“基本粒子”研究的发展

“基本粒子”研究的发展
“基本粒子”研究的发展

“基本粒子”研究的进展

的发现,使“基本粒子和复合粒子的区分从此根本消失了”,“分割”与“组合”等词已失去了意义。“物质无限可分”的思想在这里必然要遭到恶性循环,而物质存在基本最小单位的假说,也有难以逾越的障碍……

──海森堡如是说

一、基本粒子究竟是什么?

人们常爱思索的一个问题是:世界的本原是什么?古代许多著名的哲学家曾用主观的臆想和直觉给出了形形色色的回答。比如古希腊哲学家泰勒斯的“万物由水构成”;毕达哥拉斯的“万物皆数”;赫拉克利特的“火是万物的本质,万物都在永恒的变化着”;巴门尼德的“事物的永恒不变性”,恩培多克勒的“四元素说”,以及德漠克利特的原子论。中国古代也有“元气说”和“阴阳五行说”等。这些说法中并不乏真知灼见。1.人们一度认为:电子、中子、质子是物质的基本粒子

近代,首先是道尔顿复活了原子论,并且比较令人信服地把原子论置于坚实的科学基础之上。19世纪末,英国物理学家约瑟夫·约翰·汤姆孙(1856~1940年)发现了电子,使人们不再认为原子是不可分割的。随着人类生产力的发展和实验技术的进步,科学家又相继发现,组成原子的原子核也是由质子和中子构成的。与此同时,人类的科学抽象思维和认知能力也获得了长足的进步。到1926年,量子力学的建立奠定了现代理论物理的基础。当时,物理学家眼中的世界还是比较简单的,他们认为世界是电子、中子、质子三种粒子构成的,而光子是辐射场量子,因此,构成物质世界的基本单元只有电子、中子和质子三类基本粒子。但擅长于哲学思考的理论物理学家已提出了某些重要的看法。海森堡在思考了云室中电子的径迹后就问,这径迹真的是电子的轨迹吗?实验中观测到的只不过是一些电离化了的气体离子所凝聚的微小液滴。从这一思考中,他得出了著名的“不确定原理”。并进而考虑到电子究竟是什么?难道它不是人们为概括某些现象所作的假设吗?可惜这些想法并没有为潮流所重视。

2. 后来竟然发现了几百种粒子

在随后的年代中,新的粒子不断被发现。自狄拉克1928年从理论上预言了反粒子的存在并很快被实验物理学家观测证实以后,物理学掀起了一次搜寻基本粒子的浪潮。到今天,人们己发现了几百种形形色色的粒子,但它们大多数都是非常短命的,它们之间的相互转化是极为普遍的。因此,物理学家又提出了许多模型和理论,如夸克模型、大统一理论等。这些理论又预言了更深层次的基本粒子,层次越深所受的束缚就更大,于是,粒子物理学家们花费了昂贵的代价,建造起能量越来越高的加速器,希望不断重温狄拉克时代的美梦——理论上预言的粒子被观测实证。当然,他们也有许多收获,如丁肇中发现J/ (pusai) 粒子等。此时,物理学家们陶醉在他们的收获之中,对于海森堡的一些相反观点似乎不大愿意接受。

3. 海森堡认为:宇宙的本质是能量和对称性

海森堡1975年在德意志物理学年会上作了题为《基本粒子是什么》的报告。在这个报告中,他强调了在基本粒子层次,“分割”与“组合”等词已失去了意义。“基本粒子和复合粒子的区分从此根本消失了”,因为,相对论早就表明,质量和能量是一回事,早已在原子弹的爆炸声中为世人所体验。在微观世界中,所谓粒子只不过是能量在某种对称性原则限制下的表现形式。两个高能粒子的碰撞会产生出众多的粒子,并不能由此断定两个粒子是由这众多的粒子构成。因此,经典意义下的分割和组合已失去了意义。

拿夸克模型来说,夸克的质量要比由几个夸克构成的“基本粒子”的质量大,这种情形显然与常识不相容,其原因是什么?原来夸克处于一种极强的束缚之中,“束缚能”就体现为夸克的质量,由此产生了所谓的“夸克禁闭”。要打破这种禁闭,需要极高的能量,这样高的能量非现代技术不行,所以现在的科学家就不断提高加速器的能量。可是,即使将来某一天发现了自由夸克,人们还是要问,夸克是由什么构成的问题,人们也可以提出某种模型,设想夸克是由更深一层次的某种粒子构成,而这种粒子的质量比夸克还大,因其所受的束缚比夸克更强,要观测到它需要的能量也更强……这样的推断能无限地进行下去吗?古典的“物质无限可分”的思想在这里遭到了恶性循环,物质存在最小基本单元的假说,也有难以逾越的障碍。这种无限小的两难推论,从古希腊一直到近代,哲学家们一直

试图解决它而难以如愿以偿。然而,现代物理学的发现已使人们可以重新审查这一两难推论。只要把前述问题换个提法,那么就不是夸克构成粒子,而是两个粒子在某个极限能量以上相碰撞,可以产生夸克了。能量越大,可以产生的粒子的质量越大,这种大质量粒子在平常是观测不到的。可见,宇宙的本质就是能量和对称性:对称性构成了一些基本规则,确立了一些限制;只要有足够的能量,在这些限制下又可以形成形形色色的众多粒子。

4. 海森堡寻找“粒子的动力学方程”

海森堡把粒子与原子、分子的定态相类比,原子和分子的定态可以由动力学方程即薛定愕方程加上边界条件来确定,而基本粒子的动力学方程还没有找到,一旦找到它再加上边界条件,就可以从理论上预言所有的粒子,包括夸克及比夸克质量更大的粒子,直至无穷。就象解薛定愕方程得出的能级可以直趋无穷大一样,这种基本粒子的动力学方程,在某些边界条件下,可能也会有无穷大的能级。海森堡晚年致力于寻找这一方程,不但精神可贵,而且思想也有过人之处,但由于“偏离”现代物理学的主流而未引起人们足够的重视。究竟海森堡是对还是错的,相信未来会作出判决。因此,基本粒子是什么仍说不清。

随着理论研究的深入和实验技术的提高,“基本粒子”大家庭的成员已发展到目前的700百多种。新成员的大量发现,使人们认识到以前所说的“基本粒子”并不都是基本的,所以现在往往统称它们为“粒子”,而不再称作“基本粒子”。

二、“基本粒子”到底有多少种

基本粒子的概念也在随着物理学的发展而不断的变化着,人们的认识也在朝着揭示微观世界的更深层次不断地深入。

1. “基本粒子”的“祖孙”三代

从汤姆孙发现电子到1932年发现中子,人们认识到质子、中子、电子和光子可以称为基本粒子。当时一度认为一切都已搞清楚:质子和中子构成一切原子核;原子核和电子则构造了自然界的一切原子和分子,而光子仅仅是构成光与电磁波的最小单元。然而好景不长,对物质结构的这样一种“圆满”的解释并没能持续多久,人们很快发觉当时所发现的基本粒子不能圆满地解释核力。

第一代:

1935年著名的日本物理学家汤川秀树(1907~1981年)大胆假设,很可能还有未曾发现的新粒子。汤川秀树认为,就像电磁相互作用是通过交换光子而实现的那样,核力是通过核子间交换一种介子而实现的。他还估算出了这种粒子的质量大约是电子质量的200倍。两年之后,美国物理学家卡尔·戴维·安德孙(1905~年)在宇宙射线中发现了一种带电粒子,它的质量是电子的200倍左右,被命名为“μ(缪)介子”。理论预言的成功使人们倍感欣慰,但进一步的考察却令人十分扫兴。因为这种μ介子根本不与核子相互作用,很明显,它不可能是汤川秀树所预言的粒子。

1947年,巴西物理学家塞色,M·G·拉帝斯等人利用核乳胶在宇宙射线中又发现了一种介子——π介子。π介子的性质完全符合汤川秀树的预言,能够解释核力。实际上,“μ介子”不是介子而是一种轻子,所以现在将μ介子称为“μ子”。到1947年,人们认识的粒子已达14种之多。其中包括当时已发现的光子(γ),正负电子(e±),正负μ子(μ±),三种π介子(π±, π0),质子(p)和中子(n)10种;另外4种就是1956年在实验室中被发现的正反电子中微子()、反质子()和反中子()。这14种粒子各有用武之地,其中质子、中子和电子构成一切稳定的物质;光子是电磁力的传递者,π介子传递核力,中微子在β衰变中扮演不可缺少的角色(β衰变是原子核自发地放射出电子或正电子,或者俘获原子内电子轨道上的一个电子,而发生的转变);而μ子则在宇宙射线中出现。以上这些就构成了第一代粒子。

第二代:

稳定的秩序似乎并没有维持多久,“完满”的旧理论很快就被一系列新的疑问所冲破。在发现π介子的1947年,人们利用宇宙射线在云室中拍下了两张有V字形径迹的照片,衰变产物是π±介子和质子(p)。这两种径迹不能用任何当时已发现的第一代粒子来解释,于是人们很自然的想到,这一定是两种未发现的粒子衰变所形成的。在之后的几年里,人们拍摄了十多万张宇宙射线照片,终于发现了这两种不带电的新粒子。其中一个质量为电子质量的1000倍,现在被叫做“k0介子”;另一个约为电子质量的2200倍,现在称为λ粒子(读“兰布塔”)。我们称它们为第二代粒子,这是因为它们有两个明显的特点:(1) 产生快,衰变慢;(2) 成对(协同)产生,单个衰变。这些特点用过去的理论是无法解释的,所以又称它们为“奇异粒子”。

为了对这些奇异粒子进行定量研究,光靠宇宙射线是不够的。50 年代初,一些大型加速器陆续建成,使人们有可能利用加速器所加速的粒子来轰击原子核,以研究奇异粒子。

到1964年人们又陆续发现了一批奇异粒子,使人们发现的粒子种类达到了33种。这些奇异粒子统称为“第二代粒子”。

第三代:

如果我们把已发现的30多种粒子按它们的稳定程度来分类,那么其中有的粒子是稳定的,例如质子、电子等;有的粒子却要自发地衰变成其它粒子,例如μ±、π±、π0、k0、λ0……等。它们衰变的时间一般在10-20~10-16秒或大于10-10秒,分别属于电磁作用衰变和弱作用衰变。到了60年代,由于加速器的能量逐步提高和高能探测器的迅速发展,在实验上也发现了衰变时间在10-24~10-23秒范围的快衰变粒子,其衰变属强作用衰变。这些粒子被称为“共振态粒子”,也称“第三代粒子”。由于它们的出现,使粒子种类猛增到上百种。

2. 新粒子仍在不断被发现

第三代粒子的骤增已使人们感到惊奇,然而随着时间的推移,新粒子还在不断被发现着。

1974年,著名的美籍华人物理学家丁肇中(1936~年)领导的实验组,利用质子——质子碰撞,发现了一种新粒子,命名为“J粒子”。同年利希特小组在正负电子对撞机上,发现了ψ粒子(读“普西”),其性质与J粒子完全一样。因此人们将它称为“J/ψ粒子”,并测出它的质量为3.1吉电子伏,约为质子的3倍,而寿命却为~10-20秒,比按前三代粒子规律推出的结果长了3~4个数量级。这些性质是原来所掌握的三代粒子规律所不能解释的。

1977年,实验上又发现了一个更大质量的I(9466)粒子,比J/ψ粒子还重两倍多,也属于新粒子。

在西欧联合核子中心相继发现了传递弱相互作用的粒子W±和Z0。

前不久,美国和西欧联合核子中心相继宣布有三种中微子,就是电子中微子(νe)、μ子中微子()和τ子中微子()。这一结果在粒子物理界引起了轰动,以至于有人认为这有可能获得诺贝尔奖金!这一切使粒子家族的谱系似乎变得明朗起来。

新粒子的陆续发现不断冲击着旧的理论,迫使人们努力提出新的说法,新理论的预言又要求实验去验证,这就是当前粒子物理学发展的特点之一。

半个世纪以来、陆陆续续发现的几百种粒子已形成了一个庞大的粒子家族,依照它们参与相互作用的类型的不同,可以把它们分成三类:强子、轻子和媒介子。

强子是参与强相互作用粒子的总称,其中包括重子和介子;例如质子、中子、超子、π介子、J/ψ粒子等都属于这一类,此类粒子数最多,占了粒子总数的绝大部分。它们有内部结构,都是由夸克(层子)和反夸克(反层子)组成的。目前实验上已发现并已确认的强子有363种,已发现但未确认的还有409种。

轻子仅参与弱相互作用和电磁相互作用,而不参与强相互作用。现在已经发现的轻子有6种,就是e-(电子)、νe(电子中微子)、μ-(负缪子)、(缪子中微子)、τ-(负陶子)、(陶子中微子),加上它们的反粒子共12种。

媒介子又称“规范粒子”,它们是专门传递相互作用的粒子。其中光子传递电磁相互作用;和Z0粒子传递弱相互作用;胶子传递强相互作用;引力子则传递引力相互作用(胶子和引力子目前尚未直接发现)。

现在已发现有788种粒子。这么庞大的粒子家族,难道都是基本的吗?

3. 微观世界的“最小组分”

目前已认为强子有结构、是由夸克和反夸克组成的。把正反粒子合计,夸克有10种,轻子有12种,媒介子有12种,都还没有实验证明它们有内部结构。它们是迄今为止所观察到的构成宇宙物质的最小单元。夸克按照味道分,有上夸克 、下夸克d、奇夸克S、桀夸克c、底夸克b五种。加上它们的反粒子,共有10种。如果再考虑每味夸克有三种色,那么夸克就有30种。

理论上还认为有另一味夸克——顶夸克(t),1984年西欧中心已发现了顶夸克的迹象。正反顶夸克各有3色。因此,可以认为夸克有36种。

实验和理论还表明,这些基本成分有某种对称性。如果我们把轻子按照质量大小及其性质分类,加上它们对应的中微子,那就可以分为下列三代,即

而且夸克相应的也可分为三代,与轻子三代对应,即

于是,我们可以说,这三代轻子和三代夸克(如果考虑色,那么每代还应当有3组),加上12种媒介子就是目前已发现的微观世界的最小组分。轻子和夸克都是所谓“费米子”,而媒介子是所谓“玻色子”。费米子是组成宇宙物质的基元,玻色子是传递相互作用的。这样一来,使我们对宇宙万物的了解,有豁然开朗之感,而且“三代的划分”在形式上似乎与化学元素的周期表颇有几分相似。

4. 并非最终结论

到目前为止,粒子物理所取得的成就,应该看成是物理学发展过程中的里程碑。它显然不是终点,而是一个新的起点。

70年代未到80年代初,已经有许多粒子物理学家在探索夸克和轻子的内部结构问题,提出了许多可能的“亚夸克”模型,并引起许多学者对这类模型的广泛讨论。这是一个诱人的方向,但是,朝这个方向、究竟能有多大的突破?这种“无限分割下去”的思路是否对头?还是应该换各思路:

“粒子只不过是能量在某种对称性限制下的表现形式……”看来,粒子物理学一定还会有更大的进展。

基本粒子关系

基本粒子关系 强子就是参与强相互作用的粒子,可以分为介子和重子,目前粒子物理的夸克模型认为介子是由夸克和反夸克组成,重子则有三个夸克(或者反夸克)组成,重子可以再分为核子(包括质子和中子)和超子(因为质量超过核子的质量而得名)。电子和中微子等属于轻子,不参与强相互作用。 目前粒子物理认为轻子,夸克等没有结构,是点粒子。 电子质子等粒子带有电荷,带电粒子之间可以发生电磁相互作用,而电磁作用场的量子是光子,即带电粒子之间通过交换光子而发生相互作用。 夸克带有颜色(或者色荷),夸克之间,夸克和胶子之间,胶子之间,可以发生色相互作用,而色相互作用场的量子是胶子。 光子和胶子都是传递相互作用的媒介粒子,目前认为它们也没有结构,是个点粒子。 第一类:纯单个粒子,中微子,电子,大统一粒子,夸克。 第二类:由两个基本粒子合成的粒子,如π介子,W、Z玻色子。 第三类:由三个基本粒子合成的粒子,如:中子,质子及其它强子。 第一类粒子中的大统一粒子不能游离态存在,它们必须二个并存,构成了π介子,和W玻色子。(特别注意的是,这一点与传统理论完全不同,为什么要这样猜想呢?你如果接着往下看就明白了。)第一类中的夸克也不能单独存在,它们必须三个并存在,构成了质子与中子等强子 |评论 1. 强子和轻子是构成世界万物的两个基本类别 ①强子:由夸克组成的粒子。两个夸克组成的强子叫介子;三个夸克组成的强子叫重子。所以,不管是介子还是重子,都是强子。与之对应的是轻子。 ②轻子:目前已知的的轻子有三代,包括电子及电子中微子、缪子及缪子中微子、tau子及tau子中微子。轻子之所以叫轻子,主要是因为轻子一直到现在都没有发现其有内部结构,认为轻子是点粒子。 2. 胶子是传递强相互作用的传播子。强相互作用的粒子,即强子是有夸克组成,夸克和夸克之间形成的介子或者重子就是靠夸克间的胶子相互传递从而耦合在一起的。 3. 根据色禁闭理论,单独的夸克是不存在的,而胶子是传播子,严格意义上将,比较两者的大小根本没有任何意义,因为单独的夸克不存在,存在的夸克都以介子或强子而存在。没法和胶子进行定量的比较。胶子没有固定的尺寸,胶子和光子一样,都是传播子,只不过胶子传播强相互作用力,而光子传播电磁相互作用力。 发给我自己..强子,重子,介子,中微子,轻子 2008-07-13 23:55 强子提供强相互作用的介子 质子、中子里有些什么质子、中子里有些什么 对强子结构和标准模型研究的一再成功已表明夸克和色场是强子世界的最基本组成部分.尽管如此,强子物理还存在一些悬而未决的困难,如夸克幽禁、质子自旋危机、质子衰变等.

能量物质与基本粒子

能量物质与基本粒子 能量物质即能量微粒是宇宙最小粒子、是处于最底层的粒子,本身并没有物质属性和能量属性的区别,只是简单具备场力属性。能量微粒是相互之间吸引接触时排斥力的场力颗粒,这种场力颗粒是不可再分的,是宇宙大爆炸的喷射微粒。大爆炸初期或局部区域喷射微粒密度大到吸力下几乎接触,经斥力平衡成高速运动线体,如正电子、负电子、重子、γ射线等。随着宇宙不断膨胀密度降低使相互间不能吸到一起而成为无序运动状态并充满宇宙空间,成隐形能量和隐形物质。 能量微粒具有场力聚集效应,无序运动团吸引力集中对外显现,场力效果显能量效应,力传递本身显物质效应。能量微粒有序运动但未达到线体形成密度,即能量微粒密度比散状密度大但又比几乎接触密度小,这种有序运动形式既显能量属性又显物质属性叫电磁波。电磁波形成是聚集能量微粒团膨胀与间隙收缩呈现周期性变化,微粒团收缩时从中心垂直方向挤出膨胀成垂直方向膨胀微粒团,同样伴随则缩,如此交替循环使力属性由电场变为磁场、磁场变电场交替变化。 超微观物质有四态:能量微粒无序运动为第一形态是隐形能量和隐形物质,对外产生引力经空间扭曲传播成暗物质引力,存在于宇宙任何空间只是密度有不同;纠结成运动线体为第二形态是原子基本粒子、宏观物质初始微粒;有序运动电磁波为第三形态是能量与物质过渡体,是一种能量微粒传播方式,同时具有能量属性和物质属性;还有第四形态即能量微粒有序定向流动形态,能量微粒流动是另一种传播方式,可以从宇宙空间一个地方传到另一个地方实现转移。 在受外磁力定向推动能量微粒从一端运动到另一端聚集形成场力强度差也叫电势差,一端对另一端场力差靠空间扭曲传递形成电场,空间扭曲只传递力形式不传递物质和能量。能量微粒流动轨迹成封闭状态时产生不停止环流,若轨迹是具有自由电子导体环,这时空间电场力驱驶自由电子在导体内移动形成电流。能量微粒离散状态有序运动下场合力在空间传播成极性电场,能量微粒定向运动从垂直方向挤出作有序运动场合力在空间传播成极性磁场。 无论正电子还是负电子场力都是定向极性的,我们看到正电子或负电子点电荷各向同性实则是无数电子场力各方向均衡相等但显露极性,经空间扭曲向外传递场力。电子主体是环圈运动线体是物质属性,由能量微粒构成锥体拖尾产生能量属性。能量微粒是最小场颗粒,线体是微观物质基本单元,能量微粒收缩运动构成环饼是电磁波基本单元。能量微粒定向流动构成微粒团密度差,经空间扭曲传递吸引力差别。能量微粒是最小颗粒,各种形态物质只是能量微粒不同运动形式。 能量微粒无序运动合力偏振角为零成无极性场力也是万有引力,有序运动下的电场、磁场合力偏振角不为零产生极性场力即电场力和磁场力。电场力、磁场力、引场力不同属性由能量微粒运动形式不同产生,场力形式在空间扭曲传播成为力场,随着运动形式改变这些场力属性也随之改变。将电磁波认为是能量与物质之间的过渡,随着运动形式改变物质可经过渡变为能量、能量也可经过渡变为物质,物质属性和能量属性随之转化。 物质由原子构成、原子由重子、正电子和负电子基本粒子构成,基本粒子则是作环圈运动的能量微粒线体并且带有锥体状能量微粒有序运动拖尾,既有物质属性又有能量属性。电子处于流动状

论美的本质王东岳

论“美”的本质 王东岳 关于美和美学的问题,讨论方式有两种:一种是讨论美学的具体范畴,涉及美学和审美的一般问题;另一种是讨论美的本质,也就是问美这个东西究竟是什么。而第二种讨论方式只能是一种哲学方式。我今天是在哲学的意义上讨论美的本原,因此,各位同学可能会认为它和美离得比较远,然而,正因为离得比较远,于是它才可能真正把握美的本质。 一 我们首先谈谈美的问题的提出。 在哲学史上,第一个提出“美的本质” 问题的,是古希腊哲学家柏拉图。柏拉图以苏格拉底和他人对话的方式,讨论了这个问题,得出的唯一结论是“美是难的”。柏拉图认为,“美”这个问题是非常困难的,甚至几乎是无法说清楚的。在此篇中,苏格拉底用归谬法的方式否定了对“美是什么”的所有回答。换一句话说,柏拉图用这样的方式是想告诉人们,美的问题用多因素分析的方式得不出结论,必须找到它的单因素决定方向,否则这个问题就讨论不下去。 为什么说“美的本质”是一个哲学问题呢?我简单谈谈哲学的含义。哲学不同于其他学问的地方,就在于哲学是追究终极原因的学问。也就是说,它不在一般的或直观的浅层上追问形成事物个相的原因。比如说,我们讨论健康,如果站在一般的因素层面上讨论,1000个因素都说不完。哲学不这样讨论问题,而我们通常的科学或一般的学问都是多因素的讨论问题。多因素讨论问题的方式使得任何一个因素都不能成立,因此多因素讨论问题的可成立性是大可怀疑的。而哲学是追究终极因素,是讨论问题的单因素。因此,罗素对哲学有个说法:哲学和神学很有相似之处,因为哲学和神学所探讨的问题都是终极问题。哲学和神学的不同点是,哲学是用理性探讨终极问题,神学是用信仰抵达终极关怀。从另一方面说,哲学和科学又有相似之处,它们的相同之处在于它们都使用理性这个工具,它们的不同之处在于,哲学探讨的是终极问题,而科学探讨的是具体问题。“美的本质”这个问题,从具体层面上是探讨不了的,因此,探讨这个问题必须从哲学说起。 美到底是什么?众说纷纭。齐白石有句名言:美就在似与不似之间。也就是像与不像之间,他说,如果太像,就有媚俗之嫌,如果完全不像,就有欺世之嫌。美一定在似与不似之间,也就是说,美是一个很飘忽的东西。古代最早讨论美的哲学家柏拉图认为,美是一个主观理念。也就是说,美不是一个客观派生的东西。他的学生亚里斯多德提出不同的看法。亚里斯多德认为,美是有一定客观性的,美是外部对象的一种和谐。比如我们说一个人美,他一定要头有多大,四肢有多长,躯干要是怎样的状态,恐怕美包含在这种协调关系里。哲学继续发展,所有的哲学家都在探讨美的问题。到了康德和黑格尔,美的问题再度转化到纯理念方面。那么,美到底是客观的还是主观的?美到底是什么?既往哲学家那种讨论方式,我认为不能解决问题,不能得出结论。我们今天换一种方式,从远距离来讨论“美是什么”。 二 讨论“美是什么”,我们首先必须搞清“感知”和“精神”是什么,因为美是一种精神现象,或者说,是精神现象中一个心理层面的反应。如果“精神”的起源搞不清,“美”这个问题就无从谈起,或者“美的本质”就无从谈起。 我们现在把二十世纪的系统科学拉开一个幅面,那么,我们在哲学上,或者说在精神的起源上,似乎可以找到另外一个讨论问题的方式。二十世纪自然科学的重大发展,导出了

基本粒子的标准模型

12、基本粒子的标准模型 标准模型由三种理论组成: (1)量子电动力学(QED):带电轻子和夸克与电磁U(1)规范场相互作用的量子理论。最主要的部分是电子与电磁场相互作用的量子理论。(2)量子弱电统一理论(QWED):QED的推广,把电磁相互作用与弱作用统一起来,建立统一的U(1)xSU(2)的规范理论。 (3)量子色动力学(QCD):夸克与胶子的SU(3)规范场相互作用的强相互作用的量子理论。 把上述三种相互作用的规范场理论统一起来的规范场理论叫大统一理论(Grand Unification Theory, GUT)。目前尚无定型。人们倾向于SU(5)大统一理论(最简明、具有代表性、可重整化) 4、超晶格:超晶格材料是两种不同组元以几个纳米到几十个纳米的薄层交替生长并保持严格周期性的多层膜,事实上就是特定形式的层状精细复合材料。 2、团簇:团簇是由几个乃至上千个原子、分子或离子通过物理或化学结合力组成的相对稳定的微观或亚微观聚集体,其物理和化学性质随所含的原子数目而变化。团簇的空间尺度是几埃至几百埃的范围,用无机分子来描述显得太大,用小块固体描述又显得太小,许多性质既不同于单个原子分子,又不同于固体和液体,也不能用两者性质的简单线性外延或内插得到。 7、等离子体:又叫做电浆,是由部分电子被剥夺后的原子及原子被电离后产生的正负电子组成的离子化气体状物质,它是除去固、液、气外,物质存在的第四态。等离子体是一种很好的导电体,利用经过巧妙设计的磁场可以捕捉、移动和加速等离子体。等离子体物理的发展为材料、能源、信息、环境空间,空间物理,地球物理等科学的进一步发展提新的技术和工艺。 等离子体可分为两种:高温和低温等离子体。现在低温等离子体广泛运用于多种生产领域。高温等离子体只有在温度足够高时发生的。太阳和恒星不断地发出这种等离子体,组成了宇宙的99%。在宇宙中,等离子体是物质最主要的正常状态.宇宙研究、宇宙开发、以及卫星、宇航、能源等新技术将随着等离子体的研究而进入新时代. 8、激光冷却:光对原子有辐射压力作用,利用光压改变原子速度。人们发现:当原子在频率略低于原子跃迁能级差且相向传播的一对激光束中运动时,由于多普勒效应,原子倾向于吸收与原子运动方向相反的光子,而对与其相同方向的光子吸收几率较小,吸收后的光子将各向同性自发辐射。平均看来,两束激光净作用是产生一个与原子运动方向相反的阻尼作用,从而使原子的运动减缓(冷却)。 3、玻色-爱因斯坦凝聚。研究范围:质量不为零,粒子数守恒的波色粒子组成的理想气体。 概念:这种粒子不受泡利不相容原理的限制,当T→0Κ时,几乎所有的玻色子会聚集到能量为0,动量为0的基态,这是并不奇怪的。令我们感兴趣的是,研究表明,当温度降低到一个有限的低温T(大约为3K)时,就会有宏观数量的波色粒子聚集在基态。这一情况与蒸汽凝聚有些类似,因而称为玻色-爱因斯坦凝聚(BEC)。 1、费米液体:由遵从费密-狄喇克统计的粒子组成的液体,如液体He及金属中的电子体系。费密液体是一个强相互作用的多粒子体系。在温度远低于费密温度时,正常的(没有发生相变的) 费密液体的性状可以用Л.Д.朗道在1956年提出的费密液体理论很好地描述,即在液体中粒子加上与其相互作用并一同运动的近邻粒子“屏蔽云”组成准粒子(见固体中的元激发[1]),液体可以看成这些近自由的准粒子的集合,准粒子之间的相互作用可以用一些分子场来描述,有关的参量叫做朗道参量,可由实验确定。 9、夸克禁闭:夸克受到被称为色荷的强力的束缚,带色荷的夸克被限制与其他夸克在一起(两个或三个组成一个粒子),使得总色荷为零。不可能从核子中单个地分离出来,这种奇特性质被称为夸克禁闭或色禁闭。它能将粒子结合为无色的状态。 10、黑洞是一种引力极强的天体,就连光也不能逃脱。当恒星的史瓦西半径小到一定程度时,就连垂直表面发射的光都无法逃逸了。这时恒星就变成了黑洞。 哈勃膨胀、微波辐射、轻元素的合成以及宇宙的测量被认为是现代宇宙学的四大基石。 5、自组织耗散结构:一个远离平衡态的非线性的开放系统(不管是物理的、化学的、生物的乃至社会的、经济的系统)通过不断地与外界交换物质和能量,在系统内部某个参量的变化达到一定的阈值时,通过涨落,系统可能发生突变即非平衡相变,由原来的混沌无序状态转变为一种在时间上、空间上或功能上的有序状态。这种在远离平衡的非线性区形成的新的稳定的宏观有序结构,由于需要不断与外界交换物质或能量才能维持。 11、非常规超导体(non-normalsuperconductors)指不同于传统研究的超导体,机理研究有新发展和新探索。如低载流子密度超导体(包括层状结构超导体),有机超导体,超晶格超导体,非晶态超导体,磁性超导体等。在机理研究上除进深的电-声子机制外,有激子机制,双极化子,重费米子,等离子体激元,共振价键,费米液体,自旋涨落,自旋口袋模型等等,在电子配对上(包括空穴型)仍有S波配对外,有P波配对,D波配对等选择。因此称之为“耗散结构” 15、约瑟夫森效应:电子能通过两块超导体之间薄绝缘层的量子隧道效应。两块超导体通过一绝缘薄层(厚度为10埃左右)连接起来,绝缘层对电子来说是一势垒,一块超导体中的电子可穿过势垒进入另一超导体中,这是特有的量子力学的隧道效应。

要点一 构成原子或离子的各基本粒子间的数量关系

一.原子的构成与排布 构成: (1)原子的质量主要集中在原子核上。 (2)质子和中子的相对质量都近似为1,电子的质量可忽略。 (3)原子序数=核电核数=质子数=核外电子数 (4)质量数(A)=质子数(Z)+中子数(N) (5)在化学上,我们用符号A Z X来表示一个质量数为A,质子数为Z的具体的X原子。 排布: 1.在多个电子的原子里,核外电子是分层运动的,又叫电子分层排布。 2.电子总是尽先排布在能量最低的电子层里。 3.核外电子的排布规律 (1)各电子层最多容纳的电子数是2n2(n表示电子层) (2)最外层电子数不超过8个(K层是最外层时,最多不超过2个);次外层电子数目不超过18个;倒数第三层不超过32个。 (3)核外电子总是尽先排布在能量最低的电子层,然后由里向外从能量低的电子层逐步向能量高的电子层排布。 总结: 电子层 1 2 3 4 n 电子层符号K L M N …… 离核距离近远 电子的能量低高 最多能容纳的电子数 2 8 18 32 2n2 二.构成原子或离子的各基本粒子间的数量关系 1.质子数+ 中子数= 质量数= 原子的近似相对原子质量 原子A Z X 原子核 质子Z个 中子N个=(A-Z)个 核外电子Z个

2.原子的核外电子数= 核内质子数= 核电荷数 3.阳离子核外电子数= 核内质子数–电荷数 4.阴离子核外电子数= 核内质子数+ 电荷数 5.核外电子数相同的粒子规律 (1)与He原子电子层结构相同的离子有(2电子结构):H-、Li+、Be2+ (2)与Ne原子电子层结构相同的离子有(10电子结构):阴离子有F-、O2-、N3-、OH-、NH2-;阳离 子有Na+、Mg2+、Al3+、NH4+、H3O+;分子有Ne、HF、H2O、NH3、CH4 (3)与Ar原子电子层结构相同的离子有(18电子结构):阴离子有P3-、S2-、Cl-、HS-;阳离子有K+、 Ca2+;分子有Ar、HCl、H2S、PH3、SiH4、F2、H2O2、C2H6、CH3OH、N2H4 三.元素,核素与同位素 (1)元素:具有相同核电荷数(质子数)的同一类原子的总称。 (2)核素:把具有一定数目的质子和一定数目的中子的一种原子称为核素。一种原子即为一种核素。 核素之间的比较:两者相同处:质子数相同、同一元素 两者不同处:中子数不同、质量数不同 二者关系:属于同一种元素的不同种原子 (3)同位素:质子数相同而中子数不同的同一元素的不同原子互称为同位素(同一种元素的不同核素间互称为同位素)。 注意:①同一元素的各种同位素(原子)虽然质量数不同,但化学性质几乎完全一样;②天然存在的元素里,不论是游离态还是化合态,各种同位素所占的原子个数百分比一般是不变的。 (4)相对原子质量的计算: 元素的相对原子质量是按各种天然同位素原子所占的原子个数百分比求出的平均值。 Ar=Ar l*a1%+Ar2*a2%+ 其中Ar1、Ar2…为各种同位素的相对原子质量,a1%、a2%…为同位素的原子数百分比或同位素的原子的物质的量分数但不是质量分数。 元素、核素、同位素三者之间的关系:

当代物理学对物质微观世界基本粒子的认识

当代物理学对物质微观世界基本粒子的认识简介 2010-07-16 05:38:04| 分类:默认分类|字号大中小订阅当代物理学对物质微观世界基本粒子的认识简介 一、物理概念: 基本粒子即在不改变物质属性的前提下的最小体积物质。它是组成各种各样物体的基础。并不会因为小而断定它不是某种物质。 简单介绍: 名称:基本粒子英语名称:elementary particle 基本粒子指人们认知的构成物质的最小最基本的单位。但在夸克理论提出后,人们认识到基本粒子也有复杂的结构,故现在一般不提“基本粒子”这一说法。根据作用力的不同,粒子分为:

1、强子 2、轻子 3、传播子 三大类 强子就是是所有参与强力作用的粒子的总称。它们由夸克组成,已发现的夸克有六种它们是: 1 . 顶夸克 2 . 上夸克 3 . 下夸克 4 . 奇异夸克 5 . 粲夸克 6 . 底夸克 其中理论预言顶夸克的存在,2007年1月30日发现于美国费米实验室。现有粒子中绝大部分是

1 . 强子 2 . 质子 3 . 中子 4 . π介子 等都属于强子。(另外还发现反物质,有著名的反夸克,现已被发现且正在研究其利用方法,由此我们推测,甚至可能存在反地球,反宇宙) 轻子就是只参与弱力、电磁力和引力作用,而不参与强相互作用的粒子的总称。轻子共有六种,包括: 1 . 电子 2 . 电子中微子 3 .

μ子 4 . μ子中微子 5 . τ子 6 . τ子中微子 电子、μ子和τ子是带电的,所有的中微子都不带电,且所有的中微子都存在反粒子;τ子是1975年发现的重要粒子,不参与强作用,属于轻子,但是它的质量很重,是电子的3600倍,质子的1.8倍,因此又叫重轻子。 传播子也属于基本粒子。传递强作用的胶子共有8种,1979年在三喷注现象中被间接发现,它们可以组成胶子球,由于色禁闭现象,至今无法直接观测到。光子传递电磁相互作用,而传递弱作用的W+,W-和Z0,胶子则传递强相互作用。重矢量玻色子是1983年发现的,非常重,是质子的80一90倍。

基本粒子的定义与分类

基本粒子的定义与分类 基本粒子的定义与分类 (1)基本粒子的定义及其变化 基本粒子是指人们认知的构成物质的最小、最基本的单位。但是因为物理学的不断发展,人类对物质构成的认知逐渐深入,因此基本粒子的定义随时间也是有所变化的。 目前在粒子物理学中,标准模型理论认为的基本粒子可以分为夸克(quark)、轻子(lepton)、规范玻色子(boson)和希格斯粒子四大类。标准模型理论之外也有理论认为可能存在质量非常大的超粒子。 传统上(20世纪前、中期)的基本粒子是指质子、中子、电子、光子和各种介子,这是当时人类所能探测的最小粒子。而现代物理学发现质子、中子、介子都是由更加基本的夸克和胶子(gluon)构成。同时人类也发现了性质和电子类似的一系列轻子,还有性质和光子、胶子类似的一系列规范玻色子。这些是现代的物理学所理解的基本粒子。 (2)基本粒子的分类 费米子:基本费米子分为两类:夸克和轻子。 夸克:目前的实验显示共存在6种夸克,其中包括它们各自

的反粒子。这6种夸克又可分为3“代”。它们是: 第一代:u(上夸克)d(下夸克) 第二代:s(奇异夸克)c(魅夸克) 第三代:b(底夸克)t(顶夸克) 它们的质量关系是。另外值得指出的是,他们之所以未能被早期的科学家发现,原因是夸克决不会单独存在(顶夸克例外,但是顶夸克太重了而衰变又太快,早期的实验无法制造)。他们总是成对的构成介子,或者3个一起构成质子和中子这一类的重子。这种现象称为夸克禁闭理论。这就是为什么早期科学家误以为介子和重子是基本粒子。 轻子:共存在6种轻子与它们各自的反粒子。其中3种是电子和与它性质相似的子和子。而这三种各有一个相伴的中微子。他们也可以分为三代: 第一代:e(电子)、(电中微子) 第二代:(μ子)、(μ中微子) 第三代:(τ子)(τ中微子) 玻色子:玻色子是依随玻色-爱因斯坦统计,自旋为整数的粒子。 规范玻色子,这是一类在粒子之间起媒介作用、传递相互作用的粒子。之所以它们称为“规范玻色子”,是因为它们与基本粒子的理论杨-米尔斯规范场理论有很密切的关系。

要点一 构成原子或离子的各基本粒子间的数量关系

一.原子的构成与排布 构成: (1)原子的质量主要集中在原子核上。 (2)质子和中子的相对质量都近似为1,电子的质量可忽略。 (3)原子序数 = 核电核数 = 质子数 = 核外电子数 (4)质量数(A )=质子数(Z )+中子数(N ) (5)在化学上,我们用符号A Z X 来表示一个质量数为A ,质子数为Z 的具体的X 原子。 排布: 1.在多个电子的原子里,核外电子是分层运动的,又叫电子分层排布。 2.电子总是尽先排布在能量最低的电子层里。 3.核外电子的排布规律 (1)各电子层最多容纳的电子数是2n 2(n 表示电子层) (2)最外层电子数不超过8个(K 层是最外层时,最多不超过2个);次外层电子数目不超过18个;倒数 第三层不超过32个。 (3)核外电子总是尽先排布在能量最低的电子层,然后由里向外从能量低的电子层逐步向能量高的电子层 排布。 总结: 电子层 1 2 3 4 n 电子层符号 K L M N …… 离核距离 近 远 电子的能量 低 高 最多能容纳的电子数 2 8 18 32 2n 2 二. 构成原子或离子的各基本粒子间的数量关系 1.质子数 + 中子数 = 质量数 = 原子的近似相对原子质量 2.原子的核外电子数 = 核内质子数 = 核电荷数 3.阳离子核外电子数 = 核内质子数 – 电荷数 4.阴离子核外电子数 = 核内质子数 + 电荷数 5.核外电子数相同的粒子规律 (1)与He 原子电子层结构相同的离子有(2电子结构):H -、Li +、Be 2+ (2)与Ne 原子电子层结构相同的离子有(10电子结构):阴离子有F -、O 2-、N 3-、OH -、NH 2-;阳离 子有Na +、Mg 2+、Al 3+、NH 4+、H 3O +;分子有Ne 、HF 、H 2O 、NH 3、CH 4 (3)与Ar 原子电子层结构相同的离子有(18电子结构):阴离子有P 3-、S 2-、Cl -、HS -;阳离子有K +、 Ca 2+;分子有Ar 、HCl 、H 2S 、PH 3、SiH 4、F 2、H 2O 2、C 2H 6、CH 3OH 、N 2H 4 三. 元素,核素与同位素 (1)元素:具有相同核电荷数(质子数)的同一类原子的总称。 原子A Z X 原子核 质子 Z 个 中子 N 个=(A -Z )个 核外电子 Z 个

原子分子物理前沿专题

目录 摘要 (2) 1 原子论发展史与主要内容 (2) 2 原子分子学说的建立与发展 (3) 3 古代原子论的发展过程和主要内容 (4) 4 原子论哲学的产生与发展 (5) 4.1原子论哲学的理论准备 (6) 4.1.1 恩培多克勒 (6) 4.1.2 阿那克萨哥拉 (7) 4.2 原子论哲学 (8) 5 近代史——道尔顿在《化学哲学新体系》中描述的原子 (9) 6 发展史 (11) 6.1 道尔顿的原子模型 (11) 6.2 葡萄干布丁模型(枣核模型) (11) 6.3 行星模型 (12) 6.4 玻尔的原子模型 (12) 6.5 现代量子力学模型 (12)

浅谈原子论的发展 [摘要] 本文主要由六个部分组成。第一个部分由说明原子论发展史与主要内容。第二个部分主要介绍原子分子学说的建立与发展。第三个部分阐述了古代原子论的发展过程和主要内容。第四部分主要论述了原子论哲学的产生与发展。第五部分阐述了道尔顿在《化学哲学新体系》中描述的原子,最后一部分概括了原子论近现代发展史。 1 原子论发展史与主要内容 化学是以物质为研究对象,以阐明物质的结构及其变化规律为己任,所以,“物质是什么构成的?”是化学的基本问题也是核心问题。然而,从上古代的德谟克利特(公元前460~前370年)到17世纪的波义耳(1627~1691年),上下2000多年,尚未做出完全正确的回答。 到了17世纪的1661年,波义耳以化学实验为基础建立这样的元素论:那些不能用化学方法再分解的简单物质是元素。即西方的“土、气、水、火”四元素物质组成观。这种物质观已接近原子论,但还不是科学的原子论。因为,他当时称之为元素的物质,今天看来只是单质,而不是原子。 随着科学实验的深入、技术的进步、一代又一代科学家的努力,人们对物质的认识渐渐地明确起来,并发生了认识上的飞跃,产生了科学的原子论,完成这一“飞跃”的代表人物就是英国科学家道尔顿,那已经是19世纪初的事情了(1803年)。 由于原子的概念是化学的基石,是化学的灵魂,这个问题一旦解决,必然促进化学学科极大的发展。事实正是如此:从科学原子论提出,到19世纪中期,已发现的化学元素就有60多种,证明了原子论的指导作用。从此,化学进入蓬勃发展的新阶段,同时也揭开了物质结构理论的序幕,已能从微观物质结构的角度去揭示宏观化学现象的本质。使化学发展到由材料的堆积至材料的整理,并使其条理化的新时期。

粒子物理学

粒子物理学 为本词条添加义项名 粒子物理学,又称高能物理学,它是研究比原子核更深层次的微观世界中物质的结构、性质,和在很高能量下这些物质相互转化及其产生原因和规律的物理学分支。 10 本词条无基本信息模块, 欢迎各位编辑词条,额外获取10个积分。 目录 1学科简介 2学科分类 3理论分析 4发展阶段 5黑格斯粒子的实验证据 6第四种和第五种夸克 7轻子的新发现 8电弱统一理论的建立 9粒子物理的前景 展开 1学科简介 2学科分类 3理论分析 4发展阶段 4.1第一阶段(1897~1937) 4.2第二阶段(1937~1964) 4.3第三阶段(1964~) 5黑格斯粒子的实验证据 6第四种和第五种夸克 7轻子的新发现

8电弱统一理论的建立 9粒子物理的前景 粒子物理学 1学科简介 粒子物理学particle physics 研究比原子核更深层次的微观世界中物质的结构、性质,和在很高能量下这些物质相互转化及其产生原因和规律的物理学分支。又称高能物理学。 粒子物理学 2学科分类 粒子物理学专门研究组成物质和射线的基本粒子,以及它们之间的相互作用。由于在大自然的一般条件下,许多基本粒子不存在或不单独出现,物理学家使用粒子加速器,试图复制粒子高能碰撞的机制,从而生产和侦测这些基本粒子,因此粒子物理学也被称为高能物理学。 标准模型可以正确地描述基本粒子之间的相互作用。这模型能够计算12种已知的粒子(夸克和轻子),彼此之间以强力、弱力、电磁力或引力作用于对方。这些粒子会互相交换规范玻色子(分别为胶子、光子、W 及Z 玻色子)。标准模型还预测了希格斯玻色子的存在。截至2010年,使用费米实验室的垓电子伏特加速器和欧洲核子研究组织的大型强子对撞机,实验者仍旧在努力地寻找希格斯玻色子的来踪去迹。

浅谈速度变化致物质质量变化

浅谈速度变化致物质质量变化 云南云维集团大为制焦电仪黄兆荣 摘要:本文分析了物质速度变化导致物质质量发生变化的理论依据和原因。 关键词:速度,质量,变化 一、概述:将纸撕碎,纸的质量(天枰称)会发生变化,将水装在密封的塑料瓶里摇动,摇动前后的质量也会发生变化,都是先重后輕,同样将热水装在密闭的瓶中,放在天枰称,质量的变化,随着热水的温度降低,质量慢慢增加。 二、分析:1、物质的速度变化(Vt-Vo=a)则需要看到一个力(F) m = F / a = F/ (Vt-Vo) 由于a都会落后F.有了F,使物质运动速度发生变化(Vt-Vo),物质内部会发生摩擦,物质与外壳也会发生摩擦,摩擦生电、声、噪音等,摩擦生电,根据电磁力与引力的统一的原理,电磁力会吸引它周边的物质,周边有一种最基本的粒子,能进出任何物质的表面上,当某种物质的力量打破平衡时间,该基本粒子就会进出该物质的表面,与其发生反应。使物质的质量发生改变。 把水装在密闭的塑料瓶里,静置,有基本的受力平衡(不是绝对的)有一个质量数,当塑料瓶在外力的作用下摇动,由于水分子之间,水分子与塑料瓶内壁的摩擦都会产生(电磁力),及单位面积引力增加,吸引外界的基本粒子,从而使自己的质量增加,,把热水装在瓶中,称其质量为ma,当热水冷却后,再称起质量为mb对比发现,mb-ma大于0,这是由于热水的密度比冷水的密度小,热水运动虽然比冷水的运动剧烈,但是震动幅度小,所以热水单位面积的引力小;冷水的单位面积的引力大,故其质量大,撕纸时,将纸撕烂时,产生的引力(即电磁力)比没有撕碎的纸的引力大,固撕纸前、后的质量有相差有,引力将周围的基本粒子或物质吸引在电磁力(引力)变化的物体上。 运动能使物体的质量增加 1、在空气中笔者将A4纸撕碎,称其重量比未撕碎前纸的质量增加了,一共用四张纸做实

浅谈现代粒子物理前沿问题_夸克_胶子等离子体

[摘要]夸克-胶子等离子体是当今粒子物理领域的重要研究课题,它不仅能揭示微观粒子的物理性质,还能帮助人们认识宇宙的演化过程。本文对夸克-胶子等离子体的研究现状进行了概述。[关键词]夸克-胶子等离子体;高能重离子碰撞浅谈现代粒子物理前沿问题———夸克-胶子等离子体 傅永平 郗勤 (临沧师范高等专科学校数理系,云南临沧 677000) 1研究夸克-胶子等离子体的科学意义 按照目前的实验观测结果,已知的物质最小构成单元是夸克和轻子,比如质子和中子就是由上夸克和下夸克组成的三夸克色禁闭束缚态,而介子则是双夸克色禁闭束缚态。我们熟知的电子就是轻子的一种。如果用质量来标度,夸克和轻子可以分为三代,每一代有2种夸克和轻子,其中夸克包括上夸克、下夸克、奇夸克、璨夸克、顶夸克和低夸克,轻子包括电子、电子中微子、μ子、μ子中微子、τ子和τ子中微子。 夸克-胶子等离子体是区别于强子的一种新的物质形态,夸克不再是以强子型的双夸克或三夸克色禁闭束缚态形式存在,夸克-胶子等离子体中的夸克是色相互作用渐近自由的,夸克与夸克之间,夸克与多夸克之间存在自由的色相互作用,这是一种多体夸克凝聚的新物质形态。 宇宙大爆炸初期宇宙的温度约为1028 eV,按照标准模型,当时可 能存在的物质只有轻子和夸克,此时夸克的色自由度是解禁的,就会形成夸克-胶子等离子体。之后随着宇宙不断膨胀,温度下降到100MeV时,夸克物质发生对称性破缺,开始冻结成为质子和中子。从夸克物质演化的意义来讲,研究夸克-胶子等离子体不仅对基本粒子物理研究意义重大,而且对于宇宙演化的研究来讲也具有重要意义。 2实验概况 实验表明,高能重离子碰撞有可能产生核子的多重碰撞,使能量主要集中在质心附近。也即一个核的核子有可能和另一个核的不同核子发生多次碰撞,而不是仅发生一次碰撞便飞离质心区域,这样在一个很短的驰豫时间内,能量可以集中在质心附近,从而产生夸克-胶子等离子体。为更好地解释在高能重离子碰撞过程中,能量如何主要聚集在质心附近,引入核阻塞能力的概念,它表征重离子碰撞过程中一个入射核子与另一个核碰撞时所受到核物质的阻塞程度,如果多重碰撞程度越高,阻塞能力也就越大,出射核子所携带的能量就越小,那么聚集在质心附近的能量就越高,也就越容易产生夸克-胶子等离子体。多重碰撞及核阻塞能力的研究,在高能重离子碰撞产生夸克-胶子等离子体方面具有重要作用。 实验物理学家们正在尝试着利用高能重离子碰撞实验装置,把物质的温度和密度在一个很小的时空区域内提升到大爆炸的初始阶段,即把“历史”退回到存在自由夸克物质的宇宙初期。美国布鲁海文国家实验室(BNL)的相对论重离子对撞机(RHIC)能够将金原子核加速到每核子100GeV,碰撞的质心系能量可达39.4TeV。 此外,欧洲核子研究中心(CERN)的大型强子对撞机(LHC)可以把铅原子核加速到每核子2.76TeV的质心系能量。那么碰撞的质心系能量可达到574.08TeV。未来LHC的质心系能量还将提升到每核子5.5TeV,碰撞的质心系能量将达到1144TeV。RHIC能将金原子核加速到光速的99.95%,核粒子束迎头相撞时,每秒钟将会出现上千次的碰撞,每一次碰撞都能在相撞点上产生很高的温度,大约能产生超过1012K的温度,这相当于太阳温度的1万倍。 3探测夸克-胶子等离子体 夸克-胶子等离子体一旦产生就会迅速冷却膨胀,所以其寿命是很短暂的。对于实验物理学家而言,观察其冷却过程中的粒子产生才是观测夸克-胶子等离子体的有效途径。夸克-胶子等离子体在冷却过程中将有大量新粒子产生,其中包括光子、轻子和夸克碎裂产生的强 子。标准模型预言,夸克-胶子等离子体的粒子产生多重数将远大于核子-核子深度非弹性散射的粒子产生,所以通过比较实验结果和理论预言将成为又一检验标准模型正确与否的关键。 如何观测夸克-胶子等离子体不仅是实验关心的问题,也是理论研究的热点。比如研究夸克-胶子等离子体的动力学特征。而要了解它,就必须依赖于从中心区域出射的、且未被其损坏的粒子。这些粒子的最佳候选者就是光子和轻子,因为光子和轻子只参与电磁相互作用和弱相互作用,它们都不会与夸克物质发生强相互作用,对于以强相互作用为主导的过程而言,它们几乎可以不受阻碍地从碰撞中心区域出射并被探测器捕捉到,所以光子和轻子都可以携带中心区域夸克物质的动力学信息,通过研究它们便可以了解自由夸克物质的动力学特征及规律。 在高能重离子碰撞过程中有以下三种主要的光子产生源,首先是初始冷组分部分子碰撞产生的快光子,它们包括夸克、胶子之间的湮灭和康普顿过程产生的直接光子,还包括由末态部分子在真空中碎裂产生的光子。还有喷注通过热媒介时,与热部分子相互作用也会产生光子。由于初始部分子碰撞过程中的转移动量很高,强相互作用跑动耦合常数小于1,这些光子的产生机制可以利用微扰量子色动力学和量子电动力学来处理。此外,在热夸克物质的平衡相中,热光子将由热夸克和热胶子的湮灭和康普顿过程产生,由于夸克-胶子等离子体的热光子主要集中在低横动量区域,所以微扰论很难处理。 只能依靠有限温度场论以及有效热质量截断等技术来解释夸克-胶子等离子体的热光子产生。最近,有的学者提出了一种新的理论来解释热光子的产生机制,称为共形反常。在夸克-胶子等离子体中存在共形不变对称性的破缺,这种破缺机制直接导致了色单态热部分子之间的相互作用产生热光子。光子产生的最后一个主要来源是碰撞演化末态的强子物质,热强子气体之间主要通过介子相互作用产生热光子,其中介子主要是轻介子,目前关于强子气体模型已经把奇异介子也包含进来了。来自RHIC的PHENIX实验组和LHC的CMS实验组得到的光子实验数据能较好地与理论计算结果相吻合。 对于高能重离子碰撞中双轻子的产生机制,与光子产生过程完全类似,只需要将实光子变换为虚光子即可,因为双轻子主要由虚光子衰变而来。理论表明来自于夸克-胶子等离子体的热双轻子在低不变质量区域产率最大,但是热双轻子在这个区域的贡献被众多的强子衰变谱所掩盖,热双轻子唯一占主导的区域是在中间不变质量区域。但中间不变质量区域的双轻子数据同样能用粲粒子衰变来解释。不过来自NA60实验组的数据表明较之粲粒子衰变谱,中间不变质量区域的双轻子数据有一个抬高,这个抬高有可能是来自热双轻子的贡献。 除此之外,对于RHIC的双轻子实验而言,仍存在着不少公开问题。其中之一就是低横动量双轻子数据在低不变质量区域较之强子衰变的理论预言有一个2到3倍的抬高现象。这种抬高现象可以通过热媒介中矢量介子由于手征部分恢复而发生质量移动来部分地得到解释,但仍无法完全解释抬高现象。最近,PHENIX实验组得到的高横动量双轻子不变质量谱也存在实验值高于现有理论预言的抬高现象。来自热双轻子的贡献仍无法解释现有数据。 4小节 本文就目前粒子物理的前沿热点,夸克-胶子等离子体,进行了概述。现有的夸克-胶子等离子体的光子产生实验数据能够与理论计算结果较好地吻合,但是双轻子产生的实验数据在理(下转第42页)

粒子物理与宇宙学

课程:粒子物理与宇宙学 题目: 姓名: 学号: 学院: 专业:

题目: 摘要:在宇宙大爆炸发生前,没有时间,没有空间,也没有物质和能量。大哟150亿年前,一个体积无限小的点爆炸了,时空从这一刻开始,人类在这一刻孕育,千百年来,人们对宇宙的探索从未止步,牛顿、爱因斯坦等一系列伟人为我们揭开了宇宙神秘的面纱,而哈勃发现了宇宙正在膨胀,可是最后宇宙是否能逃脱收缩的命运呢?本文——这么一个神秘的宇宙。 前言:作为一位核自院的学生,由于专业的原因,自己很少接著道宇宙学。自己所有的宇宙学知识,只是在高考前学习的一些经典宇宙学的皮毛,再加上平时书籍上的一点积累。因此不敢妄称此篇文章为论文,只能说是谈谈上完整个学期的宇宙学浅谈的一点感想。 从小在农村生活的原因,看着明亮的星空,我产生了求知的欲望。其实观察星空只是天文学的表象,离真正的宇宙学和物理学差的很远。在高中的时候我读到了霍金的《时间简史》的普及版。于是对相对论和量子理论以及宇宙的演化有了浅显的认识。但是在读霍金的《果壳中的宇宙》时,却很难读懂,再加上课业的繁重也就只能作罢。 在本学期选修了粒子物理与宇宙学,又燃起了我对于宇宙及物理学的强烈渴望。虽然我此生也许并不会投身于对于宇宙的探索及对物理学的研究。但是只要在条件允许的前提下,我一定会

主动为那些研究者提供各方面的支持,也当是圆了我儿时的梦想。 发展:宇宙是我们这个物质世界的整体,是物理学和天文学的最大研究对象。了解甚至弄清它的性质、结构和演化规律,一直是人类的梦想。可以说,人类试图认识宇宙的历史与人类认识史本身同样古老。但是,要认识整个宇宙实在是太难了,以致在相当长的时间内,只是停留在哲学性的、思辨性的思考上。宇宙学真正成为一门具有现代意义的独立的学科,那还是在近100 年内的事。 在半个世纪以前,大多数人对宇宙学还是抱有怀疑态度的。这半个世纪,宇宙学的发展,经历了彷徨、徘徊,经历了数据积累,经历了异军突起,经历了长足进步。时至今日,宇宙学已经成为了一门精确科学,它差不多达到了半个世纪之前粒子物理在人们心目中的地位。正是半个世纪以前,粒子物理领域新现象不断出现、新粒子不断被发现。新的发现触动了物理学的基本问题,就使物理学来了一个重大的飞跃。特别是吴健雄首次实验证明了李政道、杨振宁的理论,推翻了弱作用中的宇称守恒定律,使弱作用的正确机制很快确立。粒子物理成为了当时最前沿、也最活跃的学科。现在的宇宙学已经与半个世纪以前大不一样,它已经被普遍接受,成为了当今最前沿,最活跃的学科之一。 人生活在地球上。在地球之外,首先看到的当推太阳,其次是月亮,此外就是众多的星星了。起初,人们弄不清楚太阳、月

浅谈速度隐身

浅谈速度隐身 根据爱因斯坦相对论宇宙运动速度极限为光速,那宇宙力场微粒有没有可能超越光速运动呢?在超大质量中子星碰撞挤压喷射出力场微粒、黑洞内部加速挤压抛射力场微粒,当挤压力大于极限速度时空间阻力时这些力场微粒都有可能超过光速运动形成速度时间进而构成新时空。运动极限速度光速形成宇宙光速时空即基本时空,力场微粒被加速到超过光速度时间时就与光速时间不相同,由此进入高级别时空,这些超光速力场微粒已经不在光速时空中运行而突然消失。 若超光速运动力场微粒没达到接近高级别时空速度上限,会在高级时空受到空间阻力使速度逐渐回落,回到宇宙光速基本时空即又回到光速以下,这些力场微粒又突然出现在我们感知时空中。力场微粒进入高级别时空阶段成为隐身运动,回到基本时空我们可能看到宇宙空间再次出现这些力场微粒。被加速力场微粒速度若接近高级时空极限速度,所受到空间阻力也几乎为零于是保持这一速度在高级别空间继续运动,不再回到宇宙基本光速时空了。 高速运动力场微粒在相互吸力下形成运动线体,线体弯曲成各种形状成原子的基本粒子,再由基本粒子组成原子分子最终成为宏观物质,构成宏观物体力场微粒运动与宏观物体运动存在本质区别。宏观物体实质是力场微粒规则的空间运动团,宏观物体运动实质是整体力场微粒团向某个方向移动。光速时空中宏观物体移动速度小于力场微粒绝对速度,宏观移动只是力场微粒产生在移动方向上的分速度同时减小其方向分速度实现的分速度调整,总绝对速度不变。 宏观移动速度增加或减少并不代表力场微粒绝对速度增加或减少,只是在绝对速度不变情况的分速度调整,宏观移动只改变力场微粒移动方向分速度与其他分速度大小转变。移动速度越大力场微粒在移动方向分速度增加越多其他方向分速度减少越多,移动减速越小其他方向分速度增大。当移动速度接近力场微粒绝对速度即光速时,移动速度与绝对速度接近于相等,则其他方向分速度均降到几乎为零,移动速度的增加实质是力场微粒分速度集中在移动方向而已。 当移动速度超过力场微粒绝对速度即超光速时,实质是力场微粒绝对速度增加,这种情况是不可能发生的,就连接近光也不会发生。因为原子基本粒子即线体必须保持空间运动形式,才具有基本粒子构成原子的基础才能形成宏观物体,若移动速度接近绝对速度其他速度分量几乎为零,所有力场微粒就变成定向流体态状,线体崩溃基本粒子更不复存在、原子分子及宏观物体也不复存在。物体需要构成原子力场微粒团在相互强径引力与高速度扩张力平衡下处于平衡状态。 若宏观物体移动下力场微粒团在移动方向以外分速度减小到几乎为零将影响到原子结构,必需要保持基本粒子的空间运动形态。若再度增加移动速度就必须提高绝对速度给予满足其他分速度,以满足空间运动所需的各方向分速度,这时力场微粒会受到空间运动阻力作用,力场微粒速度提升力越大受到空间阻力也越大。因为原子基本粒子力场微粒各方向分速度在绝对速度中的占较大,在绝对速度不变情况下要使分速度保持不变、保持基本粒子空间运动状态,就必须降低移动速度。 若原子基本粒子增加移动速度会导致力场微粒绝对速度增加,会受到来自空间的巨大阻力,于是移动速度还远不及光速时力场微粒绝对速就已经超越光速了,就已经进入高级别时空运动,处在

什么是基本粒子物理

什么是基本粒子物理 我们生活在地球上,仰观太空,斗转星移; 俯察大地,声光电热。 面对宇宙万物,有多少人在思考: 世界万物是由什么构成的? 它们有最小的结构吗? 如果有,那是什么呢? 粗略地说,世界是由基本粒子组成的。所谓基本粒子,就是我们不考虑它的进一步结构,而把它当成整体的东西或者说是构成世界万物的、不能再分割的最小单元。 把多种多样的物质看成是由少数几个基本实体构成,并以这样一个物质基础来说明自然界的统一性和多样性,虽简单,但抓住了问题的要害。 基本性是个历史的、相对的概念。不同的时代,由于人们认识的不同,基本粒子家族的内容在不断地演变。 (1)希腊泰勒斯提出“水为万物之本”。 (2)亚里士多得认为水、火、空气,土是构成物质的基本元素 (3)460-370,德漠克利特提出了原子论。 (4)周代,我们的祖先就提出了五行说,即认为万物是由金、木、水、火、土五种物质原料构成。 (5)《周易》中有“太极生两仪,两仪成四像,四象生八卦”的哲学思想。太极即世界的本源,两仪是天地,四象是春、夏、秋、

冬四季,八卦是天、地、雷、风、水、火、山、泽,由它们衍生出世界万物; (5)战国时的老子说:“道生一、一生二、二生三、三生万物”; (6)汉代则出现了天地万物由“元气”组成的哲学观点; (7)650年,牛顿曾说:“依我看,有可能一开始上帝就以实心的、有质量的、坚硬的、不可分割的、可活动的粒子来创造物质,它有大小和外形以及其它属性,并占据一定质量……” (8)1660年,英国科学家R.玻意耳提出化学元素的概念; (9)1741年,罗蒙诺索夫《数学化学原理》:“一切物质都是由极微小的和感觉不到的粒子组成,这些粒子在物理上是不可分的,并且有相互结合能力,物质的性质就取决于这些微粒的性质。”(10)1789年,英国息今斯《燃素说及反燃素说的比较研究》,提出粒子彼此相互化合的设想。 (11)1844年,道尔顿学说: 1/元素是由非常微小、不可再分的微粒即原子组成的,原子在化学变化中也不能再分割,并保持自己独特的性质。 2/同一元素所有原子的质量完全相同,不同种元素原子性质和质量各不相同。原子的质量是每一种元素基本特征。 3/不同元素化合时,原子以简单整数比结合。化合物的原子叫“复杂原子”。复杂原子的质量等于它的组分原子质量之和。

相关文档
最新文档