆心角α的大小,并由表达式,确定通过该段圆弧所用的时间,其中T 即为该粒子做圆周运动的周期,转过的圆心角越大,所用时间t越长,注意t 与运动轨迹的长短无关。 4.带电粒子在两种典型有界磁场中运动情况的分析 ①穿过矩形磁场区:如图3所示,一定要先画好辅助线(半径、速度及延长线)。 a、带电粒子在穿过磁场时的偏向角由sinθ=L/R求出;(θ、L和R见图标) b、带电粒子的侧移由R2=L2-(R-y)2解出;(y见所图标) c、带电粒子在磁场中经历的时间由得出。 ②穿过圆形磁场区:如图4所示,画好辅助线(半径、速度、轨迹圆的圆心、连心线)。

高中物理带电粒子在匀强磁场中的运动

第四节带电粒子在匀强磁场中的运动 一、带电粒子在匀强磁场中的运动 1.若v∥B,带电粒子不受洛伦兹力,在匀强磁场中做____________运动. 2.若v⊥B,带电粒子仅受洛伦兹力作用,在垂直于磁感线的平面内以入射速度v做_______运动. (1)向心力由洛伦兹力提供:qvB=__________=__________; (2)轨道半径公式:R=mv qB ; (3)周期:T=2πR v = 2πm qB (周期T与速度v、轨道半径R无关); (4)频率:f=1 T = qB 2πm ; (5)角速度:ω=2π T =__________. 二、带电粒子在有界磁场中的运动 1.分析方法:找圆心、求半径、确定转过的圆心角的大小是解决这类问题的前提,确定轨道半径和给定的几何量之间的关系是解题的基础,有时需要建立运动时间t和转过的圆心角α之间的关系作为辅助. (1)圆心的确定 ①基本思路:与速度方向垂直的直线和图中弦的中垂线一定过圆心. ②两种情形 a.已知入射方向和出射方向时,可通过入射点和出射点分别作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心(如图所示,图中P为入射点,M为出射点).b.已知入射方向和出射点的位置时,可以通过入射点作入射方向的垂线,连接入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨道的圆心(如图所示,图中P为入射点,M为出射点). (2)半径的确定 用几何知识(勾股定理、三角函数等)求出半径大小. (3)运动时间的确定 粒子在磁场中运动一周的时间为T,当粒子运动的圆弧所对应的圆心角为α时,其运动时间为: t= α 360° T(或t= α 2π T). 2.规律总结 带电粒子在不同边界磁场中的运动 (1)直线边界(进出磁场具有对称性,如图) (2)平行边界(存在临界条件,如图) (3)圆形边界(沿径向射入必沿径向射出,如图)

带电粒子在有界磁场中运动的临界问题

带电粒子在有界磁场中运动的临界问题的解题技巧 湖北省恩施高中 陈恩谱 带电粒子(质量m 、电量q 确定)在有界磁场中运动时,涉及的可能变化的参量有——入射点、入射速度大小、入射方向、出射点、出射方向、磁感应强度大小、磁场方向等,其中磁感应强度大小与入射速度大小影响的都是轨道半径的大小,可归并为同一因素(以“入射速度大小”代表),磁场方向在一般问题中不改变,若改变,也只需将已讨论情况按反方向偏转再分析一下即可。 在具体问题中,这五个参量一般都是已知两个,剩下其他参量不确定(但知道变化范围)或待定,按 已知参数可将问题分为如下10类(2 5C ),并可归并为6大类型。 所有这些问题,其通用解法是:①第一步,找准轨迹圆圆心可能的位置,②第二步,按一定顺序.....尽可能多地作不同圆心对应的轨迹圆(一般至少5画个轨迹圆),③第三步,根据所作的图和题设条件,找出临界轨迹圆,从而抓住解题的关键点。 类型一:已知入射点和入射速度方向,但入射速度大小不确定(即轨道半径不确定) 这类问题的特点是:所有轨迹圆圆心均在过入射点、垂直入射速度的同一条直线上。 【例1】如图所示,长为L 的水平极板间有垂直于纸面向内的匀强磁场,磁感应强度为B ,板间距离也为L ,板不带电.现有质量为m 、电荷量为q 的带正电粒子(不计重力),从左边极板间中点处垂直磁感线以速度v 水平射入磁场,欲使粒子不打在极板上,可采用的办法是 A .使粒子的速度v 5BqL 4m C .使粒子的速度v >BqL m D .使粒子的速度BqL 4m

带电粒子在有界匀强磁场中的运动问题探析

带电粒子在有界匀强磁场中的运动问题探析 甘肃省 兰州市第五十八中学 李秀明 邮编730060 【摘要】带电粒子在有界匀强磁场中的运动类问题,因其能有效考察学生数理结合能力、图形图像能力、空间思维能力而成为历年高考的热点之一。本文从带电粒子在匀强磁场中运动的基本物理模型出发,结合数学知识探究解决此类问题的一般规律。 【关键词】带电粒子 匀强磁场 一、 带电粒子在匀强磁场中的受力特点和运动规律 电量为q 的带粒子以速度v 垂直进入匀强磁场B 时,受到的洛仑兹力f=qvB 始终与运动方向垂直,因此在匀强磁场中做匀速圆周运动,且有: F 向=f=r v 2m 解得:圆周运动半径r=qB m v 圆周运动周期T=qB m 2v r 2ππ= 二、 带电粒子在有界匀强磁场中的运动规律 当带电粒子穿越有界匀强磁场区域时,带电粒子在磁场中垂直磁场方向的平面内的运动轨迹为一段圆弧,两端点的半径和圆弧围成一个扇面,其几何尺寸与圆周运动的半径相联系,在磁场中运动的时间与扇面的圆心角相对应。解决这类问题的核心是正确画出在磁场中运动的扇面,然后利用半径公式求解相关距离,利用周期公式求解在磁场中运动所需时间。 例一、如图1所示,带电量为q 的正电荷以速度 v 从a 点射入垂直纸面向里的匀强磁场B 中,入射方向与磁场边界的夹角为θ,求出射点到入射点间的距 离及带电粒子在磁场中运动的时间。 解析:(1)、带电粒子在磁场中运动轨迹如图, 根据带电粒子在磁场中圆周运动规律和几何关系知:圆周半径:r=qB m v ① 出射点b 到入射点a 之间的距离:L=2rsin ② 解得:L=θsin qB mv 2 结论:两点间距离与带电粒子的比荷、入射速度、入射方向、磁感应强度都有关。 v v 正电荷 负电荷

专题、圆形有界磁场中“磁聚焦”规律(有问题详解)

专题、圆形有界磁场中“磁聚焦”的相关规律练习 当圆形磁场的半径与圆轨迹半径相等时,存在两条特殊规律; 规律一:带电粒子从圆形有界磁场边界上某点射入磁场,如果圆形磁场的半径与圆轨迹半径相等,则粒子的出射速度方向与圆形磁场上入射点的切线方向平行,如甲图所示。 规律二:平行射入圆形有界磁场的相同带电粒 子,如果圆形磁场的半径与圆轨迹半径相等,则所 有粒子都从磁场边界上的同一点射出,并且出射点 的切线与入射速度方向平行,如乙图所示。【典型题 目练习】 1.如图所示,在半径为R的圆形区域内充满磁感应强度为B 的匀强磁 场,MN 是一竖直放置的感光板.从圆形磁场最高点P 垂直磁场射入大量 的带正电,电荷量为q ,质量为m,速度为v 的粒子,不考虑粒子间的相 互作用力,关于这些粒子的运动以下说法正确的是() A .只要对着圆心入射,出射后均可垂直打在MN 上 B.对着圆心入射的粒子,其出射方向的反向延长线不一定过圆心 C.对着圆心入射的粒子,速度越大在磁场中通过的弧长越长,时间也越长 D .只要速度满足v qBR,沿不同方向入射的粒子出射后均可垂直打在MN 上m 2.如图所示,长方形abed的长ad=0.6m ,宽ab=0.3m ,O、e分别是ad、bc的中点,以e为圆心eb为半径的四分之一圆弧和以O为圆心Od为半径的四分之一圆弧组成的区域内有垂直纸面向里的匀强磁场(边界上无磁场) -7 磁感应强度B= 0.25T。一群不计重力、质量m=3×10-7kg 、电荷量 -3 2 q=+2 ×10-3C的带正电粒子以速度v=5×102m/s沿垂直ad方向且垂直于磁场射人磁场区域,则下列判断正确的是() A .从Od 边射入的粒子,出射点全部分布在Oa 边 B .从aO 边射入的粒子,出射点全部分布在ab 边 C.从Od边射入的粒子,出射点分布在ab边 D.从ad边射人的粒子,出射点全部通过b点 3.如图所示,在坐标系xOy 内有一半径为 a 的圆形区域,圆心坐标为O1(a,0),圆内分布有垂直纸面向里的匀强磁场,在直线y=a 的上方和直线x=2a 的左侧区域内,有一沿x 轴负方向的匀强电场,场强大小为E,一质量为m、电荷量为+ q(q>0)的粒子以速度v 从O 点垂直于磁场方向射入,当入射速度方向沿x 轴方向时,粒子恰好从O1 点正上方的 A 点射出磁场,不计粒子重力,求: (1)磁感应强度 B 的大小; (2)粒子离开第一象限时速度方向与y 轴正方向的夹角; (3)若将电场方向变为沿y轴负方向,电场强度大小不变,粒子以速度v从O点垂直于磁场方向、并与x 轴正方向夹角θ=300射入第一象限,求粒子从射入磁场到最终离开磁场的总

带电粒子在有界磁场中运动(超经典)..

带电粒子在有界磁场中运动的临界问题 “临界问题”大量存在于高中物理的许多章节中,如“圆周运动中小球能过最高点的速度条件”“动量中的避免碰撞问题”等等,这类题目中往往含有“最大”、“最高”、“至少”、“恰好”等词语,其最终的求解一般涉及极值,但关键是找准临界状态。带电粒子在有界磁场中运动的临界问题,在解答上除了有求解临界问题的共性外,又有它自身的一些特点。 一、解题方法 画图→动态分析→找临界轨迹。(这类题目关键是作图,图画准了,问题就解决了一大半,余下的就只有计算了──这一般都不难。) 二、常见题型(B为磁场的磁感应强度,v0为粒子进入磁场的初速度) 分述如下: 第一类问题: 例1 如图1所示,匀强磁场的磁感应强度为B,宽度为d,边界为CD和EF。一电子从CD边界外侧以速率v0垂直匀强磁场射入,入射方向与CD边界夹角为θ。已知电子的质量为m,电荷量为e,为使电子能从磁场的另一侧EF射出,求电子的速率v0至少多大?

分析:如图2,通过作图可以看到:随着v0的增大,圆半径增大,临界状态就是圆与边界EF相切,然后就不难解答了。 第二类问题: 例2如图3所示,水平线MN下方存在垂直纸面向里的磁感应强度为B的匀强磁场,在MN线上某点O正下方与之相距L的质子源S,可在纸面内360°范围内发射质量为m、电量为e、速度为v0=BeL/m的质子,不计质子重力,打在MN上的质子在O点右侧最远距离OP=________,打在O点左侧最远距离OQ=__________。 分析:首先求出半径得r=L,然后作出临界轨迹如图4所示(所有从S发射出去的质子做圆周运动的轨道圆心是在以S为圆心、以r=L为半径的圆上,这类问题可以先作出这一圆 ──就是圆心的集合,然后以圆上各点为圆心,作出一系列动态圆),OP=,OQ=L。 【练习】如图5所示,在屏MN的上方有磁感应强度为B的匀强磁场,磁场方向垂直纸面向里。P为屏上的一小孔,PC与MN垂直。一群质量为m、带电荷量为-q的粒子(不计重力),

带电粒子在有界磁场中运动的临界问题(同名9311)

带电粒子在有界磁场中运动的 临界问题(同名9311) 带电粒子在有界磁场中运动的临界问题的解题技巧带电粒子(质量m、电量q确定)在有界磁场中运动时,涉及的可能变化的参量有入射点、入射速度大 小、入射方向、出射点、出射方向、磁感应强度大小、磁场方向等,其中磁感应强度大小与入射速度大小影响的都是轨道半径的大小,可归并为同一因素(以“入射速度大小”代表),磁场方向在一般问题中不改变,若改变,也只需将已讨论情况按反方向偏转再分析一下即可。 在具体问题中,这五个参量一般都是已知两个,剩下其他参量不确定(但知道变化范围)或待定,按已知参数可将问题分为如下10类(C2),并可归并为6大类型。

所有这些问题,其通用解法是:①第一步,找准轨迹 圆圆心可能的位置,②第二步,按一定顺序 尽可能多地 作不同圆心对应的轨迹圆(一般至少 5画个轨迹圆), ③第三步,根据所作的图和题设条件,找出临界轨迹圆, 从而抓住解题的关键点。 类型一:已知入射点和入射速度方向,但入射速度大 小不确定(即轨道半径不确定) 【例1】如图所示,长为L 的水平极板间有垂直于 纸面向内的匀强磁场,磁感应强度为 B , 板间距离也为L ,板不带电.现有质量为 m 、电荷量为q 的带正电粒子(不计重力), ① ② r = ④厂⑧ 出射 二 ―⑨ 一*■⑩ 型 四 类 型 五 ⑤ ⑨ 入射方向、速度大 小; 出射方向、速度 大小; 类 型 六 ④ ⑥ 入射点、出射方向; 出射点,入射方向 ⑤ ⑥ ⑦ L X 为 * * i X * 丸 X

从左边极板间中点处垂直磁感线以速度 v 水平射入磁 场,欲使粒子不打在极板上,可采用的办法是 A ?使粒子的速度xBm 5BqL v > 4m BqL 5BqL 4m Bm L D ?使粒子的速度 朋X *旳 IX/ * “X 5 * —2“ -乂 电 X * X y 卜

带电粒子在匀强磁场中的运动-各个方向

高二物理选修3-1第三章磁场第六节带电粒子在匀强磁场中的运动有界磁场向各个方向运动专题专项训练 习题集 【知识点梳理】 在有界的磁场中从同一点向各个方向发射出去的相同的带电粒子在运动中,存在两种情况。当它们的速度大小不同时,在磁场中运动的半径不同,相同的带电粒子,在相同的磁场中运动的半径与速度成正比。当它们的速度大小相同时,在磁场中运动的半径相同,它们运动圆心的轨迹是在同一个圆周上。这个圆是以发射点为圆心,以带电粒子在此磁场中运动的半径为半径的圆。 【典题强化】 1.如图所示,在直角三角形abc区域内存在垂直于纸面向外的匀强磁场,磁感应强度大小为B,∠a=60°,∠b=90°,边长ab=L。一个粒子源在b点将质量为m,电荷量为q的带负电 粒子以大小和方向不同的速度射入磁场,在磁场中运动时间最长的粒子中, 速度的最大值是() A.qBL/3m B.qBL/3m C.qBL/2m D.qBL/m 2.如图所示,在直角三角形abc区域内存在垂直于纸面向外的匀强磁场,磁感应强度大小为B,∠a=600,∠b=900,边长ac=L。一个粒子源在a点将质量为m、电荷量为q的带正电粒 子以大小和方向不同的速度射入磁场,在磁场中运动时间最长的粒子中,速 度的最大值是() A.qBL/2m B.qBL/6m C.qBL/4m D.qBL/6m 3.如图所示,在xOy平面内有一半径为r的圆形磁场区域,其内分布着磁感应强度为B方向垂直纸面向里的匀强磁场,圆形区域边界上放有圆形的感光胶片,粒子打在其上会感光。在 磁场边界与x轴交点A处有一放射源A,发出质量为m,电量为q的粒子沿垂直 磁场方向进入磁场,其方向分布在由AB和AC所夹角度内,B和C为磁区边界 与y轴的两个交点.经过足够长的时间,结果光斑全部落在第Ⅱ象限的感光胶片 上,则这些粒子中速度最大的是() A.qBr/2m B.qBr/2m C.qBr/m D.(2+)qBr/m 4.如图所示,在半径为R的圆形区域内,有匀强磁场,磁感应强度为B,方向垂直于圆平面(未画出)。一群比荷都为α的负离子体以相同速率v0(较大),由P点在纸平面内向不同方向射入磁场中发生偏转后,又飞出磁场,则下列说法正确的是(不计重力)() A.离子飞出磁场时的动能一定相等 B.离子在磁场中运动半径不一定相等 C.沿PQ方向射入的离子飞出时偏转角最大 D.由Q点飞出的离子在磁场中运动的时间最长 5.如图所示,在半径为R的圆形区域内,有匀强磁场,方向垂直于圆平面(未画出).一群相同的带电粒子以相同速率v0,由P点在纸平面内向不同方向射入磁场.当磁感应强度大小为B1时,所有粒子出磁场的区域占整个圆周长的1/3;当磁感应强度大小减小为B2时,这些粒子在磁场中 运动时间最长的是2πR/3v0.则磁感应强度B1、B2的比值(不计重力)是()

高三物理有界磁场专题复习

高三物理有界磁场专题复习 一、带电粒子在圆形磁场中的运动 例1、圆心为O 、半径为r 的圆形区域中有一个磁感强度为B 、方向为垂直于纸面向里的匀强磁场,与区域边缘的最短距离为L 的O '处有一竖直放置的荧屏MN ,今有一质量 为m 的电子以速率v 从左侧沿OO'方向垂直射入磁场,越出磁场后打在荧光屏上之P 点,如图1所示,求O 'P 的长度和电子通过磁场所用的时间. 解析 :电子所受重力不计。它在磁场中做匀速圆周运 动,圆心为O ″,半径为R 。圆弧段轨迹AB 所对的圆心角为θ,电子越出磁场后做速率仍为v 的匀速直线运动, 如图 2所示,连结OB ,∵△OAO ″≌△OBO ″,又OA ⊥O ″A ,故 OB ⊥O ″B ,由于原有BP ⊥O ″B ,可见O 、B 、P 在同一直线上,且∠O 'OP =∠AO ″B =θ,在直角 三角形OO'P 中,O 'P =(L +r )tan θ,而) 2 (t a n 1) 2 t a n ( 2t a n 2 θ θ θ-= , R r =)2tan(θ ,所以求得R 后就可以求出O 'P 了,电子经过磁 场的时间可用t =V R V AB θ= 来求得。 由R V m BeV 2 =得R=θtan )(.r L OP eB mV += mV eBr R r = =)2tan(θ , 2 222222) 2 (tan 1) 2tan(2tan r B e V m eBrmV -=-=θθ θ 2 222 2,)(2tan )(r B e V m eBrmV r L r L P O -+=+=θ, )2arctan(2 2222r B e V m eBrmV -=θ )2arctan(2 2222r B e V m eBrmV eB m V R t -==θ 例2、如图2,半径为cm r 10=的匀强磁场区域边界跟y 轴相切于坐标原点O ,磁感强度 T B 332.0=,方向垂直纸面向里.在O 处有一放射源S ,可向纸面各个 方向射出速度为s m v /102.36 ?=的粒子.已知α粒子质量 kg m 271064.6-?=,电量C q 19102.3-?=,试画出α粒子通过磁场空 间做圆周运动的圆心轨道,求出α粒子通过磁场空间的最大偏角. M N O , 图1 M N O , 图2

圆形磁场中的几个典型问题

圆形磁场中的几个典型问题 许多同学对带电粒子在圆形有界磁场中的运动问题常常无从下手,一做就错.常见问题分别是“最值问题、汇聚发散问题、边界交点问题、周期性问题”.对于这些问题,针对具体类型,抓住关键要素,问题就能迎刃而解,下面举例说明. 一、最值问题的解题关键——抓弦长 1.求最长时间的问题 例1 真空中半径为R=3×10-2m的圆形区域内,有一磁感应强 度为B=0.2T的匀强磁场,方向如图1所示一带正电的粒子以初速 度v0=106m / s 从磁场边界上直径ab 一端a 点处射入磁场,已知 该粒子比荷为q/m=108C / kg ,不计粒子重力,若要使粒子飞离磁 场时偏转角最大,其入射时粒子初速度的方向应如何?(以v0与 Oa 的夹角 表示)最长运动时间多长? 小结:本题涉及的是一个动态问题,即粒子虽然在磁场中均做同一半径的匀速圆周运动,但因其初速度方向变化,使粒子运动轨迹的长短和位置均发生变化,并且弦长的变化一定对应速度偏转角的变化,同时也一定对应粒子做圆周运动轨迹对应圆心角的变化,因而当弦长为圆形磁场直径时,偏转角最大. 2 .求最小面积的问题 例2 一带电质点的质量为m,电量为q,以平行于Ox 轴 的速度v从y轴上的a点射人如图3 所示第一象限的区域.为 了使该质点能从x轴上的b点以垂直于x轴的速度v 射出,可 在适当的地方加一个垂直于xoy平面、磁感应强度为B的匀强 磁场.若此磁场仅分布在一个圆形区域内,试求此圆形磁场区 域的最小面积,重力忽略不计. 小结:这是一个需要逆向思维的问题,而且同时考查了空 间想象能力,即已知粒子运动轨迹求所加圆形磁场的位置.解决此类问题时,要抓住粒子运动的特点即该粒子只在所加磁场中做匀速圆周运动,所以粒子运动的1 / 4 圆弧必须包含在磁场区域中且圆运动起点、终点必须是磁场边界上的点,然后再考虑磁场的最小半径.上述两类“最值”问题,解题的关键是要找出带电粒子做圆周运动所对应的弦长. 二、汇聚发散问题的解题关键——抓半径 当圆形磁场的半径与圆轨迹半径相等时,存在两条特殊规律; 规律一:带电粒子从圆形有界磁场边界上某点射入磁场,如果圆形磁场的半径与圆轨迹半径相等,则粒子的出射速度方向与圆形磁场上入 射点的切线方向平行,如甲图所示。 规律二:平行射入圆形有界磁场的相同带电粒 子,如果圆形磁场的半径与圆轨迹半径相等,则所 有粒子都从磁场边界上的同一点射出,并且出射点 的切线与入射速度方向平行,如乙图所示。 例3 如图5所示,x 轴正方向水平向右,y 轴正方向竖直向 上.在半径为R 的圆形区域内加一与xoy平面垂直的匀强磁场.在 坐标原点O 处放置一带电微粒发射装置,它可以连续不断地发射 具有相同质量m 、电荷量q ( q > 0 )且初速为v0的带电粒子,不

带电粒子在有界匀强磁场中的运动归类解析

1、进入磁场. 正、负带电粒子以相同速度进入同一匀强磁场时,两粒子轨道圆弧对应的圆心角之和等于2πrad ,即2+-+=??π,且2-=?θ(或2+=?θ). 2、射出型:粒子源在磁场中,且可以向纸面内各个方向以相同速率发射同种带电粒子. 规律要点:(以图2中带负电粒子的运动轨迹为例) (1)最值相切:当带电粒子的运动轨迹小于 1 2 圆周时且与边界相切(如图2中a 点),则切点为带电粒子不能射出磁场的最值点(或恰能射出磁场的临界点); (2)最值相交:当带电粒子的运动轨迹大于或等于 1 2 圆周时,直径与边界相交的点(图2中的b 点)为带电粒子射出边界的最远点. 图2中,在ab 之间有带电粒子射出,设ab 距离为x ,粒子源到磁场边界的距离为d ,带电粒子的质量为m ,速度为υ,则 m υr= Bq a O r -d 二、双直线边界磁场 规律要点: 最值相切:当粒子源在一条边界上向纸面内各个方向以相同速率发射同一种粒子时,粒子能从另一边界射出的上、下最远点对应的轨道分别与两直线相切.图3所示. 对称性:过粒子源S 的垂线为ab 的中垂线. -

在图3中,ab 之间有带电粒子射出,可求得ab=最值相切规律可推广到矩形区域磁场中. 例1.一足够长的矩形区域abcd 内充满磁感应强度为B 、方向垂直纸面向里的匀强磁场,矩形区域的左边界ad 宽为L ,现从ad 中点O 垂直于磁场射入一带电粒子,速度大小为0υ方向与ad 边夹角为30°,如图4所示。已知粒子的电荷量为q ,质量为m (重力不计)。 (1)若粒子带负电,且恰能从d 点射出磁场,求0υ的大小; (2)若粒子带正电,使粒子能从ab 边射出磁场,求0υ的取值范围以及此范围内粒子在磁场中运动时间t 的范围。 解析:此例包括单直线边界进入型、双直线边界中的最值相切两种类型。(1)为单直线边界进入型,由图5可知:O 1为轨道圆心,由于对称性,速度的偏转角θ1=60°,故轨道半径12 L r = 据2 001m υq υB r =, 则102qBr qBL υm m == (2)当0υ最大时,轨道与cd 相切: 11cos602 L R R -?=,得R 1=L 则1max qBR qBL υm m == 当0υ最小时,轨道与ab 相切: 22sin 302 L R R +?=,得23L R = 则2min 3qBR qBL υm m == 03q B L q B L υm m ∴<≤ 带电粒子从ab 边射出磁场,当速度为max υ时,运动时间最短。 min 15053606m t T Bq π== 速度为min υ时,运动时间最长 m a x 24043603 m t T Bq π== ∴粒子运动时间t 的范围5463m m t Bq Bq ππ≤< 三、圆形边界 1.圆形磁场区域: (1)相交于圆心:带电粒子沿指向圆心的方向进入磁场,则出磁场时速度矢量的反向延长线一定过圆心,即两速度矢量相交于圆心;如图6. (2)直径最小:带电粒子从圆与某直径的一个交点射入磁场则从该直径与圆的另一交点射出时,磁场区域最小.如图7所示. 2.环状磁场区域: (1)带电粒子沿(逆)半径方向射入磁场,若能返回同一边界,则一定逆(沿)半径方向射出磁 ’ 图8 图4 图5 O 3 O 2 O 1 60°

相关文档
最新文档