苏州市2009年高一教学调研测试数学

合集下载

09年高考数学卷江苏含详解

09年高考数学卷江苏含详解

【答案】0.2
【解析】略
6.某校甲、乙两个班级各有 5 名编号为 1,2,3,4,5 的学生进行投篮练习,每人投 10 次,
投中的次数如下表:
学生
甲班
乙班
1号
6
6
则以上两组数据的方差中较小的一个为 s2 ★ .
【答案】
【解析】略
2 5
w.w.w.k.s.5.u.c.o.m
7.右图是一个算法的流程图,最后输出的W ★ .
参考公式:
样本数据 x1, x2 ,, xn 的方差 s2
1 n
n
i1
( xi
一、填空题:本大题共 14 小题,每小题 5 分,共 70 分。请把答案填写在答题卡相应的位置
上.
1.若复数 z1 4 29i, z2 6 9i ,其中 i 是虚数单位,则复数 (z1 z2 )i 的实部为★. 【答案】 20
3号
7
6
f
(m)
4号
8
7
f
5号 7 9
开始
S 0 T 1 S T2 S
S 10
Y
W S T 输出W
结束
(n) ,则 m, n 的大小
T T 2
N
关系为 ★ .
【答案】 m n
【解析】略
11.已知集合 A x | log2 x 2, B (, a) ,若 A B 则实数 a 的取值范围是
【解析】略
2.已知向量 a 和向量 b 的夹角为 30 ,| a | 2,| b | 3 ,则向量 a 和向量 b 的数量积
aAb ★ .
【答案】3
【解析】 aAb 2 3 3 3。 2
3.函数 f (x) x3 15x2 33x 6 的单调减区间为 ★ . 【答案】 (1,11)

2009年江苏省高考数学试卷及详解

2009年江苏省高考数学试卷及详解

2009年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ参考公式:样本数据12,,n x x x L 的方差()2211n i i s x x n ==-∑,其中11n i i x x n ==∑. 一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应的位置上.1.若复数i z i z 96,29421+=+=其中i 是虚数单位,则复数i z z )(21-的实部为 .2.已知向量a 和向量b 的夹角为30o,3||,2||==b a ,则向量a 和向量b 的数量积b a ⋅= .3.函数63315)(23+--=x x x x f 的单调减区间为 .4.函数)sin(ϕω+=x A y (ϕω,,A 为常数,0,0>>ωA )在闭区间[]0,π-上的图象如图所示,则ω= .5.现有5根竹竿,它们的长度(单位:m )分别为2.5,2.6,2.7,2.8,2.9,若从中一次随机抽取2根竹竿,则它们的长度恰好相差0.3m 的概率为 .6.某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮练习,每人投10次,投中的次数如下表:学生1号 2号 3号 4号 5号 甲班6 7 7 8 7 乙班 6 76 7 9 则以上两组数据的方差中较小的一个为2s = .7.右图是一个算法的流程图,最后输出的=W .8.在平面上,若两个正三角形的边长的比为1:2,则它们的面积比为1:4,类似地,在空间内,若两个正四面体的棱长的比为1:2,则它们的体积比为 .9.在平面直角坐标系xoy 中,点P 在曲线310:3+-=x x y C 上,且在第二象限内,已知曲线C 在点P 处的切线的斜率为2,则点P 的坐标为 .10.已知215-=a ,函数x a x f =)(,若实数m 、n 满足)()(n f m f <,则m 、n 的大小关系为 .11.已知集合{}),(,2log |2a B x x A -∞=≤=,若B A ⊆则实数a 的取值范围是),(+∞c ,其中c =12.设α和β为不重合的两个平面,给出下列命题:(1)若α内的两条相交直线分别平行于β内的两条直线,则α平行于β;(2)若α外一条直线l 与α内的一条直线平行,则l 和α平行;(3)设α和β相交于直线l ,若α内有一条直线垂直于l ,则α和β垂直;(4)直线l 与α垂直的充分必要条件是l 与α内的两条直线垂直.上面命题中,真命题的序号 (写出所有真命题的序号)13.如图,在平面直角坐标系xoy 中,2121,,,B B A A 为椭圆)0(12222>>=+b a by a x 的四个顶点,F 为其右焦点,直线21B A 与直线F B 1相交于点T ,线段OT 与椭圆的交点M 恰为线段OT 的中点,则该椭圆的离心率为 ▲ .14.设{}n a 是公比为q 的等比数列,1>q ,令),2,(1⋅⋅⋅=+=n a b n n ,若数列{}n b 有连续四项在集合{}82,37,19,23,53--中,则q 6= .二、解答题:本大题共6小题,共计90分,请在答题卡指定区域内作答,解答时应写出文字说明、证明或演算步骤.15.(本小题满分14分)设向量)sin 4,(cos ),cos 4,(sin ),sin ,cos 4(β-β=ββ=αα=c b a (1)若a 与c b 2-垂直,求)tan(β+α的值;(2)求c b +的最大值;(3)若16tan tan =βα,求证:a ∥b16.(本小题满分14分)如图,在直三棱柱111C B A ABC -中,E 、F 分别是B A 1、C A 1的中点,点D 在11C B 上,C B D A 11⊥.求证:(1)EF ∥平面ABC ;(2)平面FD A 1⊥平面C C BB 11..17.(本小题满分14分)设{}n a 是公差不为零的等差数列,n S 为其前n 项和,满足7,725242322=+=+S a a a a .(1)求数列{}n a 的通项公式及前n 项和n S ;(2)试求所有的正整数m ,使得21++m m m a a a 为数列{}n a 中的项.18.(本小题满分16分)在平面直角坐标系xoy 中,已知圆4)1()3(:221=-++y x C 和圆4)5()4(:222=-+-y x C .(1)若直线l 过点)0,4(A ,且被圆1C 截得的弦长为32,求直线l 的方程; (2)设P 为平面上的点,满足:存在过点P 的无穷多对互相垂直的直线1l 和2l ,它们分别与圆1C 和圆2C 相交,且直线1l 被圆1C 截得的弦长与直线2l 被圆2C 截得的弦长相等,试求所有满足条件的点P 的坐标.19.(本小题满分16分)按照某学者的理论,假设一个人生产某产品单件成本为a 元,如果他卖出该产品的单价为m 元,则他的满意度为am m +;如果他买进该产品的单价为n 元,则他的满意度为a n n +.如果一个人对两种交易(卖出或买进)的满意度分别为1h 和2h ,则他对这两种交易的综合满意度为21h h .现假设甲生产A 、B 两种产品的单件成本分别为12元和5元,乙生产A 、B 两种产品的单件成本分别为3元和20元,设产品A 、B 的单价分别为A m 元和B m 元,甲买进A 与卖出B 的综合满意度为甲h ,乙卖出A 与买进B 的综合满意度为乙h(1)求甲h 和乙h 关于A m 、B m 的表达式;当B A m m 53=时,求证:甲h =乙h ; (2)设B A m m 53=,当A m 、B m 分别为多少时,甲、乙两人的综合满意度均最大?最大的综合满意度为多少? (3)记(2)中最大的综合满意度为0h ,试问能否适当选取A m 、B m 的值,使得0h h ≥甲和0h h ≥乙同时成立,但等号不同时成立?试说明理由.20.(本小题满分16分)设a 为实数,函数a x a x x x f --+=)(2)(2.(1)若1)0(≥f ,求a 的取值范围;(2)求)(x f 的最小值;(3)设函数),(),()(+∞∈=a x x f x h ,直接写出(不需给出演算步骤)不等式1)(≥x h 的解集.数学Ⅱ 参考公式:2222(1)(21)123.6n n n n ++++++=L 21.[选做题]在A 、B 、C 、D 四小题中只能选做两题......,每小题10分,共计20分.请在答.题卡指定区域......内作答,解答时应写出文字说明、证明过程或演算步骤. A .选修4 - 1:几何证明选讲如图,在四边形ABCD 中,△ABC ≌△BAD .求证:AB ∥CD .B . 选修4 - 2:矩阵与变换,求矩阵3221A ⎡⎤=⎢⎥⎣⎦的逆矩阵. C . 选修4 - 4:坐标系与参数方程 已知曲线C 的参数方程为,13()x t t y t t ⎧=-⎪⎪⎨⎪=+⎪⎩(t 为参数,0t >).求曲线C 的普通方程. D . 选修4 - 5:不等式选讲 :设a ≥b >0,求证:3332a b +≥2232a b ab +.[必做题]第22题、第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.22.(本题满分10分)在平面直角坐标系xoy 中,抛物线C 的顶点在原点,经过点A (2,2),其焦点F 在x 轴上.(1)求抛物线C 的标准方程;(2)求过点F ,且与直线OA 垂直的直线的方程;(3)设过点(,0)(0)M m m >的直线交抛物线C 于D 、E 两点,ME=2DM ,记D 和E 两点间的距离为()f m ,求()f m 关于m 的表达式.23.(本题满分10分)对于正整数n ≥2,用n T 表示关于x 的一元二次方程220x ax b ++=有实数根的有序数组(,)a b 的组数,其中{},1,2,,a b n ∈L (a 和b 可以相等);对于随机选取的{},1,2,,a b n ∈L (a 和b 可以相等),记n P 为关于x 的一元二次方程022=++b ax x有实数根的概率.(1)求2n T 和2n P ;(2)求证:对任意正整数n ≥2,有n P n 11->.2009年普通高等学校招生全国统一考试(江苏卷)答案及解读数学Ⅰ一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应的位置上.1. -20【解析】 本题考查了复数的基本运算,属基础概念题.由i z i z 96,29421+=+=, 可得i i i i z z 220)202()(21--=+-=-, 则复数i z z )(21-的实部为-20.2. 3【解析】 本题考查了复数的数量积公式及其简单应用.由向量a 和向量b 的夹角为ο30, 3||,2||==b a ,可得330cos 32=⨯⨯=⋅οb a .3.)11,1(-【解析】 本题考查了导数法求函数的单调区间问题. 由63315)(23+--=x x x x f ,可得)1110(333303)(22--=--='x x x x x f , 令0)(<'x f 可解得111<<-x ,∴函数63315)(23+--=x x x x f 的单调减区间为)11,1(-.4. 3【解析】 本题考查了由三角函数图象求三角函数解析式问题.由图象可得该函数的周期为ωπ=π=232T , ∴3=ω. 5.51【解析】 本题考查了古典概型问题,从2.5,2.6,2.7,2.8,2.9,这五个数据中任意抽取2个有2.5 , 2.6; 2.5 , 2.7; 2.5 , 2.8; 2.5 , 2.9; 2.6 , 2.7; 2.6 , 2.8;2.6 , 2.9; 2.7 , 2.8; 2.7 , 2.9; 2.8 , 2.9,共10种抽取方法, 其中长度恰好相差0.3m 仅2.5 , 2.8; 2.6 , 2.9两组, 即得2,10==m n , ∴它们的长度恰好相差0.3m 的概率为51102===n m P . 6.52【解析】 本题考查了统计初步中样本数据的方差的求解问题,属简单的公式应用问题.同时也考查了学生的估算能力.由图表可得7)78776(51=++++=甲x , 7)97676(51=++++=乙x , ∴52)01001(512=++++=甲S , 56)40101(512=++++=乙S ,22乙甲S S < , ∴两组数据的方差中较小的一个为522=S .本题也可由表格估算出22乙甲S S <,因此,不必计算2乙S 7. 22【解析】 本题考查了算法的流程图,以循环结构为主要考查对象,是近几年高考中常见的命题方式.由流程图可得, 第一次循环时得到的S 与T 的值分别为1-0=1,1; 第二次循环时得到的S 与T 的值分别为9-1=8,3; 第三次循环时得到的S 与T 的值分别为25-8=17,5, 此时退出循环结构得22517=+=W .8. 1:8【解析】 本题考查了推理与证明中合情推理之中类比推理的应用.由于相似的几何图形中面积比是边长的平方比, 类比的相似的几何体的体积比是棱长的立方比, 即若两个正四面体的棱长的比为1:2,则它们的体积比为1:8.9. (-2, 15)【解析】 本题考查了导数的几何意义, 曲线方程对应的函数的导数的几何意义是曲线上某点的切线的斜率.由21032=-='x y 可解得2±=x , ∵切点P 在第二象限内,∴2-=x , 由此可得点P 的坐标为(-2, 15).10. n m <【解析】 本题考查了指数函数及指数函数的单调性的应用.∵)1,0(215∈-=a , ∴函数x a x f =)(为R 上的减函数,又∵)()(n f m f >, ∴n m <.11. 4【解析】 本题考查了对数不等式及集合的子集运算,此题中要注意对数函数的定义域及集合边界值的验证.由已知条件可得{}(]4,02log |2=≤=x x A ,),(a B -∞=,若B A ⊆则4>a ,即得4=c .12. (1)(2)【解析】 本题考查了平面与平面、直线与平面的平行与垂直的位置关系,是高考中常见的开放题型之一. 若α内的两条相交直线分别平行于β内的两条直线,则α平行于β,这是两个平面平行的判定定理,即(1)正确;若α外一条直线l 与α内的一条直线平行,则l 和α平行,这是直线与平面平行的判定定理,即(2)正确;设α和β相交于直线l ,α内有一条直线垂直于l ,但该直线不一定能够垂直β内两条相交直线,即直线l 不一定垂直于平面β,所以平面α和β不一定垂直,即(3)不正确; 直线l 与α垂直的充分必要条件是l 与α内的两条相交直线垂直,即(4)不正确, 综上可得真命题的序号为(1)(2).13.572-【解析】 本题考查了直线方程,两直线的交点及椭圆的几何意义,离心率 的考查是高考客观题考查的热点.由已知条件可得直线21B A 的方程为1=-+-bx a x ①, 直线F B 1的方程为1=-+b y c x ②,联立①②可得两直线交点T 的坐标为(c a ac -2,c a c a b -+)(),则线段OT 的中点M 的坐标为(ca ac -,)(2)(c a c ab -+),代入椭圆12222=+b y a x 可得222)(4)(4c a c a c -=++,即得03102=-+e e ,解之得725±-=e ,∵)1,0(∈e , ∴572-=e .【别解】设)sin ,cos (θθb a M ,则)sin 2,cos 2(θθb a T ,由T B A 21共线得a b a a b =+θθcos 2sin 2化简得1cos 2sin 2+θ=θ ① 由FT B 1共线得cb a b b =θ+θcos 2sin 2化简得θ=+θcos 2)1sin 2(e ② 由①②解得⎪⎪⎩⎪⎪⎨⎧-+=θ-=θ)1(21sin 1cos e ee e 代入1sin cos 22=θ+θ得03102=-+e e ,解得725+-=e .14. -9【解析】 本题考查了等比数列的通项与基本量的求解问题,此题利用等比数列构造另一个数列,利用所构造数列的性质去研究等比数列是高考的热点问题.由已知数列{}n b 有连续四项在集合{}82,37,19,23,53--中,则数列{}n a 必有连续四项在集合{}81,36,18,24,54--中, 若公比q 为正则该数列的四项必均为正或均为负值, 显然不合题意, 所以公比q 必为负值,又由1>q 知1-<q ,按此要求在集合{}81,36,18,24,54--中取四个数排成数列可得数列81,54,36,24--或54,36,24,18-- (此数列不成等比数列,故舍去), ∵数列81,54,36,24--的公比23-=q , ∴96-=q . 二、解答题:本大题共6小题,共计90分,请在答题卡指定区域内作答,解答时应写出文字说明、证明或演算步骤.[15题解析] 本小题主要考查向量的基本概念、数乘、数量积,同时考查同角三角函数的基本关系式、二倍角的正弦、两角和的正弦与余弦公式,考查运算和证明等基本能力.满分14分.(Ⅰ)由a 与c b 2-垂直,02)2(=⋅-⋅=-⋅c a b a c b a ,即0)cos(8)sin(4=β+α-β+α,2)tan(=β+α.(Ⅱ))sin 4cos 4,cos (sin β-ββ+β=+c b ,β+ββ-β+β+ββ+β=+22222sin 16sin cos 32cos 16cos cos sin 2sin c b β-=ββ-=2sin 1517cos sin 3017,最大值为32, 所以c b +的最大值为24.由16tan tan =βα得βα=βαcos cos 16sin sin ,即0sin sin cos 4cos 4=βα-β⋅α,所以a ∥b . [16题解析] 本小题主要考查直线与平面、平面与平面的位置关系,考查空间想象能力、推理论证能力.满分14分.(Ⅰ)因为E ,F 分别是C A B A 11,的中点,所以EF ∥BC ,又ABC EF 面⊄,ABC BC 面⊂,所以EF ∥平面ABC .(Ⅱ)因为直三棱柱111C B A ABC -,所以1111C B A BB 面⊥,D A BB 11⊥,又C B D A 11⊥,所以C C BB D A 111面⊥,又FD A D A 11面⊂,所以平面⊥FD A 1平面C C BB 11.[17题解析] 本小题主要考查等差数列的通项、求和的有关知识,考查运算和求解的能力.满分14分.(1)设公差为d ,则23242522a a a a -=-,由性质得)()(33434a a d a a d +=+-,因为0≠d ,所以034=+a a ,即0521=+d a ,又由77=S 得726771=⨯+d a ,解得51-=a ,2=d ,所以{}n a 的通项公式为72-=n a n ,前n 项和n n S n 62-=.(2)(方法一)32)52)(72(21---=++m m m a a a m m m ,设t m =-32, 则68)2)(4(21-+=--=++tt t t t a a a m m m , 所以t 为8的约数 因为t 是奇数,所以t 可取的值为1±当2,1-==m t 时,3752,368=-⨯=-+t t ,是数列{}n a 中的项; 当1,1=-=m t 时,,1568-=-+tt 数列{}n a 中的最小项是5-,不符合. 所以满足条件的正整数2=m (方法二)因为222222186)2)(4(++++++++-=--=m m m m m m m m a a a a a a a a 为数列{}n a 中的项, 故28+m a 为整数,又由(1)知:2+m a 为奇数,所以1322±=-=+m a m ,即2,1=m经检验,符合题意的正整数只有2=m这两种解法看似相同,但却有本质的区别,解法二是紧扣数列通项公式解题,而解法一是紧扣等差数列的概念解题,学生掌握的基本思路是解法二,本题是中极题.[18题解析] 本小题主要考查直线与圆的方程、点到直线的距离公式,考查数学运算求解能力、综合分析问题的能力.满分16分.(1)设直线l 的方程为:)4(-=x k y ,即04=--k y kx 由垂径定理,得:圆心1C 到直线l 的距离,1)232(422=-=d 结合点到直线距离公式,得:114132=+---k kk化简得:247,,0.07242-===+k or k k k 求直线l 的方程为:0=y 或)4(247--=x y ,即0=y 或028247=-+y x (2) 设点P 坐标为),(n m ,直线1l 、2l 的方程分别为:)(1),(m x k n y m x k n y --=--=-,即:011,0=++--=-+-m kn y x k km n y kx因为直线1l 被圆1C 截得的弦长与直线2l 被圆2C 截得的弦长相等,两圆半径相等.由垂径定理,得::圆心1C 到直线1l 与2C 直线2l 的距离相等.故有:1115411322+++--=+-+--km kn k k kmn k ,化简得:5)8(,3)2(-+=+---=--n m k n m n m k n m 或 关于k 的方程有无穷多解,有:⎩⎨⎧=-+=+-⎩⎨⎧=--=--0508,0302n m n m n m m m 或 解之得:点P 坐标为)213,23(-或)21,25(-. [19题解析] 本小题主要考查函数的概念、基本不等式等基础知识,考查数学建模能力、抽象概括能力以及数学阅读能力.满分16分. (1) [][])20,5,12,3(,203,512∈∈+⋅+=+⋅+=B A B B A A B B A A m m m m m m h m m m m h 乙甲当B A m m 53=时,)5)(20(51253532++=+⋅+=B B B B B B B m m m m m m m h 甲,)20)(5(20353532++=+⋅+=B B BB B B B m m m m m m m h 乙,h 甲=h 乙(2)当B A m m 53=时,h ==甲由[]⎥⎦⎤⎢⎣⎡∈∈51,201120,5B B m m 得,故当2011=B m 即12,20==A B m m 时, 甲乙两人同时取到最大的综合满意度为510. (3)(方法一)由(2)知:5100=h 由5105120=≥+⋅+=h m m m m h B B A A 甲得:25512≤+⋅+B B A A m m m m ,令y m x m B A ==5,3则⎥⎦⎤⎢⎣⎡∈1,41,y x ,即:25)1)(41(≤++y x . 同理,由5100=≥h h 乙得:25)41)(1(≤++y x 另一方面,[]5,241,41,1,41,∈++⎥⎦⎤⎢⎣⎡∈y x y x ,⎥⎦⎤⎢⎣⎡∈++2,251,1y x25)41)(1(,25)1)(41(≥++≥++y x y x 当且仅当41==y x ,即B A m m =时,取等号.所以不能否适当选取A m 、B m 的值,使得00h h h h ≥≥乙甲和同时成立,但等号不同时成立. 方法二:由⑵知320=h ,因为 9425100201536122020351212≤++⋅++=+⋅+⋅+⋅+=yy x x y x x y y x h h 乙甲所以,当32,32≥≥乙甲h h 时,有32==乙甲h h ,因此,不能取到B A m m ,的值,使得0h h ≥甲和0h h ≥乙同时成立,但等号不同时成立.[20题解析] 本小题主要考查函数的概念、性质、图象及解一元二次不等式等基础知识,考查灵活运用数形结合、分类讨论的思想方法进行探索、分析与解决问题的综合能力.满分16分(1)若1)0(≥f ,则1112-≤⇒⎩⎨⎧≥<⇒≥-a a a a a(2)当a x ≥时,⎪⎩⎪⎨⎧<≥=⎪⎩⎪⎨⎧<≥=+-=0,320,20),3(0),()(,23)(22min22a a a a a a f a a f x f a ax x x f 当a x ≤时,⎪⎩⎪⎨⎧<≥-=⎩⎨⎧<≥-=-+=0,20,20),(0),()(,2)(22min22a a a a a a f a a f x f a ax x x f 综上⎪⎩⎪⎨⎧<≥-=0,320,2)(22mina a a a x f (3)),(+∞∈a x 时,1)(≥x h 得012322≥-+-a ax x ,222812)1(124a a a -=--=∆当2626≥-≤a a 或时,),(,0+∞∈≤∆a x ; 当2626<<-a 时,△>0,得:⎪⎩⎪⎨⎧>≥-+----ax a a x a a x 0)323)(323(22 讨论得:当)26,22(∈a 时,解集为),(+∞a ; 当)22,26(--∈a 时,解集为⎪⎪⎭⎫⎢⎢⎣⎡+∞-+⋃--,323]323,(22a a a a a ; 当⎥⎦⎤⎢⎣⎡-∈22,22a 时,解集为⎪⎪⎭⎫⎢⎢⎣⎡+∞-+,3232a a . 数学Ⅱ[A .选修4 - 1几何证明选讲答案] :本小题主要考查四边形、全等三角形的有关知识,考查推理论证能力.满分10分.证明:由△ABC ≌△BAD 得∠ACB=∠BDA ,故A 、B 、C 、D 四点共圆,从而∠CBA=∠CDB .再由△ABC ≌△BAD 得∠CAB=∠DBA .因此∠DBA=∠CDB ,所以AB ∥CD .[B .选修4 - 2:矩阵与变换答案] :本小题主要考查逆矩阵的求法,考查运算求解能力.满分10分.解:设矩阵A 的逆矩阵为⎥⎦⎤⎢⎣⎡w y z x ,则⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡10011223 = w y z x 即⎥⎦⎤⎢⎣⎡=⎥⎦⎤++⎢⎣⎡+100122322z 3 +w y w y z x x ,故⎩⎨⎧=+=+⎩⎨⎧=+=+,12,023,,02,123w y w y z x z x解得:3,2,2,1-===-=w y z x ,从而A 的逆矩阵为⎥⎦⎤-⎢⎣⎡-=-32211 A . [C . 选修4 - 4:坐标系与参数方程答案] :本小题主要考查参数方程和普通方程的基本知识,考查转化问题的能力.满分10分.解:因为212-+=t t x ,所以3122y t t x =+=+,故曲线C 的普通方程为:2360x y -+= [ D . 选修4 - 5:不等式选讲答案] :本小题主要考查比较法证明不等式的常见方法,考查代数式的变形能力.满分10分.证明:3322222232(32)3()2()(32)().a b a b ab a a b b b a a b a b +-+=-+-=-- 因为a ≥b >0,所以a b -≥0,2232a b ->0,从而22(32)()a b a b --≥0, 即3332a b +≥2232a b ab +.[必做题第22题答案] :本小题主要考查直线、抛物线及两点间的距离公式等基本知识,考查运算求解能力.满分10分.解:(1)由题意,可设抛物线C 的标准方程为px y 22=,因为点)2,2(A 在抛物线C 上,所以1=p ,因此,抛物线C 的标准方程为x y 22=.(2)由(1)可得焦点F 的坐标是)0,21(,又直线OA 的斜率为122=,故与直线OA 垂直的直线的斜率为1-,因此,所求直线的方程是021=-+y x .(3)解法一:设点D 和E 的坐标分别为),(11y x 和),(22y x ,直线DE 的方程是)(m x k y -=,0≠k 将m kyx +=代入x y 22=,有0222=--km y ky ,解得kmk y 22,1211+±=.由DE ME 2=知)121(221122-+=++mk mk ,化简得m k 42=. 因此22122212212))(11()()(y y ky y x x DE -+=-+-=)4(49)21(4)11(2222m m k mk k +=++=.所以)0(423)(2>+=m m m m f . 解法二:设),2(),,2(22t t E s s D ,由点)0,(m M 及DMME 2=得)0(20),2(22122s t s m m t -=--=-.因此2,2s m s t =-= 所以)0(423)2()22()(222222>+=--+-==m m m s s s s DE m f .[必做题第23题答案] :本小题主要考查概率的基本知识和记数原理,考查探究能力.满分10分.(1)解:因为方程022=++b ax x 有实数根,所以0442≥-=∆b a ,即2a b ≤(i )当2n a n ≤≤时,有22a n ≤,又2,,2,1n b ⋅⋅⋅∈,故总有b ,有12+-n n 种取法,b有2n 种取法,所以共有22)1(n n n +-组有序数组),(b a 满足条件;(ii )当11-≤≤n a 时,满足21ab ≤≤的b有2a个,故共有6)12)(1()1(3212222--=-+⋅⋅⋅+++n n n n 组有序数组),(b a 满足条件.由(i )(ii )可得6)1346(6)12)(1()1(23222++-=--=+-=n n n n n n n n n n T n ,从而32346134622n n n n n T P n n ++-==.⑵证明:我们只需证明:对于随机选取的n b a ,,2,1,⋅⋅⋅∈,方程022=++b ax x 无实数根的概率nP n 11<-.若方程022=++b ax x 无实数根,则0442<-=∆b a ,即b a <2的有序数组),(b a 的组数小于n n ,从而,方程022=++b ax x 无实数根的概率nn n n P n 112=<-,所以n P n 11->.试卷综合解读与评析2009年高考江苏卷保持了2008年高考江苏卷的特点,以稳为主,稳中有变,更加体现新课程理念,所有试题的建构,不偏不怪,难易得当,紧扣考纲,贴近课本.注重考查基础知识,基本技能,基本数学思想和方法,对当前高中数学教学和高三数学复习备考有着鲜明的导向作用.下面从数学I、II试题的答案,别解、知识点、苏教版教材的出处,考纲要求,课本要求,用到的数学思想方法,容易导致失误的地方等方面进行综合解读.(要说明的是:江苏高考试题分文、理科,除选修的科目不同外,语、数、外三门必修科目的设置也有同有异:英语科目文理科试题相同,分值为120分;数学、语文两门必修科目,文理试题的设置分I、II两部分,对于文科和理科的考生数学和语文的I卷试题相同、分值均为160分,对理科生要加考数学II试题,文科考生要加考语文II试题分值均为40分.这样语数外三门必修科目文、理试题的总分值一样——200分+160分+120分=480分.)1.数学I试题(文理同卷)填空题部分填空题没有难度,从1至12题都平铺直叙,送分送到位,13、14题属于中档题,也容易拿分,没有难题.对照考纲和教材将14条填空题进行分析和解读如下:(附:表中的“等级”是指:江苏《考试说明》将考点要求分成A、B、C三个等级,其中C级要求最高,B 级次之、A级要求最低;表中的“层次”是指:江苏教材上的习题分为三个层次即:感受·理解、思考·运用和探究·拓展)2 数学I试题(文理同卷)解答题部分对于15题,此题主要考查平面向量数量积的坐标运算,两角和与差的三角函数,二倍角的正弦,考纲要求分别为C、C、B,坚持了重点知识重点考查的原则,数学思想方法主要考查了转化思想题型常规,思路清晰可循,三基好的考生容易得满分.对于16题,此题是立体几何题,仍然是考察平行与垂直的证明,题目简单明了,但要注重过程,判定定理的条件必须写全,线面平行是三个条件,面面垂直是两个条件,但之前需证明线面垂直,那是五个条件.对于17、18题第一小问,比较简单,但第二小问难度加大.17题数列题的第一小问是基本量的运算,大多考生不会有问题,第二小问有一丝数论的味道,题目简洁而又精彩!18题是解析几何题,考查直线与圆的位置关系,第二小问思路其实比较清晰,因为圆1C 与圆2C 的半径相等,及直线1l 被圆1C 截得的弦长与直线 2l 被圆2C 截得的弦长相等,所以圆1C 的圆心到直线1l 的距离和圆2C 的圆心到直线2l 的距离相等,列出等式,题目中要求“存在无数对直线”转化为“等式有无数解”即可,但是字母运算较复杂,考察考生的耐心与细心. 对于19题,此题主要考查函数与基本不等式等基础知识,比较好地考查了考生对信息的接收、加工和输出等数据处理能力,数学建模能力、抽象概括能力以及数学阅读能力达到有效考查综合素质的目的.考查与以往不同的是,大题的顺序有了明显的颠倒,数列难度下降了很多,放在了大题第三题的位置,而以往应用题是不会放在这个位置的,虽然难度适中,以生活中的满意度为背景,但题干中的字比较多,问题的表述较长,变量均以字母形式出现,提高了应用题的难度,这就要求考生多读几遍题目,多读几遍还是可以理解的,第⑴、⑵小题能够做出,第⑶小题有点难度;有些考生就承受不了了,所以对最后一题也有心理干扰,这也是广大考生不太适应的又一方面,从中可以看到今年的高考试卷在知识与能力考查的同时,体现了对课改新理念的创新与发展.对于20题,此题主要考查函数的概念、性质、图像及解一元二次不等式等基础知识,考查灵活运用数型结合、分类讨论的思想方法.这样的的分类讨论其实高中训练得很多了,但在考场上想得满分也并不容易.第(3)小问不要考生写过程,只要结果,需要一定的数学直觉思维,如果结合图形问题可以得到很好地解决,命题很有新意,不落浴套,具有较强的选拔功能.3. 数学Ⅱ附加题(理科做)今年是执行必做、选做分卷考试新模式的第二年,附加题部分难度控制的比较适中,在全省考生慢慢接受并熟悉了这种模式后,相比去年,今年的选作题方面考点上没有任何的变动,但圆锥曲线、函数中不等关系的证明出现在该部分作为压轴考题,难度明显比去年有了很大的提升. 4 全卷综合点评 4.1 全卷综合解读2009年高考数学试题,对考试说明中的8个C 级要求的知识点和B 级要求中传统的问题都进行了有效的考查,在保持题型稳定的基础上,进行适度的改革和创新,试卷贴近教学实际,坚持能力立意,全面检测考生的数学素养,充分体现新课程的基本理念.试卷主要有以下几个方面的特点:4.1.1 多题把关,有效发挥选拔功能第17,18题第二小问,第19题、第20题的第三问有一定的难度,改变了过去一题或两题把关的习惯,在凸显文理公平基础上,命题者这样处理对不同层次考生群体更有区分度,有利于高校选拔人才.基于同样的原因,数学Ⅱ附加题(理科做)部分,两道必做题对数学语言的转化以及数学思想方法有一定的要求,相对较难,其他试题很简单.4.1.2 能力立意,旨在考察数学素养全卷在考查知识的同时,注重考查学生的数学思维能力和应用意识.许多试题实际上并不难,对于知识点考生很熟悉,但需要考生自主综合所学知识,才能解决问题,如第17题第二问,其实是恒成立问题.许多试题若能先想清楚问题的关键或本质,确定了合适的解题思路和方向后再动手,解答会容易的多,否则会陷入繁琐的运算之中,比如第13题,第14题.部分题目在考查基础知识点上有所创新,题目设计灵活.如数学卷第17题第(2)问,第18题第(2)问,都是对一个问题进行纵向探究,考查学生创新意识,同时要求学生掌握通性通法,淡化特殊技巧,例如第18题第(2)问,如果用几何方法解决在考场上几乎不能成功,试题的设问已将几何法排除在外,命题者的意思很明确,考察解析几何的本质——用代数方法研究图形的几何性质,体现数形结合和等价转化的重要数学思想4.1.3 引领课改,全面体现课程标准试卷以朴素的数学知识为载体,综合考查最基本的数学思想和方法,体现了高考命题重实质、重内涵的指导思想,注重通性通法、淡化特殊技巧,对中学数学教学有较好的导向作用.不少试题注意在具体的情景中、在解决问题的过程中突出考查学生数学思想和数学方法.如第20题以二次函数为载体,重点考查分类谈论、数形结合思想,其中的第三问,只要直接写出解,不需要过程,打破了长期以来人们所固有的解答题不能以图代证的模式,给平时积极主动、勇于探索的考生有发挥的空间.这也是新课改的明确要求,新课程标准明确指出:“高中数学课程应注重提高学生的数学思维能力,这是数学教育的基本目标之一,人们在学习数学和运用数学解决问题时,不断地经历直观感知、观察发现、归纳推理、空间想象、抽象概括……等思维过程”.另外,试题加强了对应用意识和创新意识的考查,力求对现实世界中蕴涵的一些数学模式进行思考和做出判断,例如第19题以生活中的满意度为背景,问题的表述较长,需要考生耐心读懂题目,但模式识别方便,同时还考查了学生将文字语言转化为数学语言的能力.4.1.4 保持稳定,凸显公平公正原则(1)整卷试题呈现:低起点、入手宽、由易到难,逐步深入、多题把关的格局,全卷结构、题型包括难度都基本稳定,依据考试说明,突出对教材基本内容的考查.填空题比较平和,不需太繁的计算,考生普遍感觉顺手.许多试题源于课本,略高于课本,如第1、2、3、4、5、7、11、15题等,都由课本例题、习题进行恰当变更、迁移、综合、创新整合而成,给人以似曾相识的感觉.最后6个解答题由易到难,涉及的知识内容基础、常规,入手容易,但深入有一定困难.附加题部分,选做题对知识点的考查单一,结论要求明确,学生入手较易.(2)通览全卷试题和答案:不见偏题怪题、人为陷阱,处处体现人文关怀、呈现关爱.如填空题14题,求6q ,正常应该求q ,有谬常理.细细想来,为命题者的良苦用心所折服,这是因为如果所编题目答案q 是整数,学生很易猜到,失去考察知识的意义,现在所编题目的23-=q ,凭借以前阅卷的经验,学生的答案很易将“—”和分数线“——”连在一起成为“23”,从而引起失分,试题中“求6q ”可以有效避免这种非智力因素的失分;再如,填空题11题按常理该设问为“求实数a 的范围”,而试题中设问为“实数a 的取值范围是),(+∞c ,其中c = ____”,从中大家不难发现命题者的用心,还有应用题的表述命题者不惜大量篇幅,也是为了学生只要认真读题就不会因为审题困难而失分.(3)试卷注重对重点知识的考察,但编制题目时目的很明确——只针对性地考察要考知识、方法,不人为设置其他难点,避免因为其他知识的不熟悉而解答错误.例如新增内容“导数”,试题中填空题部分两次用到,但难度都很低,这是因为新课标只要求“能利用导数研究函数单调性、会用导数求简单函数的极值和最值”, “导数”其实在中学教材中只是一种“工具”的地位,要重点考察但不会考很复杂的函数,以免考生因为求导数出错而失误.再如立体几何的考察,载体是直三棱柱,只考察了基本的平行与垂直的证明,这是因为理科学过空间向量,如果考角与距离或比较难的证明,那样对于文科生就极不公平.其他的题目基本都是如此.以上三点是试卷所呈现的实际情况,如果我们进一步地思考可以发现命题者这样做的真正原因——保持稳定、体现公平.江苏高考的现行模式才第二年,数学I 试题文科和理科同卷,而他们所用的教材必修部分相同,选修部分不同,文科教材要简单些,另外他们的数学基础也不同,而高校录取时是同等录取,这就要求数学命题时文理要公平,做到真正公平很困难,唯一的办法就“简单”——载体简单、知识点单一,只有这样才能相对公平.还有应用题的编拟也体现了另一公平——城乡考生之间的公平,试题中的应用题背景对所有学生是公平的.4.2 备考备战的几点启示4.2.1 平时教学要灵活、有变化,模式教学已不适应平时的教学活动要灵活、要开展一题多变、多题一解、一题多解的数学解题教学模式,要注重情境教学,揭示知识的生成、发展和应用的过程,不能因为教学时间的有限而给学生不同知识点以不同的模式化,学生的数学活动不应只限于接受、记忆、模仿和练习,应积极倡导自主探索、动手实践、合作交流、阅读自学等学习数学的方式,发挥学生学习的主动性. 平时教学要严格按课程标准和考试说明进行,对教材内容不要人为地加深和无限地拓展,或是反复训练自认为重要的个别问题,这样浪费学生很多宝贵时间,在高考中将会处于劣势. 4.2.2 高考试题没有绝对,吃透课程标准是关键。

江苏省苏州市常熟市2023-2024学年高一下学期期中调研数学试题(含答案)

江苏省苏州市常熟市2023-2024学年高一下学期期中调研数学试题(含答案)

常熟市2023-2024学年高一下学期期中调研数学一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若复数满足(是虚数单位),则的虚部是( )A.B. C.D. 2. 设,是两个不共线的向量,若向量与向量共线,则( )A.B. C. D.3. 已知,都是锐角,,,则( )A.B. C. D.4. 沪苏通长江公铁大桥(如图1)是中国自主设计建造、世界上首座跨度超千米的公铁两用斜拉桥.已知主塔垂直于桥面,一辆小汽车在行驶过程中,车内乘客两次仰望塔顶的仰角分别为,(如图2),设乘客眼睛离地面的距离为,.若,,在同一水平高度,且,,在同一竖直平面内,则根据以上数据可计算主塔高为( ).A.B.C.D.5. 将曲线上所有点向左平移个单位长度,再将所得曲线上所有点的横坐标伸长为原来的2倍,纵坐标不变,得到曲线,则的方程为( )A. B. z 1z =-i z 1e 2e ()12R m e ke k =-+∈ 1225n e e =+k =5252-25-25αβ35=cos α()5sin 13αβ-=cos β=1665336556656365AB A 30ADE ∠=︒45ACE ∠=︒DM CN h ==()0,0CD a h a =>>D C E AD AC AB AB h +h +)1a h+)1a h-+1π:2sin 6C y x ⎛⎫=+⎪⎝⎭π62C 2C π2sin 23y x ⎛⎫=+⎪⎝⎭π2sin 26y x ⎛⎫=+⎪⎝⎭C. D. 6. 已知复数满足,则(是虚数单位)的最小值为( )A.B. 4C.D. 67. 在平行四边形中,,分别在边,上,,,与相交于点,记,,则( )A. B. C. D. 8. 已知锐角中,,则边上的高的取值范围为( )A. B. C. D. 二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 函数的图象的一条对称轴可以是( )A. B. C. D. 10. 已知复数,是方程两根,则()A.B. C. D. 11. 窗花是贴在窗户上的剪纸,是中国古老的传统民间艺术之一.图1是一个正八边形窗花,图2是从窗花图中抽象出的几何图形的示意图.已知正八边形,是正八边形边上任意一点,则下列结论正确的是( )的12sin2y x =1π2sin 23y x ⎛⎫=+⎪⎝⎭z 11z -=24i z ++i 1-1+ABCD E F AD CD 3AE ED =DF FC =AF BE G BC a = BA b = =AG 361111a b - 361111a b-+631111a b -631111a b-+ABC V π6AB C ==AB (0,3+(3,3+(3,3+(6,3+()()πsin 23f x x x ⎛⎫=+∈ ⎪⎝⎭R 5π12x =-π12x =-π12x =5π12x =1z 2z 210x x ++=121z z +=121z z ==212z z =33121z z ==ABCDEFGH P ABCDEFGHA. 在上投影向量为B.C. 的最大值为2D. 若在线段上(含端点),且,则的取值范围为三、填空题:本题共3小题,每小题5分,共15分.12. 已知角满足,则______.13. 《数书九章》是中国南宋时期杰出数学家秦九韶的著作,全书十八卷共八十一个问题,分为九类,每类九个问题,《数书九章》中记录了秦九韶的许多创造性成就,其中在卷五“三斜求积”中提出了:已知三角形三边,,,求面积的公式.这与古希腊的海伦公式完全等价,其求法是:“以小斜幂并大斜幂减中斜幂,余半之,自乘上,以小斜幂乘大斜幂减上,余四约之,为实,一为从隅,开平方得积.”若把以上这段文字写成公式,即:.现有的三边,,满足,且的面积,若点是边的中点,则______.14. 已知函数,若为奇函数,为偶函数,且上至少有2个实根,至多有3个实根,则函数的对称轴为______(写出一个即可),正整数的所有可能取值之和为______.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15 已知向量,,.的.AD AB1)AB+ AF AE HG HFAF AE HG HF⋅⋅=⋅⋅ ()()PA PB PE PF +⋅+P BC AP x AB y AH =+x y +[1,2+αsin cos αα-=sin2α=a b c S S =ABC V a b c ::1:2:a b c =ABC V =S D AB =CD ()()πsin 0,02f x x ωϕωϕ⎛⎫=+><< ⎪⎝⎭π4f x ⎛⎫- ⎪⎝⎭π4f x ⎛⎫+ ⎪⎝⎭()f x =π0,6⎛⎫⎪⎝⎭()f x ω()1,1OA =-()2,3OB =- ()1,2OC m m =--(1)若,求实数的值;(2)若,求实数的值.16. 复数平面内表示复数的点分别满足下列条件:(1)位于第四象限;(2)位于第一象限或第三象限;(3)位于直线上.求实数的取值范围.17. 已知函数的最大值为3.(1)若的定义域为,求的单调递增区间;(2)若,,求的值.18. 赵爽是我国古代数学家,大约在公元222年,他为《周脾算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为边长得到正方形由4个全等的直角三角形再加上中间的一个小正方形组成,如图1所示).类比“赵爽弦图”,可构造如图2所示的图形,它是由3个全等的,,与中间一个小等边拼成的一个较大的等边.记的面积为,的面积为,的面积为.(1)若,求;(2)设,当时,求以及值.19. 如图所示,设,是平面内相交成角的两条数轴,,分别是与,轴正方向同向的单位向量,则称平面坐标系为仿射坐标系,若在仿射坐标系下,则的的AB OC ⊥m OA BCP m ()()22815514i z m m m m =-++--y x =m ()22sin cos cos f x x x x x m =+-+()f x []0,π()f x 01125x f ⎛⎫= ⎪⎝⎭0π0,2x ⎡⎤∈⎢⎥⎣⎦0cos2x ACF △BAD V CBE △DEF V ABC V DEF V 1S ABD △2S ABC V 3S 13AF AD = 13S S π06BAD θθ⎛⎫∠=<< ⎪⎝⎭23S S =θAF AD Ox Oy π0π,2θθθ⎛⎫<<≠ ⎪⎝⎭1e 2e x y xOy θθ12OM xe ye =+把有序数对叫做向量的仿射坐标,记为.已知在仿射坐标系下,.(1)求向量,的仿射坐标;(2)当时,求;(3)设,若对恒成立,求的最大值.(),x y OM(),OM x y = θ()3,1OA = ()1,1OB =2OA OB + -OA OB π3θ=cos AOB ∠AOB α∠=OA tOB -≥R t ∀∈cos α常熟市2023-2024学年高一下学期期中调研数学简要答案一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.【1题答案】【答案】B【2题答案】【答案】B【3题答案】【答案】C【4题答案】【答案】A【5题答案】【答案】D【6题答案】【答案】B【7题答案】【答案】C【8题答案】【答案】D二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.【9题答案】【答案】AC【10题答案】【答案】BD【11题答案】【答案】BCD三、填空题:本题共3小题,每小题5分,共15分.【12题答案】【答案】【13题答案】【答案】【14题答案】【答案】①. (答案不唯一)②. 51四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.【15题答案】【答案】(1)(2)【16题答案】【答案】(1)或(2)或或(3)【17题答案】【答案】(1)单调递增区间为和(2【18题答案】【答案】(1)(2)【19题答案】【答案】(1)(2(379π4x=5m=2m=23m-<<57m<<2m<-35m<<7m>293m=π0,3⎡⎤⎢⎥⎣⎦5π,π6⎡⎤⎢⎥⎣⎦413π12θ=()()7,3,2,0。

2009届江苏统考试卷(12套)-江苏省大丰市2009年高三年级调研考试数学试题

2009届江苏统考试卷(12套)-江苏省大丰市2009年高三年级调研考试数学试题
5.已知复数 z1 m 2i, z2 3 4i, 若
z1 为实数,则实数 m= ▲ . z2
6.一个总体中的 80 个个体编号为 0, l, 2, ……, 79, 并依次将其分为 8 个组, 组号为 0, 1, …, 7,要用(错位)系统抽样的方法抽取一个容量为 8 的样本.即规定先在第 0 组随机抽取一 个号码, 记为 i, 依次错位地得到后面各组的号码, 即第 k 组中抽取个位数为 i+k (当 i+k<10) 或 i+k-10(当 i+k≥10)的号码.在 i=6 时,所抽到的 8 个号码是▲ . xy 0 , D x A B 7.过△ ABC 的重心任作一直线分别交 AB, AC 于点 D、 E. 若A , AE y AC ,
A E
C
D
17.(本题满分 14 分) 某食品公司为了解某种新品种食品的市场需求,进行了 20 天的测试, 人为地调控每天产品的单价 P (元/件) :前 10 天每天单价呈直线下降趋势(第 10 天免费赠 送品尝) ,后 10 天呈直线上升,其中 4 天的单价记录如下表: 时间 (将第 x 天记为 x) 1 10 11 18 x 9 0 1 8 单价(元/件)P 而这 20 天相应的销售量 Q (百件/天)与 x 对应的点 ( x, Q) 在如图所示的半圆上. (Ⅰ)写出每天销售收入 y (元)与时间 x (天)的函数关系式 y f ( x) ; (Ⅱ)在这 20 天中哪一天销售收入最高?为使每天销售收入最高,按此次测试结果应将单 价 P 定为多少元为好?(结果精确到 1 元)
16. (本题满分 14 分) 如图, 已知空间四边形 ABCD 中,BC AC, AD BD ,E 是 AB 的中点. 求证: (1) AB 平面 CDE; (2)平面 CDE 平面 ABC . (3) 若 G 为 ADC 的重心,试在线段 AE 上确定一点 F,使得 GF 平 面 CDE. B

江苏镇江市2009-2010学年第一学期期中调研高一数学试卷

江苏镇江市2009-2010学年第一学期期中调研高一数学试卷

江苏镇江市2009-2010学年第一学期期中调研高一数学试卷时间:120分钟 满分:160分 2009.11一、填空题:本大题共14小题,每小题5分,计70分.不需写出解答过程,请把答案写在答题纸的指定位置上.1.分解因式:256a a --= ▲ .2.集合{10},{0,1},A B A B ==⋃-,则= ▲ .3.若函数2()1f x x =+的定义域为{}1,0,1- ,则它的值域为 ▲ .403(1)2log 1lg2lg5π-+--= ▲ .5.已知集合[)()1,4,,A B a ==-∞,若A B ⊆,则实数a 的取值范围为 ▲ .6.函数2log y x =与12log y x =的图象关于 ▲ 对称.(填x 轴、y 轴或原点)7、函数)4lg(51)(2-+-=x x x f 的定义域为 ▲ .8.如右图所示, 集合M 与N 都是全集U 的子集,则图中阴影部分可以用M 、N 、U 表示为 ▲ .9.下列函数中四个函数(1)y x = (2)0.2log y x = (3)12y x =(4)1()2x y = 中,在R 上单调递减的是 ▲ .10.若50.330.3,log 5,log 5,M N P ===则用“<”连接 M N P 、、的大小关系为 ▲ .11.集合A 、B 都是实数集R ,已知映射::f A B →,把集合A 中的元素x 映射到集合B 中的元素31x x -+,则在映射f 作用下,集合B 中的元素1与集合A 中所能对应的元素所组成的集合是 ▲ .12.若函数()22x xf x k -=-⋅为偶函数,则实数k = ▲ . 13.已知定义在实数集R 上的奇函数()f x 在区间[)0,+∞上是单调增函数,若(lg )(1)f x f <-,则x 的取值范围为 ▲ .14.某同学在研究函数 f (x ) = x 1 + | x |(x R ∈) 时,分别给出下面几个结论: ①等式()()0f x f x -+=在x R ∈时恒成立;②函数 f (x ) 的值域为 (-1,1);③若x 1≠x 2,则一定有f (x 1)≠f (x 2);④方程()0f x x -=有三个实数根. 其中正确结论的序号有 ▲ .(请将你认为正确的结论的序号都填上)二、解答题:本大题共6小题,计90分.解答应写出必要的文字说明,证明过程或演算步骤,请把答案写在答题纸的指定区域内.15.(本小题14分)设全集为R ,集合{}2340,A x x x x R =+->∈,2{|60,}B x x x x R =--<∈.求(1)B A ;(2)()R A B ð;(3) A ðB R .16.(本小题14分)已知)(x f 是一次函数,且(0)3,(1)5f f ==.(1)求()f x 的解析式;(2)若当21x -≤≤时,函数()30f x tx t ++>恒成立,求实数t 的取值范围17.(本小题14分)已知函数1()1x f x x -=+,函数2()log ()g x f x = (1)求()f x 的定义域;(2)判断()g x 的奇偶性;(3)画出函数()y f x =的图像,并写出图像的对称中心.18.(本小题16分)二次函数)(x f y =满足:①1)0(=f ;②x x f x f 2)()1(=-+.(1)求)(x f 的解析式;(2)求)(x f 在区间]1,1[-上的最大值和最小值;(3)设()(),g x f x a =-求()g x 在区间]1,1[-上的最大值.19.(本小题16分)已知函数22()22x xx xf x --+=- (1)求()f x 的定义域和值域;(2)写出()f x )的单调区间,并用定义证明()f x 在所写区间上的单调性.20.(本小题满分16分)定义在R 上的函数f (x )满足:如果对任意x 1,x 2∈R ,都有)]()([21)2(121x f x f x x f +≤+,则称函数f (x )是R 上的凹函数. 已知二次函数)0,()(2≠∈+=a R a x ax x f .(1)当1=a 时,试判断函数f (x )是否为凹函数,并说明理由;(2)如果函数f (x )对任意的x ∈[0,1]时,都有1)(≤x f ,试求实数a 的范围。

2009年江苏高考数学试题及参考答案(详解详析版)

2009年江苏高考数学试题及参考答案(详解详析版)

2009年江苏⾼考数学试题及参考答案(详解详析版)2009年普通⾼等学校招⽣全国统⼀考试(江苏卷)数学Ⅰ参考公式:样本数据12,,,n x x x 的⽅差221111(),n n i i i i s x x x x n n ===-=∑∑其中⼀、填空题:本⼤题共14⼩题,每⼩题5分,共70分。

请把答案填写在答题卡相应的位.......置上... 1.若复数1 2429,69z i z i =+=+,其中i 是虚数单位,则复数12()z z i -的实部为★.【答案】20- 【解析】略2.已知向量a 和向量b 的夹⾓为30,||2,||==a b a 和向量b 的数量积= a b ★ .【答案】3【解析】232=?= a b 。

3.函数32()15336f x x x x =--+的单调减区间为★ .【答案】(1,11)- 【解析】2()330333(11)(1)f x xx x x '=--=-+,由(11)(1)0x x -+<得单调减区间为(1,11)-。

4.函数s i n ()(y A x A ω?ω?=+为常数,0,0)A ω>>在闭区间[,0]π-上的图象如图所⽰,则ω= ★ .【答案】3 【解析】32T π=,23T π=,所以3ω=, 5.现有5根⽵竿,它们的长度(单位:m )分别为2.5,2.6,2.7,2.8,2.9,若从中⼀次随机抽取2根⽵竿,则它们的长度恰好相差0.3m 的概率为★ . 【答案】0.2 【解析】略6.某校甲、⼄两个班级各有5名编号为1,2,3,4,5的学⽣进⾏投篮练习,每⼈投10次,投中的次数如下表:则以上两组数据的⽅差中较⼩的⼀个为s =★ .【答案】25【解析】略7.右图是⼀个算法的流程图,最后输出的W = ★ .【答案】22 【解析】略8.在平⾯上,若两个正三⾓形的边长的⽐为1:2,则它们的⾯积⽐为1:4,类似地,在空间,若两个正四⾯体的棱长的⽐为1:2,则它们的体积⽐为★ . 【答案】1:8 【解析】略9.在平⾯直⾓坐标系xoy 中,点P 在曲线3:103C y x x =-+上,且在第⼆象限内,已知曲线C 在点P 处的切线的斜率为2,则点P 的坐标为★ . 【答案】(2,15)- 【解析】略 10.已知12a-=,函数()xf x a =,若实数,m n 满⾜()()f m f n >,则,m n 的⼤⼩关系为★ . 【答案】m n < 【解析】略 11.已知集合{}2|log 2A x x =≤,(,)B a =-∞,若A B ?则实数a 的取值范围是(,)c +∞,其中c =★ .【答案】4【解析】由2log 2x ≤得04x <≤,(0,4]A =;由A B ?知4a >,所以c =4。

全国高中数学联赛江苏赛区2009年初赛试题答案

全国高中数学联赛江苏赛区2009年初赛试题答案班级__________ 姓名__________一、填空题(每小题7分,共70分)1.已知sin cos 1αβ=,则cos()αβ+=________ 解:因为|sin |1α≤,|cos |1β≤,而sin cos 1αβ=;所以sin 1α=,cos 1β=或sin 1α=-,cos 1β=-; 所以22k παπ=+,2l βπ=或者22k παπ=-,2l βππ=+()k l Z ∈、;所以2()2k l παβπ+=++()k l Z ∈、;故cos()0αβ+=.2.已知等差数列{}n a 的前11项的和为55,去掉一项k a 后,余下10项的算术平均值为4;若15a =,则k =________解:设公差为d ,则得:15551111105511022d d d =-⨯+⨯⨯⇒=⇒=;因此,554101552(1)11k a k k =-⨯==-+-⇒=.3.设一个椭圆的焦距、短轴长、长轴长成等比数列,则此椭圆的离心率e =________解:由2222(2)2210b c a a c ac e e e =⨯⇒-=⇒+-=⇒. 4.已知13119133x x x-+=--,则实数x =________ 解:原方程即为:2133433033313(31)xx x x x x=⇒-⨯+=⇒=--或31x =(舍去); 所以实数1x =.5.如图,在四面体ABCD 中,P 、Q 分别为棱BC 与CD 上的点,且BP =2PC ,CQ =2QD ;R 为棱AD 的中点,则点A 、B 到平面PQR 的距离的比值为________BCDAPQ R M NR Q PADCB解法一:A B 、到平面PQR 的距离分别为三棱锥APQR 与BPQR 的以三角形PQR 为底的高;故其比值等于这两个三棱锥的体积比.111111122323318APQR APQD APCD ABCD ABCD V V V V V ==⨯=⨯⨯=;而1214(1)3339BPQ BCD BDQ CPQ BCD BCD S S S S S S =--=--⨯=;414492918RBPQ RBCD ABCD ABCD V V V V ==⨯=;所以A B 、到平面PQR 的距离的比是1:4. 解法二:可以求出平面PQR 与AB 的交点来求此比值:在平面BCD 内,延长PQ BD 、交于点M ,则M 为平面PQR 与棱BD 的交点. 由Menelaus 定理知:1BM DQ CP MD QC PB ⋅⋅=,而12DQ QC =,12CP PB =,故4BMMD=. 在平面ABD 内,作射线MR 交AB 于点N ,则N 为平面PQR 与AB 的交点. 由Menelaus 定理知:1BM DR AN MD RA NB ⋅⋅==1,而4BM MD =,1DR RA =,故14AN NB =. 所以A B 、到平面PQR 的距离的比是1:4.6.设3()log f x x =()0f x ≥的x 的取值范围是________ 解:定义域(0, 4];在定义域内()f x 单调增,且(3)0f =;故()0f x ≥的x 的取值范围为:[3, 4].7.右图是某种净水水箱结构的设计草图,其中净水器是一个宽10cm 、体积为30003cm 的长方体,长和高未定.净水水箱的长、宽、高比净水器的长、宽、高分别长20cm 、20cm 、60cm ;若不 计净水器中的存水,则净水水箱中最少可以存水________3cm . 解:设净水器的长、高分别为x ,y cm ,则300xy =;30(20)(60)30(12006020)V x y x y xy =++=+++30(1200300)≥+30(15001200)=+81000=所以去掉净水器体积,至少可以存水78000cm 3.B8.设点O 是ABC ∆的外心,AB =13,AC =12,则BC AO ⋅=________ 解:设||||||AO BO CO R ===;则()BC AO BO OC AO BO AO OC AO ⋅=+⋅=⋅+⋅OB OA OC OA =⋅-⋅22cos 2cos 2R C R B =-222(2sin 2sin )R B C =-2211(2sin )(2sin )22R B R C =- 22125(1213)22=-=-. 9.设数列{}n a 满足:1122n n n a a a ++=-(1, 2, 3,)n =,2009a =2009项的和为________解:若10n a +≠,则122n n a a +=-,所以20082a =20072a ==20062a =,2005a一般的,若n a ≠0,1,2,则122n n a a +=-;(这里由已知条件,不可能取到0、1、2的)所以11121n n n a a a +-+-=-,2122n n a a -+=-,31n n a a -+=,从而4n n a a -=;所以200912342009200520062007200820051502()502()2008k k a a a a a a a a a a a ==++++=++++=∑ 10.设a 是整数,01b ≤<,若22()a b a b =+,则b =________ 解:若a 为负整数,则20a >,而2()0b a b +<,此不可能,故0a ≥.于是22()2(1)010, 1, 2a b a b a a a =+<+⇒≤<=; 当0a =时,0b =;当1a =时,22210b b b +-=⇒; 当2a =时,22201b b b +-=⇒.说明:本题也可以这样说:求实数x ,使[]22{}x x x =⋅.EBCD A二、解答题(本大题共4小题,每小题20分,共80分)11.在直角坐标系xOy 中,直线240x y -+=与椭圆22194x y +=交于A B 、两点,F 是椭圆的左焦点,求以O F A B 、、、为顶点的四边形的面积.解:取方程组:22493624x y x y ⎧+=⎨=-⎩,代入消去x 得:22564280y y -+=;解此方程得:2y =,1425y =, 即得:(0, 2)B ,7214(, )2525A -;又左焦点1(F ;连OA 把四边形AFO B 分成两个三角形;得:17211412(7222522525S =⨯⨯+=+.(本题有好几个方法,有兴趣者自己想一想)12.如图,设D 、E 是ABC ∆的边AB 上的两点,已知∠ACD =∠BCE ,AC =14,AD =7,AB =28,CE =12,求BC . 解:由AD AC ACD AC AB=⇒∆∽ABC ∆ABC ACD BCE ⇒∠=∠=∠; 所以12CE BE ==,16AE AB BE =-=;所以22222214161211cos 22141616AC AE CE A AC AE +-+-===⋅⨯⨯;所以222222112cos 1428214287916BC AC AB AC AB A =+-⋅=+-⨯⨯⨯=⨯; 所以21BC =.13, x y 成立,求k 的取值范围. 法一:显然0k >;于是平方可得:2222(2)(21)(1)0k x y k x k y ≤+⇒---≥对0x y >、恒成立;令0t =>,则可得:222()(21)2(1)0f t k t t k =--+-≥对一切0t >恒成立; 当2210k -≤时,不等式不能恒成立,所以必有:2210k ->;此时当2121t k =-时,()f t 取得最小值4222222221223(23)121212121k k k k k k k k k ---+-==----;当2210k ->且2230k -≥,即k 当且仅当223k =即40x y =>时等号成立;所以k 的取值范围是 )+∞.法二:由Cauchy 不等式:21(1)(2)2x y ≤++;即≤x y 、成立;当k <14x =,1y =32=;而32k =,两者矛盾,即不等式不能恒成立.而当k ≥x y 、所以不等式恒成立时,k 的取值范围是 )+∞. 14.(1)写出三个不同的自然数,使得其中任意两个数的乘积与10的和都是完全平方数,请予以验证;(2)是否存在四个不同的自然数,使得其中任意两个数的乘积与10的和都是完全平方数?请证明你的结论.解:对于任意*n N ∈,20, 1(mod 4)n ≡;设a b 、是两个不同的自然数;①若0(mod 4)a ≡或0(mod 4)b ≡,或2(mod 4)a b ≡≡;则均有0(mod 4)ab ≡,此时,102(mod 4)ab +≡,所以10ab +不是完全平方数; ②若1(mod 4)a b ≡≡或3(mod 4)a b ≡≡,则1(mod 4)ab ≡,此时103(mod 4)ab +≡, 所以10ab +不是完全平方数;于是,10ab +是完全平方数的必要不充分条件是:a ≡/(mod 4)b 且a 与b 均不能被4整除. (1)由上可知,满足要求的三个自然数是可以存在的;例如取2a =,3b =,13c =,则223104⨯+=,2213106⨯+=,2313107⨯+=,即2,3,13是满足题意的一组自然数. (2)由上证可知不存在满足要求的四个不同自然数;这是因为,任取4个不同自然数,若其中有4的倍数,则它与其余任一个数的积加10后不是 完全平方数,如果这4个数都不是4的倍数,则它们必有两个数mod 4同余,这两个数的积加 10后不是完全平方数;得证.。

【精品文档】2009年江苏高考数学试卷

【精品文档】2009年江苏高考数学试卷2009年普通高等学校招生全国统一考试(江苏卷)数学?注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共4页,包含填空题(第1题——第14题)、解答题(第15题——第20题)。

本卷满分160分,考试时间为120分钟。

考试结束后,请将本卷和答题卡一并交回。

2.答题前,请您务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。

3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与您本人是否相符。

4.请在答题卡上按照晤顺序在对应的答题区域内作答,在其他位置作答一律无效。

作答必须用0.5毫米黑色墨水的签字笔。

请注意字体工整,笔迹清楚。

5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗。

6.请保持答题卡卡面清洁,不要折叠、破损。

参考公式:nn1122sxxxx,,,其中(),xxx,,,的方差样本数据,,ii12nnn,,11ii一、填空题:本大题共14小题,每小题5分,共70分。

请把答案填写在答题卡相应的位置上. (((((((((izizi,,,,429,691.若复数,其中是虚数单位,则复数12y ()zzi,的实部为 . 121b||2,||3ab,,302.已知向量和向量的夹角为,,则向量a1 O x ,2,,, ,,bab,和向量的数量积 . a33 32fxxxx()15336,,,,3.函数的单调减区间为 .yAxA,,sin()(,,A,,0,0)[,0],,,,,,,4.函数为常数,在闭区间上的图象如,,图所示,则 .5.现有5根竹竿,它们的长度(单位:m)分别为2.5,2.6,2.7,2.8,2.9,若从中一次随机抽取2根竹竿,则它们的长度恰好相差0.3m的概率为 .6.某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮练习,每人投10次,投中的次数如下表:学生 1号 2号 3号 4号 5号甲班 6 7 7 8 7乙班 6 7 6 7 92s,则以上两组数据的方差中较小的一个为 .S 数学?试卷第 1 页 (共 7 页)7.右图是一个算法的流程图,最后输出的开始 W, .S,08.在平面上,若两个正三角形的边长的比为1:2,则它们的面积比为1:4,类似地,在空间,若两个T,1 正四面体的棱长的比为1:2,则它们的体积比为 . 2STS,, TT,,2xoy9.在平面直角坐标系中,点P在曲线3Cyxx:103,,,上,且在第二象限内,已知S,10 N 曲线C在点P处的切线的斜率为2,则点P的坐标为 . YWST,,51, xa,fxa(),10.已知,函数,若实数2Wmn,mn,fmfn()(),满足,则的大小关系输出为 .结束 Axx,,|log211.已知集合,,,2Ba,,,(,)c,(,)c,,AB,,若则实数的取值范围是,其中 . a,,12.设和为不重合的两个平面,给出下列命题:,,,,(1)若内的两条相交直线分别平行于内的两条直线,则平行于;,,,ll(2)若外一条直线与内的一条直线平行,则和平行;,,,,ll,(3)设和相交于直线,若内有一条直线垂直于,则和垂直;,,ll(4)直线与垂直的充分必要条件是与内的两条直线垂直. 上面命题中,真命题的序号 (写出所有真命题的序号). (((22xyxoyAABB,,,13(如图,在平面直角坐标系中,为椭圆的,,,,1(0)ab121222abFABBF四个顶点,为其右焦点,直线与直线121yT MOT相交于点T,线段与椭圆的交点恰为线段B2 M OT的中点,则该椭圆的离心率为 .O AAx 1 2S 数学?试卷第 2 页 (共 7 页)q||1q,ab14(设是公比为的等比数列,,令若数列有ban,,,1(1,2,),,,,nnnn 6q,,,53,23,19,37,82连续四项在集合中,则 . ,,二、解答题:本大题共6小题,共计90分,请在答题卡指定区域内作答,解答时应写出文字说明、证明或演算步骤.15((本小题满分14分)abc,,,,(4cos,sin),(sin,4cos),(cos,4sin),,,,,,设向量bc,2tan(),,,(1)若与垂直,求的值; a||bc,(2)求的最大值;tantan16,,,b(3)若,求证:?. a16((本小题满分14分)DABCABC,E,FAB,ACBC如图,在直三棱柱中,分别是的中点,点在上,1111111ADBC, 11EF平面ABC求证:(1)?平面平面AFDBBCC,(2) 111S 数学?试卷第 3 页 (共 7 页)17((本小题满分14分)2222aaaaa,S,,,,7设是公差不为零的等差数列,为其前项和,满足Sn,,nn23457a(1)求数列的通项公式及前项和S; n,,nnaamm,1ma(2)试求所有的正整数,使得为数列中的项. ,,nam,218((本小题满分16分)22xoyCxy:(3)(1)4,,,,在平面直角坐标系中,已知圆和圆 122Cxy:(4)(5)4,,,, 2lA(4,0)l23(1)若直线C过点,且被圆截得的弦长为,求直线的方程; 1ll和(2)设P为平面上的点,满足:存在过点P的无穷多对互相垂的直线,它们分别与12CClClC圆和圆相交,且直线被圆截得的弦长与直线被圆截得的弦长相等,试求121122所有满足条件的点P的坐标.y .. 1O 1 x19.(本小题满分16分)按照某学者的理论,假设一个人生产某产品单件成本为元,如果他卖出该产品的单amm价为元,则他的满意度为;如果他买进该产品的单价为元,则他的满意度为nma,nhh.如果一个人对两种交易(卖出或买进)的满意度分别为和,则他对这两种交易的12na,S 数学?试卷第 4 页 (共 7 页)hh综合满意度为. 12现假设甲生产A、B两种产品的单件成本分别为12元和5元,乙生产A、B两种产品的单件成本分别为3元和20元,设产品A、B的单价分别为m元和m元,甲买进A与ABhh卖出B的综合满意度为,乙卖出A与买进B的综合满意度为. 甲乙3hhhh(1) 求和关于、的表达式;当时,求证:=; mmmm,甲乙甲乙ABAB53(2) 设,当m、m分别为多少时,甲、乙两人的综合满意度均最大,最大的mm,ABAB5综合满意度为多少,hh,,试问能否适当选取、的值,使得和(3) 记(2)中最大的综合满意度为hmm 甲00ABhh,同时成立,但等号不同时成立,试说明理由. 乙020((本小题满分16分)2fxxxaxa()2()||,,,,设为实数,函数. af(0)1,(1) 若,求的取值范围; afx()(2) 求的最小值;hxfxxa()(),(,),,,,hx()1,(3) 设函数,直接写出(不需给出演算步骤)不等式的((((解集.S 数学?试卷第 5 页 (共 7 页)2009年普通高等学校招生全国统一考试(江苏卷)数学?(附加题)注意事项考生在答题前请认真阅读本注意事项及各题答题要求:1(本试卷共2页,均为非选择题(第21题,第23题)。

闵行区2009学年第二学期高一质量调研考试数学试卷(附答案)


a
2a b
(16 分)
18.(本题满分 12 分)本题共 2 个小题,每小题满分各 6 分.
在 ABC 中,角 A、B、C 所对的边依次为 a、b、c , bc 2lg 2 2lg 5 3 , 且 sin A 5 .
25 (1)求 ABC 的面积; (2)若 b c 6,求 a 的值.
19.(本题满分 14 分)本题共 3 个小题,第 1 小题满分 8 分,第 2、3 小题满分各 3 分.
考生注意: 1.答卷前,考生务必在答题纸上将学校、班级、考试号、姓名等填写清楚. 2.请按照题号在答题纸各题答题区域内作答,超出答题区域书写的答案无效;在草稿
纸、试题卷上答题无效. 3.本试卷满分 100 分,考试时间 90 分钟.
一.填空题(本大题满分 36 分)本大题共有 12 题,考生必须在答题纸的相应编号的空
(4 分)
又 0<9-x2≤9, ∴lg(9-x2)≤2lg3,
∴f(x)的值域是(-∞,2lg3]
(7 分)
f(x)单调递增区间是(-3,0](或(-3,0))
18.(1)由 bc 2lg2 2lg5 3 ,得 bc 5 ,
(10 分) (2 分)
又因为 sin A
5
, cos
A
1 2sin 2
f
(x)
2 sin( 1 2
x
5 6
)
图像在 0,
4 3
下降,故将
5 6
舍去也可)
(7 分)
此时 f (x) 2sin(1 x ) 26
(2)由 2k 1 x 2k 得函数 f (x) 的单调递增区间是
22 6
2
(8 分)
4k

2009年江苏省高考数学试卷及详解

2009年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ参考公式:样本数据12,,n x x x L 的方差()2211n i i s x x n ==-∑,其中11n i i x x n ==∑. 一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应的位置上.1.若复数i z i z 96,29421+=+=其中i 是虚数单位,则复数i z z )(21-的实部为 .2.已知向量a 和向量b 的夹角为30o,3||,2||==b a ,则向量a 和向量b 的数量积b a ⋅= .3.函数63315)(23+--=x x x x f 的单调减区间为 .4.函数)sin(ϕω+=x A y (ϕω,,A 为常数,0,0>>ωA )在闭区间[]0,π-上的图象如图所示,则ω= .5.现有5根竹竿,它们的长度(单位:m )分别为2.5,2.6,2.7,2.8,2.9,若从中一次随机抽取2根竹竿,则它们的长度恰好相差0.3m 的概率为 .6.某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮练习,每人投10次,投中的次数如下表:学生1号 2号 3号 4号 5号 甲班6 7 7 8 7 乙班 6 76 7 9 则以上两组数据的方差中较小的一个为2s = .7.右图是一个算法的流程图,最后输出的=W .8.在平面上,若两个正三角形的边长的比为1:2,则它们的面积比为1:4,类似地,在空间内,若两个正四面体的棱长的比为1:2,则它们的体积比为 .9.在平面直角坐标系xoy 中,点P 在曲线310:3+-=x x y C 上,且在第二象限内,已知曲线C 在点P 处的切线的斜率为2,则点P 的坐标为 .10.已知215-=a ,函数x a x f =)(,若实数m 、n 满足)()(n f m f <,则m 、n 的大小关系为 .11.已知集合{}),(,2log |2a B x x A -∞=≤=,若B A ⊆则实数a 的取值范围是),(+∞c ,其中c =12.设α和β为不重合的两个平面,给出下列命题:(1)若α内的两条相交直线分别平行于β内的两条直线,则α平行于β;(2)若α外一条直线l 与α内的一条直线平行,则l 和α平行;(3)设α和β相交于直线l ,若α内有一条直线垂直于l ,则α和β垂直;(4)直线l 与α垂直的充分必要条件是l 与α内的两条直线垂直.上面命题中,真命题的序号 (写出所有真命题的序号)13.如图,在平面直角坐标系xoy 中,2121,,,B B A A 为椭圆)0(12222>>=+b a by a x 的四个顶点,F 为其右焦点,直线21B A 与直线F B 1相交于点T ,线段OT 与椭圆的交点M 恰为线段OT 的中点,则该椭圆的离心率为 ▲ .14.设{}n a 是公比为q 的等比数列,1>q ,令),2,(1⋅⋅⋅=+=n a b n n ,若数列{}n b 有连续四项在集合{}82,37,19,23,53--中,则q 6= .二、解答题:本大题共6小题,共计90分,请在答题卡指定区域内作答,解答时应写出文字说明、证明或演算步骤.15.(本小题满分14分)设向量)sin 4,(cos ),cos 4,(sin ),sin ,cos 4(β-β=ββ=αα=c b a (1)若a 与c b 2-垂直,求)tan(β+α的值;(2)求c b +的最大值;(3)若16tan tan =βα,求证:a ∥b16.(本小题满分14分)如图,在直三棱柱111C B A ABC -中,E 、F 分别是B A 1、C A 1的中点,点D 在11C B 上,C B D A 11⊥.求证:(1)EF ∥平面ABC ;(2)平面FD A 1⊥平面C C BB 11..17.(本小题满分14分)设{}n a 是公差不为零的等差数列,n S 为其前n 项和,满足7,725242322=+=+S a a a a .(1)求数列{}n a 的通项公式及前n 项和n S ;(2)试求所有的正整数m ,使得21++m m m a a a 为数列{}n a 中的项.18.(本小题满分16分)在平面直角坐标系xoy 中,已知圆4)1()3(:221=-++y x C 和圆4)5()4(:222=-+-y x C .(1)若直线l 过点)0,4(A ,且被圆1C 截得的弦长为32,求直线l 的方程; (2)设P 为平面上的点,满足:存在过点P 的无穷多对互相垂直的直线1l 和2l ,它们分别与圆1C 和圆2C 相交,且直线1l 被圆1C 截得的弦长与直线2l 被圆2C 截得的弦长相等,试求所有满足条件的点P 的坐标.19.(本小题满分16分)按照某学者的理论,假设一个人生产某产品单件成本为a 元,如果他卖出该产品的单价为m 元,则他的满意度为am m +;如果他买进该产品的单价为n 元,则他的满意度为a n n +.如果一个人对两种交易(卖出或买进)的满意度分别为1h 和2h ,则他对这两种交易的综合满意度为21h h .现假设甲生产A 、B 两种产品的单件成本分别为12元和5元,乙生产A 、B 两种产品的单件成本分别为3元和20元,设产品A 、B 的单价分别为A m 元和B m 元,甲买进A 与卖出B 的综合满意度为甲h ,乙卖出A 与买进B 的综合满意度为乙h(1)求甲h 和乙h 关于A m 、B m 的表达式;当B A m m 53=时,求证:甲h =乙h ; (2)设B A m m 53=,当A m 、B m 分别为多少时,甲、乙两人的综合满意度均最大?最大的综合满意度为多少? (3)记(2)中最大的综合满意度为0h ,试问能否适当选取A m 、B m 的值,使得0h h ≥甲和0h h ≥乙同时成立,但等号不同时成立?试说明理由.20.(本小题满分16分)设a 为实数,函数a x a x x x f --+=)(2)(2.(1)若1)0(≥f ,求a 的取值范围;(2)求)(x f 的最小值;(3)设函数),(),()(+∞∈=a x x f x h ,直接写出(不需给出演算步骤)不等式1)(≥x h 的解集.数学Ⅱ 参考公式:2222(1)(21)123.6n n n n ++++++=L 21.[选做题]在A 、B 、C 、D 四小题中只能选做两题......,每小题10分,共计20分.请在答.题卡指定区域......内作答,解答时应写出文字说明、证明过程或演算步骤. A .选修4 - 1:几何证明选讲如图,在四边形ABCD 中,△ABC ≌△BAD .求证:AB ∥CD .B . 选修4 - 2:矩阵与变换,求矩阵3221A ⎡⎤=⎢⎥⎣⎦的逆矩阵. C . 选修4 - 4:坐标系与参数方程 已知曲线C 的参数方程为,13()x t t y t t ⎧=-⎪⎪⎨⎪=+⎪⎩(t 为参数,0t >).求曲线C 的普通方程. D . 选修4 - 5:不等式选讲 :设a ≥b >0,求证:3332a b +≥2232a b ab +.[必做题]第22题、第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.22.(本题满分10分)在平面直角坐标系xoy 中,抛物线C 的顶点在原点,经过点A (2,2),其焦点F 在x 轴上.(1)求抛物线C 的标准方程;(2)求过点F ,且与直线OA 垂直的直线的方程;(3)设过点(,0)(0)M m m >的直线交抛物线C 于D 、E 两点,ME=2DM ,记D 和E 两点间的距离为()f m ,求()f m 关于m 的表达式.23.(本题满分10分)对于正整数n ≥2,用n T 表示关于x 的一元二次方程220x ax b ++=有实数根的有序数组(,)a b 的组数,其中{},1,2,,a b n ∈L (a 和b 可以相等);对于随机选取的{},1,2,,a b n ∈L (a 和b 可以相等),记n P 为关于x 的一元二次方程022=++b ax x有实数根的概率.(1)求2n T 和2n P ;(2)求证:对任意正整数n ≥2,有n P n 11->.2009年普通高等学校招生全国统一考试(江苏卷)答案及解读数学Ⅰ一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应的位置上.1. -20【解析】 本题考查了复数的基本运算,属基础概念题.由i z i z 96,29421+=+=, 可得i i i i z z 220)202()(21--=+-=-, 则复数i z z )(21-的实部为-20.2. 3【解析】 本题考查了复数的数量积公式及其简单应用.由向量a 和向量b 的夹角为ο30, 3||,2||==b a ,可得330cos 32=⨯⨯=⋅οb a .3.)11,1(-【解析】 本题考查了导数法求函数的单调区间问题. 由63315)(23+--=x x x x f ,可得)1110(333303)(22--=--='x x x x x f , 令0)(<'x f 可解得111<<-x ,∴函数63315)(23+--=x x x x f 的单调减区间为)11,1(-.4. 3【解析】 本题考查了由三角函数图象求三角函数解析式问题.由图象可得该函数的周期为ωπ=π=232T , ∴3=ω. 5.51【解析】 本题考查了古典概型问题,从2.5,2.6,2.7,2.8,2.9,这五个数据中任意抽取2个有2.5 , 2.6; 2.5 , 2.7; 2.5 , 2.8; 2.5 , 2.9; 2.6 , 2.7; 2.6 , 2.8;2.6 , 2.9; 2.7 , 2.8; 2.7 , 2.9; 2.8 , 2.9,共10种抽取方法, 其中长度恰好相差0.3m 仅2.5 , 2.8; 2.6 , 2.9两组, 即得2,10==m n , ∴它们的长度恰好相差0.3m 的概率为51102===n m P . 6.52【解析】 本题考查了统计初步中样本数据的方差的求解问题,属简单的公式应用问题.同时也考查了学生的估算能力.由图表可得7)78776(51=++++=甲x , 7)97676(51=++++=乙x , ∴52)01001(512=++++=甲S , 56)40101(512=++++=乙S ,22乙甲S S < , ∴两组数据的方差中较小的一个为522=S .本题也可由表格估算出22乙甲S S <,因此,不必计算2乙S 7. 22【解析】 本题考查了算法的流程图,以循环结构为主要考查对象,是近几年高考中常见的命题方式.由流程图可得, 第一次循环时得到的S 与T 的值分别为1-0=1,1; 第二次循环时得到的S 与T 的值分别为9-1=8,3; 第三次循环时得到的S 与T 的值分别为25-8=17,5, 此时退出循环结构得22517=+=W .8. 1:8【解析】 本题考查了推理与证明中合情推理之中类比推理的应用.由于相似的几何图形中面积比是边长的平方比, 类比的相似的几何体的体积比是棱长的立方比, 即若两个正四面体的棱长的比为1:2,则它们的体积比为1:8.9. (-2, 15)【解析】 本题考查了导数的几何意义, 曲线方程对应的函数的导数的几何意义是曲线上某点的切线的斜率.由21032=-='x y 可解得2±=x , ∵切点P 在第二象限内,∴2-=x , 由此可得点P 的坐标为(-2, 15).10. n m <【解析】 本题考查了指数函数及指数函数的单调性的应用.∵)1,0(215∈-=a , ∴函数x a x f =)(为R 上的减函数,又∵)()(n f m f >, ∴n m <.11. 4【解析】 本题考查了对数不等式及集合的子集运算,此题中要注意对数函数的定义域及集合边界值的验证.由已知条件可得{}(]4,02log |2=≤=x x A ,),(a B -∞=,若B A ⊆则4>a ,即得4=c .12. (1)(2)【解析】 本题考查了平面与平面、直线与平面的平行与垂直的位置关系,是高考中常见的开放题型之一. 若α内的两条相交直线分别平行于β内的两条直线,则α平行于β,这是两个平面平行的判定定理,即(1)正确;若α外一条直线l 与α内的一条直线平行,则l 和α平行,这是直线与平面平行的判定定理,即(2)正确;设α和β相交于直线l ,α内有一条直线垂直于l ,但该直线不一定能够垂直β内两条相交直线,即直线l 不一定垂直于平面β,所以平面α和β不一定垂直,即(3)不正确; 直线l 与α垂直的充分必要条件是l 与α内的两条相交直线垂直,即(4)不正确, 综上可得真命题的序号为(1)(2).13.572-【解析】 本题考查了直线方程,两直线的交点及椭圆的几何意义,离心率 的考查是高考客观题考查的热点.由已知条件可得直线21B A 的方程为1=-+-bx a x ①, 直线F B 1的方程为1=-+b y c x ②,联立①②可得两直线交点T 的坐标为(c a ac -2,c a c a b -+)(),则线段OT 的中点M 的坐标为(ca ac -,)(2)(c a c ab -+),代入椭圆12222=+b y a x 可得222)(4)(4c a c a c -=++,即得03102=-+e e ,解之得725±-=e ,∵)1,0(∈e , ∴572-=e .【别解】设)sin ,cos (θθb a M ,则)sin 2,cos 2(θθb a T ,由T B A 21共线得a b a a b =+θθcos 2sin 2化简得1cos 2sin 2+θ=θ ① 由FT B 1共线得cb a b b =θ+θcos 2sin 2化简得θ=+θcos 2)1sin 2(e ② 由①②解得⎪⎪⎩⎪⎪⎨⎧-+=θ-=θ)1(21sin 1cos e ee e 代入1sin cos 22=θ+θ得03102=-+e e ,解得725+-=e .14. -9【解析】 本题考查了等比数列的通项与基本量的求解问题,此题利用等比数列构造另一个数列,利用所构造数列的性质去研究等比数列是高考的热点问题.由已知数列{}n b 有连续四项在集合{}82,37,19,23,53--中,则数列{}n a 必有连续四项在集合{}81,36,18,24,54--中, 若公比q 为正则该数列的四项必均为正或均为负值, 显然不合题意, 所以公比q 必为负值,又由1>q 知1-<q ,按此要求在集合{}81,36,18,24,54--中取四个数排成数列可得数列81,54,36,24--或54,36,24,18-- (此数列不成等比数列,故舍去), ∵数列81,54,36,24--的公比23-=q , ∴96-=q . 二、解答题:本大题共6小题,共计90分,请在答题卡指定区域内作答,解答时应写出文字说明、证明或演算步骤.[15题解析] 本小题主要考查向量的基本概念、数乘、数量积,同时考查同角三角函数的基本关系式、二倍角的正弦、两角和的正弦与余弦公式,考查运算和证明等基本能力.满分14分.(Ⅰ)由a 与c b 2-垂直,02)2(=⋅-⋅=-⋅c a b a c b a ,即0)cos(8)sin(4=β+α-β+α,2)tan(=β+α.(Ⅱ))sin 4cos 4,cos (sin β-ββ+β=+c b ,β+ββ-β+β+ββ+β=+22222sin 16sin cos 32cos 16cos cos sin 2sin c b β-=ββ-=2sin 1517cos sin 3017,最大值为32, 所以c b +的最大值为24.由16tan tan =βα得βα=βαcos cos 16sin sin ,即0sin sin cos 4cos 4=βα-β⋅α,所以a ∥b . [16题解析] 本小题主要考查直线与平面、平面与平面的位置关系,考查空间想象能力、推理论证能力.满分14分.(Ⅰ)因为E ,F 分别是C A B A 11,的中点,所以EF ∥BC ,又ABC EF 面⊄,ABC BC 面⊂,所以EF ∥平面ABC .(Ⅱ)因为直三棱柱111C B A ABC -,所以1111C B A BB 面⊥,D A BB 11⊥,又C B D A 11⊥,所以C C BB D A 111面⊥,又FD A D A 11面⊂,所以平面⊥FD A 1平面C C BB 11.[17题解析] 本小题主要考查等差数列的通项、求和的有关知识,考查运算和求解的能力.满分14分.(1)设公差为d ,则23242522a a a a -=-,由性质得)()(33434a a d a a d +=+-,因为0≠d ,所以034=+a a ,即0521=+d a ,又由77=S 得726771=⨯+d a ,解得51-=a ,2=d ,所以{}n a 的通项公式为72-=n a n ,前n 项和n n S n 62-=.(2)(方法一)32)52)(72(21---=++m m m a a a m m m ,设t m =-32, 则68)2)(4(21-+=--=++tt t t t a a a m m m , 所以t 为8的约数 因为t 是奇数,所以t 可取的值为1±当2,1-==m t 时,3752,368=-⨯=-+t t ,是数列{}n a 中的项; 当1,1=-=m t 时,,1568-=-+tt 数列{}n a 中的最小项是5-,不符合. 所以满足条件的正整数2=m (方法二)因为222222186)2)(4(++++++++-=--=m m m m m m m m a a a a a a a a 为数列{}n a 中的项, 故28+m a 为整数,又由(1)知:2+m a 为奇数,所以1322±=-=+m a m ,即2,1=m经检验,符合题意的正整数只有2=m这两种解法看似相同,但却有本质的区别,解法二是紧扣数列通项公式解题,而解法一是紧扣等差数列的概念解题,学生掌握的基本思路是解法二,本题是中极题.[18题解析] 本小题主要考查直线与圆的方程、点到直线的距离公式,考查数学运算求解能力、综合分析问题的能力.满分16分.(1)设直线l 的方程为:)4(-=x k y ,即04=--k y kx 由垂径定理,得:圆心1C 到直线l 的距离,1)232(422=-=d 结合点到直线距离公式,得:114132=+---k kk化简得:247,,0.07242-===+k or k k k 求直线l 的方程为:0=y 或)4(247--=x y ,即0=y 或028247=-+y x (2) 设点P 坐标为),(n m ,直线1l 、2l 的方程分别为:)(1),(m x k n y m x k n y --=--=-,即:011,0=++--=-+-m kn y x k km n y kx因为直线1l 被圆1C 截得的弦长与直线2l 被圆2C 截得的弦长相等,两圆半径相等.由垂径定理,得::圆心1C 到直线1l 与2C 直线2l 的距离相等.故有:1115411322+++--=+-+--km kn k k kmn k ,化简得:5)8(,3)2(-+=+---=--n m k n m n m k n m 或 关于k 的方程有无穷多解,有:⎩⎨⎧=-+=+-⎩⎨⎧=--=--0508,0302n m n m n m m m 或 解之得:点P 坐标为)213,23(-或)21,25(-. [19题解析] 本小题主要考查函数的概念、基本不等式等基础知识,考查数学建模能力、抽象概括能力以及数学阅读能力.满分16分. (1) [][])20,5,12,3(,203,512∈∈+⋅+=+⋅+=B A B B A A B B A A m m m m m m h m m m m h 乙甲当B A m m 53=时,)5)(20(51253532++=+⋅+=B B B B B B B m m m m m m m h 甲,)20)(5(20353532++=+⋅+=B B BB B B B m m m m m m m h 乙,h 甲=h 乙(2)当B A m m 53=时,h ==甲由[]⎥⎦⎤⎢⎣⎡∈∈51,201120,5B B m m 得,故当2011=B m 即12,20==A B m m 时, 甲乙两人同时取到最大的综合满意度为510. (3)(方法一)由(2)知:5100=h 由5105120=≥+⋅+=h m m m m h B B A A 甲得:25512≤+⋅+B B A A m m m m ,令y m x m B A ==5,3则⎥⎦⎤⎢⎣⎡∈1,41,y x ,即:25)1)(41(≤++y x . 同理,由5100=≥h h 乙得:25)41)(1(≤++y x 另一方面,[]5,241,41,1,41,∈++⎥⎦⎤⎢⎣⎡∈y x y x ,⎥⎦⎤⎢⎣⎡∈++2,251,1y x25)41)(1(,25)1)(41(≥++≥++y x y x 当且仅当41==y x ,即B A m m =时,取等号.所以不能否适当选取A m 、B m 的值,使得00h h h h ≥≥乙甲和同时成立,但等号不同时成立. 方法二:由⑵知320=h ,因为 9425100201536122020351212≤++⋅++=+⋅+⋅+⋅+=yy x x y x x y y x h h 乙甲所以,当32,32≥≥乙甲h h 时,有32==乙甲h h ,因此,不能取到B A m m ,的值,使得0h h ≥甲和0h h ≥乙同时成立,但等号不同时成立.[20题解析] 本小题主要考查函数的概念、性质、图象及解一元二次不等式等基础知识,考查灵活运用数形结合、分类讨论的思想方法进行探索、分析与解决问题的综合能力.满分16分(1)若1)0(≥f ,则1112-≤⇒⎩⎨⎧≥<⇒≥-a a a a a(2)当a x ≥时,⎪⎩⎪⎨⎧<≥=⎪⎩⎪⎨⎧<≥=+-=0,320,20),3(0),()(,23)(22min22a a a a a a f a a f x f a ax x x f 当a x ≤时,⎪⎩⎪⎨⎧<≥-=⎩⎨⎧<≥-=-+=0,20,20),(0),()(,2)(22min22a a a a a a f a a f x f a ax x x f 综上⎪⎩⎪⎨⎧<≥-=0,320,2)(22mina a a a x f (3)),(+∞∈a x 时,1)(≥x h 得012322≥-+-a ax x ,222812)1(124a a a -=--=∆当2626≥-≤a a 或时,),(,0+∞∈≤∆a x ; 当2626<<-a 时,△>0,得:⎪⎩⎪⎨⎧>≥-+----ax a a x a a x 0)323)(323(22 讨论得:当)26,22(∈a 时,解集为),(+∞a ; 当)22,26(--∈a 时,解集为⎪⎪⎭⎫⎢⎢⎣⎡+∞-+⋃--,323]323,(22a a a a a ; 当⎥⎦⎤⎢⎣⎡-∈22,22a 时,解集为⎪⎪⎭⎫⎢⎢⎣⎡+∞-+,3232a a . 数学Ⅱ[A .选修4 - 1几何证明选讲答案] :本小题主要考查四边形、全等三角形的有关知识,考查推理论证能力.满分10分.证明:由△ABC ≌△BAD 得∠ACB=∠BDA ,故A 、B 、C 、D 四点共圆,从而∠CBA=∠CDB .再由△ABC ≌△BAD 得∠CAB=∠DBA .因此∠DBA=∠CDB ,所以AB ∥CD .[B .选修4 - 2:矩阵与变换答案] :本小题主要考查逆矩阵的求法,考查运算求解能力.满分10分.解:设矩阵A 的逆矩阵为⎥⎦⎤⎢⎣⎡w y z x ,则⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡10011223 = w y z x 即⎥⎦⎤⎢⎣⎡=⎥⎦⎤++⎢⎣⎡+100122322z 3 +w y w y z x x ,故⎩⎨⎧=+=+⎩⎨⎧=+=+,12,023,,02,123w y w y z x z x解得:3,2,2,1-===-=w y z x ,从而A 的逆矩阵为⎥⎦⎤-⎢⎣⎡-=-32211 A . [C . 选修4 - 4:坐标系与参数方程答案] :本小题主要考查参数方程和普通方程的基本知识,考查转化问题的能力.满分10分.解:因为212-+=t t x ,所以3122y t t x =+=+,故曲线C 的普通方程为:2360x y -+= [ D . 选修4 - 5:不等式选讲答案] :本小题主要考查比较法证明不等式的常见方法,考查代数式的变形能力.满分10分.证明:3322222232(32)3()2()(32)().a b a b ab a a b b b a a b a b +-+=-+-=-- 因为a ≥b >0,所以a b -≥0,2232a b ->0,从而22(32)()a b a b --≥0, 即3332a b +≥2232a b ab +.[必做题第22题答案] :本小题主要考查直线、抛物线及两点间的距离公式等基本知识,考查运算求解能力.满分10分.解:(1)由题意,可设抛物线C 的标准方程为px y 22=,因为点)2,2(A 在抛物线C 上,所以1=p ,因此,抛物线C 的标准方程为x y 22=.(2)由(1)可得焦点F 的坐标是)0,21(,又直线OA 的斜率为122=,故与直线OA 垂直的直线的斜率为1-,因此,所求直线的方程是021=-+y x .(3)解法一:设点D 和E 的坐标分别为),(11y x 和),(22y x ,直线DE 的方程是)(m x k y -=,0≠k 将m kyx +=代入x y 22=,有0222=--km y ky ,解得kmk y 22,1211+±=.由DE ME 2=知)121(221122-+=++mk mk ,化简得m k 42=. 因此22122212212))(11()()(y y ky y x x DE -+=-+-=)4(49)21(4)11(2222m m k mk k +=++=.所以)0(423)(2>+=m m m m f . 解法二:设),2(),,2(22t t E s s D ,由点)0,(m M 及DMME 2=得)0(20),2(22122s t s m m t -=--=-.因此2,2s m s t =-= 所以)0(423)2()22()(222222>+=--+-==m m m s s s s DE m f .[必做题第23题答案] :本小题主要考查概率的基本知识和记数原理,考查探究能力.满分10分.(1)解:因为方程022=++b ax x 有实数根,所以0442≥-=∆b a ,即2a b ≤(i )当2n a n ≤≤时,有22a n ≤,又2,,2,1n b ⋅⋅⋅∈,故总有b ,有12+-n n 种取法,b有2n 种取法,所以共有22)1(n n n +-组有序数组),(b a 满足条件;(ii )当11-≤≤n a 时,满足21ab ≤≤的b有2a个,故共有6)12)(1()1(3212222--=-+⋅⋅⋅+++n n n n 组有序数组),(b a 满足条件.由(i )(ii )可得6)1346(6)12)(1()1(23222++-=--=+-=n n n n n n n n n n T n ,从而32346134622n n n n n T P n n ++-==.⑵证明:我们只需证明:对于随机选取的n b a ,,2,1,⋅⋅⋅∈,方程022=++b ax x 无实数根的概率nP n 11<-.若方程022=++b ax x 无实数根,则0442<-=∆b a ,即b a <2的有序数组),(b a 的组数小于n n ,从而,方程022=++b ax x 无实数根的概率nn n n P n 112=<-,所以n P n 11->.试卷综合解读与评析2009年高考江苏卷保持了2008年高考江苏卷的特点,以稳为主,稳中有变,更加体现新课程理念,所有试题的建构,不偏不怪,难易得当,紧扣考纲,贴近课本.注重考查基础知识,基本技能,基本数学思想和方法,对当前高中数学教学和高三数学复习备考有着鲜明的导向作用.下面从数学I、II试题的答案,别解、知识点、苏教版教材的出处,考纲要求,课本要求,用到的数学思想方法,容易导致失误的地方等方面进行综合解读.(要说明的是:江苏高考试题分文、理科,除选修的科目不同外,语、数、外三门必修科目的设置也有同有异:英语科目文理科试题相同,分值为120分;数学、语文两门必修科目,文理试题的设置分I、II两部分,对于文科和理科的考生数学和语文的I卷试题相同、分值均为160分,对理科生要加考数学II试题,文科考生要加考语文II试题分值均为40分.这样语数外三门必修科目文、理试题的总分值一样——200分+160分+120分=480分.)1.数学I试题(文理同卷)填空题部分填空题没有难度,从1至12题都平铺直叙,送分送到位,13、14题属于中档题,也容易拿分,没有难题.对照考纲和教材将14条填空题进行分析和解读如下:(附:表中的“等级”是指:江苏《考试说明》将考点要求分成A、B、C三个等级,其中C级要求最高,B 级次之、A级要求最低;表中的“层次”是指:江苏教材上的习题分为三个层次即:感受·理解、思考·运用和探究·拓展)2 数学I试题(文理同卷)解答题部分对于15题,此题主要考查平面向量数量积的坐标运算,两角和与差的三角函数,二倍角的正弦,考纲要求分别为C、C、B,坚持了重点知识重点考查的原则,数学思想方法主要考查了转化思想题型常规,思路清晰可循,三基好的考生容易得满分.对于16题,此题是立体几何题,仍然是考察平行与垂直的证明,题目简单明了,但要注重过程,判定定理的条件必须写全,线面平行是三个条件,面面垂直是两个条件,但之前需证明线面垂直,那是五个条件.对于17、18题第一小问,比较简单,但第二小问难度加大.17题数列题的第一小问是基本量的运算,大多考生不会有问题,第二小问有一丝数论的味道,题目简洁而又精彩!18题是解析几何题,考查直线与圆的位置关系,第二小问思路其实比较清晰,因为圆1C 与圆2C 的半径相等,及直线1l 被圆1C 截得的弦长与直线 2l 被圆2C 截得的弦长相等,所以圆1C 的圆心到直线1l 的距离和圆2C 的圆心到直线2l 的距离相等,列出等式,题目中要求“存在无数对直线”转化为“等式有无数解”即可,但是字母运算较复杂,考察考生的耐心与细心. 对于19题,此题主要考查函数与基本不等式等基础知识,比较好地考查了考生对信息的接收、加工和输出等数据处理能力,数学建模能力、抽象概括能力以及数学阅读能力达到有效考查综合素质的目的.考查与以往不同的是,大题的顺序有了明显的颠倒,数列难度下降了很多,放在了大题第三题的位置,而以往应用题是不会放在这个位置的,虽然难度适中,以生活中的满意度为背景,但题干中的字比较多,问题的表述较长,变量均以字母形式出现,提高了应用题的难度,这就要求考生多读几遍题目,多读几遍还是可以理解的,第⑴、⑵小题能够做出,第⑶小题有点难度;有些考生就承受不了了,所以对最后一题也有心理干扰,这也是广大考生不太适应的又一方面,从中可以看到今年的高考试卷在知识与能力考查的同时,体现了对课改新理念的创新与发展.对于20题,此题主要考查函数的概念、性质、图像及解一元二次不等式等基础知识,考查灵活运用数型结合、分类讨论的思想方法.这样的的分类讨论其实高中训练得很多了,但在考场上想得满分也并不容易.第(3)小问不要考生写过程,只要结果,需要一定的数学直觉思维,如果结合图形问题可以得到很好地解决,命题很有新意,不落浴套,具有较强的选拔功能.3. 数学Ⅱ附加题(理科做)今年是执行必做、选做分卷考试新模式的第二年,附加题部分难度控制的比较适中,在全省考生慢慢接受并熟悉了这种模式后,相比去年,今年的选作题方面考点上没有任何的变动,但圆锥曲线、函数中不等关系的证明出现在该部分作为压轴考题,难度明显比去年有了很大的提升. 4 全卷综合点评 4.1 全卷综合解读2009年高考数学试题,对考试说明中的8个C 级要求的知识点和B 级要求中传统的问题都进行了有效的考查,在保持题型稳定的基础上,进行适度的改革和创新,试卷贴近教学实际,坚持能力立意,全面检测考生的数学素养,充分体现新课程的基本理念.试卷主要有以下几个方面的特点:4.1.1 多题把关,有效发挥选拔功能第17,18题第二小问,第19题、第20题的第三问有一定的难度,改变了过去一题或两题把关的习惯,在凸显文理公平基础上,命题者这样处理对不同层次考生群体更有区分度,有利于高校选拔人才.基于同样的原因,数学Ⅱ附加题(理科做)部分,两道必做题对数学语言的转化以及数学思想方法有一定的要求,相对较难,其他试题很简单.4.1.2 能力立意,旨在考察数学素养全卷在考查知识的同时,注重考查学生的数学思维能力和应用意识.许多试题实际上并不难,对于知识点考生很熟悉,但需要考生自主综合所学知识,才能解决问题,如第17题第二问,其实是恒成立问题.许多试题若能先想清楚问题的关键或本质,确定了合适的解题思路和方向后再动手,解答会容易的多,否则会陷入繁琐的运算之中,比如第13题,第14题.部分题目在考查基础知识点上有所创新,题目设计灵活.如数学卷第17题第(2)问,第18题第(2)问,都是对一个问题进行纵向探究,考查学生创新意识,同时要求学生掌握通性通法,淡化特殊技巧,例如第18题第(2)问,如果用几何方法解决在考场上几乎不能成功,试题的设问已将几何法排除在外,命题者的意思很明确,考察解析几何的本质——用代数方法研究图形的几何性质,体现数形结合和等价转化的重要数学思想4.1.3 引领课改,全面体现课程标准试卷以朴素的数学知识为载体,综合考查最基本的数学思想和方法,体现了高考命题重实质、重内涵的指导思想,注重通性通法、淡化特殊技巧,对中学数学教学有较好的导向作用.不少试题注意在具体的情景中、在解决问题的过程中突出考查学生数学思想和数学方法.如第20题以二次函数为载体,重点考查分类谈论、数形结合思想,其中的第三问,只要直接写出解,不需要过程,打破了长期以来人们所固有的解答题不能以图代证的模式,给平时积极主动、勇于探索的考生有发挥的空间.这也是新课改的明确要求,新课程标准明确指出:“高中数学课程应注重提高学生的数学思维能力,这是数学教育的基本目标之一,人们在学习数学和运用数学解决问题时,不断地经历直观感知、观察发现、归纳推理、空间想象、抽象概括……等思维过程”.另外,试题加强了对应用意识和创新意识的考查,力求对现实世界中蕴涵的一些数学模式进行思考和做出判断,例如第19题以生活中的满意度为背景,问题的表述较长,需要考生耐心读懂题目,但模式识别方便,同时还考查了学生将文字语言转化为数学语言的能力.4.1.4 保持稳定,凸显公平公正原则(1)整卷试题呈现:低起点、入手宽、由易到难,逐步深入、多题把关的格局,全卷结构、题型包括难度都基本稳定,依据考试说明,突出对教材基本内容的考查.填空题比较平和,不需太繁的计算,考生普遍感觉顺手.许多试题源于课本,略高于课本,如第1、2、3、4、5、7、11、15题等,都由课本例题、习题进行恰当变更、迁移、综合、创新整合而成,给人以似曾相识的感觉.最后6个解答题由易到难,涉及的知识内容基础、常规,入手容易,但深入有一定困难.附加题部分,选做题对知识点的考查单一,结论要求明确,学生入手较易.(2)通览全卷试题和答案:不见偏题怪题、人为陷阱,处处体现人文关怀、呈现关爱.如填空题14题,求6q ,正常应该求q ,有谬常理.细细想来,为命题者的良苦用心所折服,这是因为如果所编题目答案q 是整数,学生很易猜到,失去考察知识的意义,现在所编题目的23-=q ,凭借以前阅卷的经验,学生的答案很易将“—”和分数线“——”连在一起成为“23”,从而引起失分,试题中“求6q ”可以有效避免这种非智力因素的失分;再如,填空题11题按常理该设问为“求实数a 的范围”,而试题中设问为“实数a 的取值范围是),(+∞c ,其中c = ____”,从中大家不难发现命题者的用心,还有应用题的表述命题者不惜大量篇幅,也是为了学生只要认真读题就不会因为审题困难而失分.(3)试卷注重对重点知识的考察,但编制题目时目的很明确——只针对性地考察要考知识、方法,不人为设置其他难点,避免因为其他知识的不熟悉而解答错误.例如新增内容“导数”,试题中填空题部分两次用到,但难度都很低,这是因为新课标只要求“能利用导数研究函数单调性、会用导数求简单函数的极值和最值”, “导数”其实在中学教材中只是一种“工具”的地位,要重点考察但不会考很复杂的函数,以免考生因为求导数出错而失误.再如立体几何的考察,载体是直三棱柱,只考察了基本的平行与垂直的证明,这是因为理科学过空间向量,如果考角与距离或比较难的证明,那样对于文科生就极不公平.其他的题目基本都是如此.以上三点是试卷所呈现的实际情况,如果我们进一步地思考可以发现命题者这样做的真正原因——保持稳定、体现公平.江苏高考的现行模式才第二年,数学I 试题文科和理科同卷,而他们所用的教材必修部分相同,选修部分不同,文科教材要简单些,另外他们的数学基础也不同,而高校录取时是同等录取,这就要求数学命题时文理要公平,做到真正公平很困难,唯一的办法就“简单”——载体简单、知识点单一,只有这样才能相对公平.还有应用题的编拟也体现了另一公平——城乡考生之间的公平,试题中的应用题背景对所有学生是公平的.4.2 备考备战的几点启示4.2.1 平时教学要灵活、有变化,模式教学已不适应平时的教学活动要灵活、要开展一题多变、多题一解、一题多解的数学解题教学模式,要注重情境教学,揭示知识的生成、发展和应用的过程,不能因为教学时间的有限而给学生不同知识点以不同的模式化,学生的数学活动不应只限于接受、记忆、模仿和练习,应积极倡导自主探索、动手实践、合作交流、阅读自学等学习数学的方式,发挥学生学习的主动性. 平时教学要严格按课程标准和考试说明进行,对教材内容不要人为地加深和无限地拓展,或是反复训练自认为重要的个别问题,这样浪费学生很多宝贵时间,在高考中将会处于劣势. 4.2.2 高考试题没有绝对,吃透课程标准是关键。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 苏州市2009年高一教学调研测试

数 学

2009.6.19

一、填空题:本大题共14小题,每小题5分,共70分. 1.函数()sin23cos2fxxx的最小正周期是 2.)23(log221xxy的定义域是

3.不等式2311xx的解集为 4.化简:25lg50lg2lg20lg5lg 5.设等差数列na的公差为d,若7654321,,,,,,aaaaaaa的方差为1,则d= 6.集合2{3,log}Aa,{,}Bab,若{2}AB,则B 7.将一枚硬币连续抛掷3次,则有且只有2次出现正面向上的概率为 8.已知函数1()11axfxaa在[1,0]上是增函数,则实数a的取值范围是 9.根据如图所示的伪代码,可知输出的结果I为 10.某市出租车收费标准如下:起步价为8元,起步里程为3km(不超过3km按起步价付费);超过3km但不超过8km时,超过部分按每千米2.15元收费;超过8km时,超过部分按每千米2.85元收费,另每次乘坐需付燃油附加费1元。现某人乘坐一次出租车付费22.6元,则此次出租车行驶了 km.

11.满足不等式组0,087032yxyxyx,则目标函数yxk3的最大值为 12.某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种、20 种,从中抽取一个容量为20的样本进行食品安全检测.若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是

13.设(,1)OAk()kZ,10OA≤,(2,4)OB,对于任取满足条件的△OAB,则“△OAB恰

好是直角三角形”的概率是

1p For k From 1 To 10 Step 3 26ppk End For Print p 2

14.已知数列na*()nN满足1,,2,,nnnnnatatataat,且11tat,其中2t,若*()nknaakN,则实数k的最小值为

二、解答题(本大题共6小题,共90分) 15.(本题满分14分)甲打靶射击,有4发子弹,其中有一发是空弹.(1)求空弹出现在第一枪的概率;(2)求空弹出现在前三枪的概率;(3)如果把空弹换成实弹,甲前三枪在靶上留下三个两两距离分别为3,4,5的弹孔,,PQR,第四枪瞄准了三角形PQR射击,第四个弹孔落在三角形PQR内,求第四个弹孔与前三个弹孔的距离都超过1的概率(忽略弹孔大小).

16.(本小题满分14分)已知函数()sin()cossincos()2fxxxxx, (1)求函数()fx的最小正周期; (2)在ABC中,已知A为锐角,()1fA,2,3BCB,求AC边的长. 3

17.(本小题满分15分)已知向量a=(3sinα,cosα),b=(2sinα, 5sinα-4cosα),α∈(3π 2π2,),且a⊥b. (1)求tanα的值;(2)求cos(π23)的值.

18.(本小题满分15分)设函数22()log(4)log(2)fxxx,144x, (1) 若xt2log,求t取值范围; (2) 求()fx的最值,并给出最值时对应的x的值。 4

19.(本小题满分16分))如图,一个铝合金窗分为上、下两栏,四周框架和中间隔栏的材料为铝合金,宽均为6cm,上栏和下栏的框内高度(不含铝合金部分)的比为1:2,此铝合金窗占用的墙面面积为

288002cm,设该铝合金窗的宽和高分别为()acm,()bcm,铝合金的透光部分的面积为2()Scm.

(1)试用,ab表示S; (2)若要使S最大,则铝合金窗的宽和高分别为多少?

20.(本小题满分16分)设2()fxx,()8gxx,数列{}na(n∈N*)满足12a, 1()(1)(1)0nnnnaagafa,记7(1)(1)8nnbna.(Ⅰ)求证:数列{1}na是等比数列; (Ⅱ)当n为何值时,nb取最大值,并求此最大值;(Ⅲ)求数列{}nb的前n项和nS.

b a

6 5

苏州市2008年高一教学调研测试数学参考答案 1.π 2. 12xxx或 3. {|14}xx 4. -1 5. 12 6.{2,4} 7.38 8. (0,1) 9. 21 10. 9 11. 4 12. 6 13.37 14. 4 15. 解:设四发子弹编号为0(空弹),1,2,3, (1)设第一枪出现“哑弹”的事件为A,有4个基本事件,则:(2分)1()4PA(4分) (2) 法一:前三枪出现“哑弹”的事件为B,则第四枪出现“哑弹”的事件为B, 那么()()PAPB,(6分)13()1()1()1.44PBPBPA(9分) 法二:前三枪共有4个基本事件{0,1,2},{0,1,3},{0,2,3},{1,2,3},满足条件的有三个,(7分) 则3().4PB(9分) (3) RTPQR的面积为6,(10分) 分别以,,PQR为圆心、1为半径的三个扇形的面积和11442,(12分) 设第四个弹孔与前三个弹孔的距离都超过1的事件为C, 162()1612PC

.(14分)

16.(1) 由题设知 ()sin()cossincos()2fxxxxx,

221()cossincossin(2)242fxxxxx

T„„„„„„„„„„„„„„„„„„„„„„„„„„„'5 (2) 2()cossincos1fAAAA 22sincos1cossinAAAA„„„„„„„„„„„„„„„„„„„„7

sincosAA

4A„„„„„„„„„„„„„„„„„„„„„„„„„'9

sinsinACBCBA 6

2sinsin34AC

6BC„„„„„„„„„„„„„„„„„„„„'14 17.【解】(1)∵a⊥b,∴a·b=0.而a=(3sinα,cosα),b=(2sinα, 5sinα-4cosα), 故a·b=6sin2α+5sinαcosα-4cos2α=0.……………………………………2分

由于cosα≠0,∴6tan2α+5tanα-4 =0.解之,得tanα=-43,或tanα=12.…………6分

∵α∈(3π 2π2,),tanα<0,故tanα=12(舍去).∴tanα=-43.…………7分 (2)∵α∈(3π 2π2,),∴3ππ24(,). 由tanα=-43,求得1tan22,tan2=2(舍去). ∴525sincos2525,,…………………………………………………………12分 cos(π23)=ππcoscossinsin2323 =251535252 =251510. ………………………15分 18.解:(1)441,log2xxt4log41log22t即22t---6

(2)2log3log222xxxf xt2log令,则,41232322ttty 2322,23log23xxt即当时,41minxf 当12,42maxxfxt时即---9

19.(1)29088-2(9+8b)---10;(2)160;180ab------6 20.解:(Ⅰ)由已知,得21()8(1)(1)0nnnnaaaa. 即1(1)(871)0nnnaaa. „„„„„„„„„„„„„2分 ∵12a≠1,∴21a,同理31a,„,1na.„„„„„„„„„„„„3分 ∴1871nnaa. „„„„„„„„„„„„„4分 即18(1)7(1)nnaa, „„„„„„„„„„„„„5分 7

∴数列{1}na是以111a为首项,78为公比的等比数列. „„„„„„„6分 (Ⅱ)由(1),得171()8nna. ∴7(1)()8nnbn. „„„„„„„„„„„„„„„„8分 则117(2)()8nnbn. ∵12718nnbnbn,设1nnbb≥1,则n≤6. 因此,当6n时,1nnbb;当6n时,67bb,当6n时,1nnbb.„„10分 ∴当6n或7时,nb取得最大值. „„„„„„„„11分 (Ⅲ)2317777723()4()()(1)()88888nnnSnn 23417777772()3()4()()(1)()888888nnnSnn „„13分 相减得:2311777772()()()(1)()888888nnnSn 177778[1()](1)()8888nnn 1637(9)()88nn „„„„„„„„„„15分 ∴17638(9)()8nnSn. „„„„„„„„„„„16分

相关文档
最新文档