过盈配合计算公式
过盈配合压入力计算公式

10
-8
0.35
17
-15
有润滑 0.05-0.13
0.07 0.08 0.07 0.03-0.06
0.12-0.15
0.05-0.10
0.15-0.25
0.05-0.10
0.17
0.02
200-235 70-80 105-130 90-100 160-180
85 摩擦系数
无润滑 0.05-0.20
泊松系 线膨胀系数a
数
加热 冷却
0.30-0.31 0.24-0.25 0.24-0.26
11 -8.5
11
-9
10
-8
0.25
10
-8
0.28-0.29
常用材料弹性模量、泊松系数和线性膨胀系
材料
碳钢、低合金钢、合金结构钢 灰铸铁HT150、HT200 灰铸铁HT250、HT300
可锻铸铁
非合金球墨铸铁
青铜 钢-钢
材料
摩擦系数
钢-铸钢
钢-结构钢 钢-优质结构钢
钢-青铜
钢-铸铁
铸铁-铸铁
钢-铝
常用材料弹性模量、泊松系数和线性膨胀系数
弹性模量E*103 (N/mm2)
过盈配合压入力计算公式
1 结合直径(mm)
df
2 结合长度(mm) 3 最大过盈量(mm)
Lf δmax
4 包容件弹性模量(N/mm2)
Ea
5 被包容件弹性模量(N/mm2) Ei
6 包容件外径(mm)
da
7 被包容件外径(mm)
di
8 伯松系数
v
9 摩擦系数
μ
10 系数Ca
Ca
11 系数Ci
螺栓强度计算公式

40Cr 30CrMnSi 240-340
螺栓强度计算模板
一:受横向载荷铰制孔螺栓连接计算:(过盈配合)
一类计算方法:受工作剪力作用,不计算预紧力
载荷性质
静载荷
变载荷
材料类别
钢
铸铁
钢
Sτ
2.5
SP
1.25
- 2-2.5
3.5-5 1.5
铸铁 -
2.5-3
强度计算
材质
静载荷
变载荷
挤压强度 (MPa)
铸铁 钢
[σP]=
b S (22.5)
[σP]=
注:σ≤[σ]
不控制预紧力时安全系数如下表所示:
材料类别
碳钢 合金钢
M6~M16 4~3 5~4
静载荷 M16~M30
3~2 4~2.5
碳素钢螺栓 合金钢螺栓
QP≤(0.6-0.7)σsA σs:材料的屈服极限
A≈ d12
QP≤(0.5-0.6)σsA
4
M30~M60 2~1.3 2.5
M6~M16 10~6.5 7.5~5
剪切强度τ=
F
md12
4
F:所受横向载荷(N);m:受剪面个数;d1:螺纹小径(mm)
注:τ≤[τ]
装配情况 紧连接
二:受轴向载荷松螺栓强度(间隙配合)
二类计算方法:主要受力为拉伸力,螺栓主要体现拉伸强度
安全系数Ss
螺栓材料
载荷性质
静载荷
变载荷
碳素钢 合金钢
1.2-1.5
1.2-1.5
碳素钢
松连接
合金钢
许用应力计算: [σ]=
s Ss (1.21.7)
应力计算:
F
过盈过余配合计算公式

过盈过余配合计算公式过盈过余配合计算公式是机械加工中非常重要的一部分,它用于计算零件的尺寸和公差,确保零件能够正确地配合在一起。
在机械加工中,过盈和过余是两个非常常见的概念。
过盈是指零件的最大尺寸大于配合零件的最小尺寸,而过余则是指零件的最小尺寸小于配合零件的最大尺寸。
通过合理地计算过盈过余,可以保证零件之间的配合精度,从而确保机械设备的正常运行。
过盈过余配合计算公式的推导。
在机械加工中,过盈过余配合计算公式是通过一系列的推导和实验得出的。
首先,我们需要了解一些基本的概念和定义。
在国际标准ISO制图规范中,过盈和过余的定义如下:1. 过盈,零件的最大尺寸减去配合零件的最小尺寸,即上偏差减去下偏差。
2. 过余,零件的最小尺寸减去配合零件的最大尺寸,即下偏差减去上偏差。
根据这些定义,可以得出过盈和过余的计算公式如下:过盈 = 零件上偏差配合零件下偏差。
过余 = 零件下偏差配合零件上偏差。
这些公式是过盈过余配合计算的基础,通过它们可以计算出零件之间的配合尺寸和公差。
但是,在实际的机械加工中,由于零件的形状、材料和工艺等因素的影响,过盈过余的计算并不总是那么简单。
因此,为了更准确地计算过盈过余,我们需要进一步考虑一些修正因素。
修正因素的考虑。
在实际的机械加工中,由于零件的形状、材料和工艺等因素的影响,过盈过余的计算并不总是那么简单。
因此,为了更准确地计算过盈过余,我们需要考虑一些修正因素。
这些修正因素包括:1. 材料的热胀冷缩系数,不同材料的热胀冷缩系数不同,这会影响零件的尺寸变化。
在计算过盈过余时,需要考虑材料的热胀冷缩系数,对零件的尺寸进行修正。
2. 表面粗糙度,零件的表面粗糙度会影响其与配合零件的配合精度。
在计算过盈过余时,需要考虑零件的表面粗糙度对配合尺寸的影响。
3. 加工误差,在机械加工过程中,由于加工设备和工艺的限制,零件的尺寸可能会存在一定的误差。
在计算过盈过余时,需要考虑这些加工误差对配合尺寸的影响。
过盈装配下衬套内径收缩量及相关参数的计算

式 中p 一 衬套 与 座孔 配合 面 间 的径 向压 力 , 单
位 MP a
式, 6 是 根 据产 品 图样 给 定 的 衬套 和坐 孔 的装 配 过 盈 量 ,根据 图样规 定 的配合 尺 寸 可 以计算 出来 , 因 为 理 论 上存 在最 大 过 盈 量8 一和最 小 过 盈 量 6 , 因
时 ,衬 套在 压入 座 孔后 应变 衬套 任 意半 径r i 处 的径
向位 移U r i 的计 算公式 为 : u r i _ [ + ( 1 - 1 .  ̄ r i ] ( 3 )
3 计算 实例
一
种 衬套外 径 尺寸 为4 0 m … . o 5 ,要 求将 衬 套压 入
0 . 2 3  ̄ 0 . 2 7
材 料 镍铬钢 、 合金 钢
碳 钢 铸 钢 球 墨 铸 铁
灰 铸 铁
弹性 模 量 E \ MP a 2 0 6 o o O
2 0 6 0 0 0 2 0 2 0 0 0 1 7 3 0 0 0
1 l 8 0 o 0 - 1 2 6 0 0 0
缩 量△ d l a v g 即可 。 考 虑衬套 加工 后 的装配 和检 验 . 有 时需 要计 算
E 一 衬套材 料 的弹性模 量 单 位MP a
E , 一 座孔 材料 的弹性模 量 单 位MP a
。 一
衬套 材料 的泊松 比
出将衬套 压入 座坐孔 或检验 环规 孑 L 中的压 入力 F r 或 将 衬套从 座孔 或检验 环规 中 的压 出力 F c .通过 F r 和 F c 的计 算值 来 选择 压装 设备 。 此 时 可 通过 下 式来 计 算。 将衬 套压入 座孑 L 或检验 环规 的压人 力F v ( N) :
过盈量与装配力计算公式分析

1 •确定压力p; 1) 传递轴向力F 2) 传递转矩T3) 承受轴向力F 和转矩T 的联合作用 2 •确定最小有效过盈量,选定配合种类; 3 •计算过盈联接的强度;4 •计算所需压入力;(采用压入法装配时)5 •计算包容件加热及被包容件冷却温度;(采用胀缩法装配时) 6.包容见外径胀大量及被包容件内径缩小量。
1. 配合面间所需的径向压力p过盈联接的配合面间应具有的径向压力是随着所传递的载荷不同而异的。
1)传递轴向力F当联接传递轴向力F 时(图7-20),应保证联接在此载荷作用下,不产生轴向滑动。
亦即当径向压力为 P 时,在外载荷F 的作用下,配 合面上所能产生的轴向摩擦阻力 Ff ,应大于或等于外载荷F 。
设配合的公称直径为人配合面间的摩擦系数为人配合长度为 I ,则过盈联接图:转矩的过盈联接变轴向力的过盈联接2)传递转矩T当联接传递转矩T时,则应保证在此转矩作用下不产生周向滑移。
亦即当径向压力为P时,在转矩T的作用下,配合面间所能产生的摩擦阻力矩M应大于或等于转矩T。
设配合面上的摩擦系数为f①,配合尺寸同前,则M = n dlpf • d/2因需保证M >「故得、2T1力[7-9]① 实际上,周向摩擦系数系与轴向摩擦系数有差异,现为简化•取两者近似相等.均以f 表示。
配合面间摩擦系数的大小与配合面的状态、材料及润滑情况等因素有关, 应由实验测定。
表7-5给出了几种情况下摩擦系数值,以供计算时参考。
:f压入法胀缩法联接零件材料无润滑时f有润滑时f联接零件材料结合方式,润滑 f钢一铸钢0.11 0.08钢一钢油压扩孔,压力油为矿物油0.125钢一结构钢0.10 0.07 油压扩孔,压力油为甘油,结合面排油干净0.18钢一优质结构钢0.11 0.08在电炉中加热包容件至300C0.14钢一青铜0.15 -0.20 0.03 906 在电炉中加热包容件至300C以后,结合面脱脂0.2因需保证F f > F,故F f = n dlpfFTidl[7-8]钢一铸铁 0.12 3.15 0.05 210钢一铸铁油压扩孔,压力油为矿物油 0.1铸铁铸钢0.15 〜0..25 0.15210钢一铝镁合金无润滑0.103.153) 承受轴向力F 和转矩T 的联合作用此时所需的径向压力为如丫F + — Tidlf2.过盈联接的最小有效过盈量 3 min根据材料力学有关厚壁圆筒的计算理论,在径向压力为P 时的过盈量为△ =pd (G/已+G/E 2) x 103,贝U 由上式可知,过盈联接传递载荷所需的最小过盈量 应为式中:p ――配合 W 可的任向活力,由式(7、8)(7J0)计算;MPad ---- 配合的公称直径,mmE 1、E 2――分别为被包容件与包容件材料的弹性模量, MPaC 1――被包容件的刚性系数C 2――包容件的刚性系数[7-10]103屮n[7-11]di 、d2——分别为被包容件的内径和包容件的外径,mm卩1、卩2――分别为被包容件与包容件材料的泊松比。
过盈量与装配力计算公式

过盈联接1.确定压力p;1)传递轴向力F2)传递转矩T3)承受轴向力F和转矩T的联合作用2.确定最小有效过盈量,选定配合种类;3.计算过盈联接的强度;4.计算所需压入力;(采用压入法装配时)5.计算包容件加热及被包容件冷却温度;(采用胀缩法装配时)6.包容见外径胀大量及被包容件内径缩小量。
1. 配合面间所需的径向压力p过盈联接的配合面间应具有的径向压力是随着所传递的载荷不同而异的。
1)传递轴向力F当联接传递轴向力F时(图7-20),应保证联接在此载荷作用下,不产生轴向滑动。
亦即当径向压力为P时,在外载荷F的作用下,配合面上所能产生的轴向摩擦阻力Ff,应大于或等于外载荷F。
图: 变轴向力的过盈联接图: 受转矩的过盈联接设配合的公称直径为人配合面间的摩擦系数为人配合长度为l,则F f=πdlpf≥F,故因需保证Ff[7-8]2)传递转矩T当联接传递转矩T时,则应保证在此转矩作用下不产生周向滑移。
亦即当径向压力为P时,在转矩T的作用下,配合面间所能产生的摩擦阻力矩M应大于或等于转矩T。
f设配合面上的摩擦系数为f ① ,配合尺寸同前,则M f =πdlpf·d/2因需保证M f ≥T.故得[7-9]① 实际上,周向摩擦系数系与轴向摩擦系数有差异,现为简化.取两者近似相等.均以f 表示。
配合面间摩擦系数的大小与配合面的状态、材料及润滑情况等因素有关,应由实验测定。
表7-5给出了几种情况下摩擦系数值,以供计算时参考。
表: 摩擦系数f 值压 入 法 胀 缩 法联接零件材料 无润滑时f 有润滑时f 联接零件材料结合方式,润滑 f钢—铸钢 0.11 0.08 钢—钢油压扩孔,压力油为矿物油 0.125钢—结构钢 0.10 0.07 油压扩孔,压力油为甘油,结合面排油干净0.18钢—优质结构钢 0.11 0.08 在电炉中加热包容件至300℃0.14钢—青铜 0.15~0.20 0.03~0.06 在电炉中加热包容件至300℃以后,结合面脱脂0.2钢—铸铁 0.12~0.15 0.05~0.10 钢—铸铁 油压扩孔,压力油为矿物油0.1铸铁—铸钢 0.15~0..25 0.15~0.10 钢—铝镁合金 无润滑 0.10~0.153) 承受轴向力F 和转矩T 的联合作用 此时所需的径向压力为[7-10]2. 过盈联接的最小有效过盈量δmin根据材料力学有关厚壁圆筒的计算理论,在径向压力为 P时的过盈量为Δ=pd(C1/E1+C2/E2) ×103,则由上式可知,过盈联接传递载荷所需的最小过盈量应为[7-11]式中:p——配合W问的任向活力,由式(7~8)~(7~10)计算;MPa;d——配合的公称直径,mm;E1、E2——分别为被包容件与包容件材料的弹性模量,MPa;C1——被包容件的刚性系数C2——包容件的刚性系数d1、d2——分别为被包容件的内径和包容件的外径,mm;μ1、μ2——分别为被包容件与包容件材料的泊松比。
过盈膨胀量计算公式是什么
过盈膨胀量计算公式是什么过盈膨胀量是指在装配过程中,轴与孔之间的配合,轴的尺寸大于孔的尺寸,这种配合方式称为过盈配合。
在过盈配合中,轴与孔之间存在一定的间隙,这个间隙称为过盈膨胀量。
过盈膨胀量的计算对于工程设计和装配过程非常重要,可以帮助确保装配的精度和可靠性。
过盈膨胀量的计算公式是根据过盈配合的要求和轴孔的尺寸来确定的。
一般来说,过盈膨胀量的计算公式可以表示为:过盈膨胀量 = (轴的最大尺寸孔的最小尺寸) / 2。
其中,轴的最大尺寸是指轴的最大直径或者最大外径,孔的最小尺寸是指孔的最小直径或者最小内径。
过盈膨胀量的计算公式可以根据具体的工程要求和轴孔的尺寸进行调整,以确保装配的精度和可靠性。
过盈膨胀量的计算公式可以应用于各种工程设计和装配过程中,例如机械零件的装配、轴承的安装、轴的连接等。
通过合理计算过盈膨胀量,可以确保轴与孔之间的配合达到要求,避免因为过盈膨胀量过大或过小而导致的装配问题。
在工程设计和装配过程中,需要根据具体的要求和轴孔的尺寸来确定过盈膨胀量的计算公式。
一般来说,过盈膨胀量的计算公式可以根据以下几个方面来确定:1. 要求的过盈配合,根据具体的工程要求和装配要求确定过盈配合的标准和要求,例如过盈配合的紧固要求、轴与孔的配合要求等。
2. 轴孔的尺寸,根据轴孔的尺寸确定轴的最大尺寸和孔的最小尺寸,然后根据这些尺寸来确定过盈膨胀量的计算公式。
3. 装配的要求,根据具体的装配要求确定过盈膨胀量的计算公式,例如装配的精度要求、装配的可靠性要求等。
通过合理计算过盈膨胀量,可以确保轴与孔之间的配合达到要求,避免因为过盈膨胀量过大或过小而导致的装配问题。
因此,过盈膨胀量的计算公式对于工程设计和装配过程非常重要,需要在实际工程中加以应用和推广。
过盈量与装配力计算公式
过盈量与装配力计算公式The final revision was on November 23, 2020过盈联接1. 配合面间所需的径向压力p过盈联接的配合面间应具有的径向压力是随着所传递的载荷不同而异的。
1)传递轴向力F当联接传递轴向力F时(图7-20),应保证联接在此载荷作用下,不产生轴向滑动。
亦即当径向压力为P时,在外载荷F的作用下,配合面上所能产生的轴向摩擦阻力Ff,应大于或等于外载荷F。
图: 变轴向力的过盈联接图: 受转矩的过盈联接设配合的公称直径为人配合面间的摩擦系数为人配合长度为l,则F f=πdlpf因需保证F f≥F,故[7-8]2)传递转矩T当联接传递转矩T时,则应保证在此转矩作用下不产生周向滑移。
亦即当径向压力为P时,在转矩T的作用下,配合面间所能产生的摩擦阻力矩M f应大于或等于转矩T。
设配合面上的摩擦系数为f①,配合尺寸同前,则M f=πdlpf·d/2因需保证M f≥T.故得[7-9]① 实际上,周向摩擦系数系与轴向摩擦系数有差异,现为简化.取两者近似相等.均以f表示。
配合面间摩擦系数的大小与配合面的状态、材料及润滑情况等因素有关,应由实验测定。
表7-5给出了几种情况下摩擦系数值,以供计算时参考。
表: 摩擦系数f值压入法胀缩法联接零件材料无润滑时f有润滑时f联接零件材料结合方式,润滑 f钢—铸钢钢—钢油压扩孔,压力油为矿物油钢—结构钢油压扩孔,压力油为甘油,结合面排油干净钢—优质结构钢在电炉中加热包容件至300℃钢—青铜在电炉中加热包容件至300℃以后,结合面脱脂钢—铸铁钢—铸铁油压扩孔,压力油为矿物油铸铁—铸钢0..25 钢—铝镁合金无润滑3)承受轴向力F和转矩T的联合作用此时所需的径向压力为[7-10]2. 过盈联接的最小有效过盈量δmin根据材料力学有关厚壁圆筒的计算理论,在径向压力为 P时的过盈量为Δ=pd(C1/E1+C2/E2) ×103,则由上式可知,过盈联接传递载荷所需的最小过盈量应为[7-11]式中:p——配合W问的任向活力,由式(78)(710)计算;MPa; d——配合的公称直径,mm;E1、E2——分别为被包容件与包容件材料的弹性模量,MPa;C1——被包容件的刚性系数C2——包容件的刚性系数d1、d2——分别为被包容件的内径和包容件的外径,mm;μ1、μ2——分别为被包容件与包容件材料的泊松比。
过盈配合力计算
过盈配合计算方法
计算方法的基本方法与步骤
以创新的科技便利人类生活 We Move Faster
广电运通金融电子股份有限公司 GRG Banking Equipment CO.,Ltd.
过盈配合计算方法
计算方法的基本方法与步骤
以创新的科技便利人类生活 We Move Faster
广电运通金融电子股份有限公司 GRG Banking Equipment CO.,Ltd.
过盈配合计算方法
计算方法的基本方法与步骤
弹性模量、泊松比系数 材料
碳钢、低合金钢、合金结构钢
青铜 黄铜 铝合金 PC POM
弹性模量(E MPa)
200000-235000
85000 80000 69000 2320 2600
泊松比 (v)
0.3-0.31
0.35 0.36-0.37 0.32-0.36 0.3912 0.386
过盈配合的基本偏差特性及应用
以创新的科技便利人类生活 We Move Faster
广电运通金融电子股份有限公司 GRG Banking Equipment CO.,Ltd.
过盈配合简介
常用过盈配合特性及应用
以创新的科技便利人类生活 We Move Faster
广电运通金融电子股份有限公司 GRG Banking Equipment CO.,Ltd.
广电运通金融电子股份有限公司 GRG Banking Equipment CO.,Ltd.
过盈配合应用
过盈配合主要用于孔、轴间的紧固联结,不允许两者有相对运动。主要 表现在结构联接方式为过盈联接,过盈连接的原理是由于材料有弹性, 包容件与被包容件在过盈配合在表面产生一定压力,当联接受到轴向力, 转矩或两者复合的作用时,即产生相应的摩擦力和摩擦力矩以承受或传 递外负载。 过盈联接的特点是结构简单,对中性好。缺点是对配合的表面要求精度 高,不注意会擦伤配合表面,并且不宜重复拆装。 过盈联接的配合面多为圆柱面,也有圆锥面或其他的形式。 一般这种联接装配方式采用压入装配,对于过盈量较小的,或是材料弹 性较大的采用直接压入式(纵向过盈联接),对于过盈量较大的并且材 料较硬的采用温差法装配(横向过盈联接)。
滚动轴承工作游隙的计算和选择方法(修改)
滚动轴承工作游隙的计算和选择方法(修改)1. 实际有效过盈量的计算公式△dy =32△d-G △d —— 名义过盈量G —— 过盈配合的压平尺寸例如:轴承内径 φ400012.0- 轴φ40013.0002.0++名义过盈量为+25μm经压缩1/3后,实际有效过盈量为+17μm 。
过盈配合的压平尺寸G表面粗糙度0.8时为1μm 。
2.径向游隙减小的估算公式①轴承内圈与钢质实心轴△j=△dy*h d△j ——内圈滚道挡边直径扩张量(μm )d ——轴承内径公称尺寸(mm )h ——内圈滚道挡边直径(mm )②轴承内圈与钢质空心轴△j=△dy*F(d) F(d)= h d *)/()1/()1/(2221h d d d d d -- d1——空心轴内径(mm )③轴承外圈与钢质实体外壳△A=△Dy*D H△A ——外圈滚道挡边直径扩张量(μm )△Dy ——外壳孔直径实际有效过盈量(μm )D ——轴承外径公称尺寸(mm )H ——外圈滚道挡边直径(mm )④轴承外圈与钢质薄壁外壳△A=△Dy*F(D) F(D)= D H *)/()/()/(2221D H D F D F --F ——轴承座外壳外径⑤轴承外圈与灰铸铁外壳△A=△Dy[F(D)-0.15]⑥轴承外圈与轻金属外壳△A=△Dy[F(D)-0.25]3. 由于内外套圈的温度差引起的游隙减小量δt = αΔt Do (mm)式中,α—轴承钢的膨胀系数1.12×105-(1/℃)Δt —内外套圈的温度差(℃),Δt = T内- T外Do —外圈滚道直径(mm)。
4.径向游隙的减小量△j+△A+δt5. 根据径向游隙的减小量在游隙组中选定游隙范围。
例如:轴承型号:22332,内圈受局部重载荷作用,与轴套轴向游动,取g6配合。
外圈受循环载荷作用,与外壳孔紧配,取P6配合。
内圈:φ1600025.0-轴:φ160014 .0039 .0--最大名义过盈量△d =11,G=2.5则实际有效过盈量△dy=4.8 d/h=160/191≈0.838△j=△dy*d/h=4.8*0.838≈4外圈:φ2900035.0-外壳孔:φ290047 .0079 .0--最大名义过盈量△D =79,G=5则实际有效过盈量△Dy=48H/D=258/290≈0.89△A=△Dy*H/D=48*0.89≈43假设没有其他的热传入。