运筹学复习

合集下载

《运筹学》期末复习及答案

《运筹学》期末复习及答案

运筹学概念部分一、填空题1.运筹学的主要研究对象是各种有组织系统的管理问题,经营活动。

2.运筹学的核心主要是运用数学方法研究各种系统的优化途径及方案,为决策者提供科学决策的依据。

3.模型是一件实际事物或现实情况的代表或抽象.4通常对问题中变量值的限制称为约束条件,它可以表示成一个等式或不等式的集合。

5.运筹学研究和解决问题的基础是最优化技术,并强调系统整体优化功能.6.运筹学用系统的观点研究功能之间的关系。

7.运筹学研究和解决问题的优势是应用各学科交叉的方法,具有典型综合应用特性。

8.运筹学的发展趋势是进一步依赖于_计算机的应用和发展。

9.运筹学解决问题时首先要观察待决策问题所处的环境。

10.用运筹学分析与解决问题,是一个科学决策的过程。

11。

运筹学的主要目的在于求得一个合理运用人力、物力和财力的最佳方案.12.运筹学中所使用的模型是数学模型。

用运筹学解决问题的核心是建立数学模型,并对模型求解.13用运筹学解决问题时,要分析,定义待决策的问题。

14.运筹学的系统特征之一是用系统的观点研究功能关系.15。

数学模型中,“s·t”表示约束(subject to 的缩写)。

16.建立数学模型时,需要回答的问题有性能的客观量度,可控制因素,不可控因素。

17.运筹学的主要研究对象是各种有组织系统的管理问题及经营活动。

18. 1940年8月,英国管理部门成立了一个跨学科的11人的运筹学小组,该小组简称为OR。

二、单选题19.建立数学模型时,考虑可以由决策者控制的因素是( A )A.销售数量B.销售价格C.顾客的需求 D.竞争价格20.我们可以通过( C)来验证模型最优解。

A.观察B.应用C.实验D.调查21.建立运筹学模型的过程不包括( A )阶段。

A.观察环境B.数据分析C.模型设计D.模型实施22。

建立模型的一个基本理由是去揭晓那些重要的或有关的(B )A数量B变量C约束条件 D 目标函数23。

运筹学复习

运筹学复习

第一章线性规划●线性规划模型的一般形式min f = ∑c j x j (或max f = ∑c j x j)--目标函数其中x j称为决策变量S.t. ∑ a ij x j = (≥, ≤) b i ,i = 1,... mX j = (≥, ≤) 0 j = 1,... n--约束条件可行解——满足约束条件的解X可行域——全体可行解的集合最优解——使目标函数取得最大(小)值的可行解最优值——最优解对应的目标函数值f*●标准型线性规划(LP)min f =∑c j x j 最小值S.t. ∑ a ij x j = b i ,i = 1,... m 等式约束X j ≥ 0 j = 1,... n 非负约束线性规划化为标准型:i. max →min max z = - min (-z)ii.不等式约束引进松弛变量x’(x’非负)∑ a ij x j ≥ b i 变为∑ a ij x j - x’ = b ;∑ a ij x j ≤ b i 变为∑ a ij x j +x’ = b ;iii. 决策变量为自由变量令xj = x’ - x’’(x’ x’’非负)iv. xj ≤ 0 令xj = - xj’(xj’非负)v. xj ≥ hj 令xj = xj’+hj (xj’非负)●线性规划的几何特征(图解法)Step 1 确定可行域Step 2 寻找最优解通过将等值线【线上所有点均对应相同目标函数值】沿目标函数(负)梯度方向移动寻找最值:沿梯度方向f增大;负梯度方向f减小;解的情况有:(见P8)1. 最优解存在且唯一2. 最优解存在且不唯一(等值线与边界重合)3. 可行解存在但规划无下界,最优值不存在4. 可行解不存在(线性规划不可行)结论:如果可行域K非空,则K必是第一卦限中一个凸集,必存在顶点;。

运筹学复习题

运筹学复习题

D.指派问题的数学模型是整数规划模型 六、网络模型(每小题 10 分,共 100 分)
1. μ 是关于可行流 f 的一条增广链,则在 μ 上有 "D"
A.对一切
B.对一切
C.对一切
D.对一切
2.下列说法正确的是 "C"
A.割集是子图
B.割量等于割集中弧的流量之和
C.割量大于等于最大流量
D.割量小于等于最大流量
C.若最优解存在,则最优解相同 D.一个问题无可行解,则另一个问题具有无界解
4.原问题与对偶问题都有可行解,则 "D"
A. 原问题有最优解,对偶问题可能没有最优解 B. 原问题与对偶问题可能都没有最优解
C.可能一个问题有最优解,另一个问题具有无界解 D.原问题与对偶问题都有最优解
5.已知对称形式原问题(MAX)的最优表中的检验数为(λ1,λ2,...,λn),松弛变量的检验数为(λn+1, λn+2,...,λn+m),则对偶问题的最优解为 "C"
A. 约束条件相同
B.模型相同 C.最优目标函数值相等
D.以上结论都不对
2.对偶单纯形法的最小比值规划则是为了保证 "B"
A.使原问题保持可行
B.使对偶问题保持可行
C.逐步消除原问题不可行性 D.逐步消除对偶问题不可行性
2
3.互为对偶的两个线性规划问题的解存在关系 "A"
A.一个问题具有无界解,另一问题无可行解 B 原问题无可行解,对偶问题也无可行解
A.最大流量等于最大割量 B.最大流量等于最小割量
C.任意流量不小于最小割量 D.最大流量不小于任意割量

最全的运筹学复习题及答案

最全的运筹学复习题及答案

5、线性规划数学模型具备哪几个要素?答:(1).求一组决策变量xi 或xij的值(i=1,2,…m j=1,2…n)使目标函数达到极大或极小;(2).表示约束条件的数学式都是线性等式或不等式;(3).表示问题最优化指标的目标函数都是决策变量的线性函数第二章线性规划的基本概念一、填空题1.线性规划问题是求一个线性目标函数_在一组线性约束条件下的极值问题。

2.图解法适用于含有两个变量的线性规划问题。

3.线性规划问题的可行解是指满足所有约束条件的解。

4.在线性规划问题的基本解中,所有的非基变量等于零。

5.在线性规划问题中,基可行解的非零分量所对应的列向量线性无关6.若线性规划问题有最优解,则最优解一定可以在可行域的顶点(极点)达到。

7.线性规划问题有可行解,则必有基可行解。

8.如果线性规划问题存在目标函数为有限值的最优解,求解时只需在其基可行解_的集合中进行搜索即可得到最优解。

9.满足非负条件的基本解称为基本可行解。

10.在将线性规划问题的一般形式转化为标准形式时,引入的松驰数量在目标函数中的系数为零。

11.将线性规划模型化成标准形式时,“≤”的约束条件要在不等式左_端加入松弛变量。

12.线性规划模型包括决策(可控)变量,约束条件,目标函数三个要素。

13.线性规划问题可分为目标函数求极大值和极小_值两类。

14.线性规划问题的标准形式中,约束条件取等式,目标函数求极大值,而所有变量必须非负。

15.线性规划问题的基可行解与可行域顶点的关系是顶点多于基可行解16.在用图解法求解线性规划问题时,如果取得极值的等值线与可行域的一段边界重合,则这段边界上的一切点都是最优解。

17.求解线性规划问题可能的结果有无解,有唯一最优解,有无穷多个最优解。

18.如果某个约束条件是“≤”情形,若化为标准形式,需要引入一松弛变量。

19.如果某个变量Xj 为自由变量,则应引进两个非负变量Xj′,Xj〞,同时令Xj=Xj′-Xj。

20.表达线性规划的简式中目标函数为max(min)Z=∑cij xij 。

(完整word版)最全的运筹学复习题及答案

(完整word版)最全的运筹学复习题及答案

5、线性规划数学模型具备哪几个要素?答:(1).求一组决策变量x i或x ij的值(i =1,2,…m j=1,2…n)使目标函数达到极大或极小;(2)。

表示约束条件的数学式都是线性等式或不等式;(3)。

表示问题最优化指标的目标函数都是决策变量的线性函数第二章线性规划的基本概念一、填空题1.线性规划问题是求一个线性目标函数_在一组线性约束条件下的极值问题。

2.图解法适用于含有两个变量的线性规划问题.3.线性规划问题的可行解是指满足所有约束条件的解。

4.在线性规划问题的基本解中,所有的非基变量等于零.5.在线性规划问题中,基可行解的非零分量所对应的列向量线性无关6.若线性规划问题有最优解,则最优解一定可以在可行域的顶点(极点)达到。

7.线性规划问题有可行解,则必有基可行解。

8.如果线性规划问题存在目标函数为有限值的最优解,求解时只需在其基可行解_的集合中进行搜索即可得到最优解.9.满足非负条件的基本解称为基本可行解。

10.在将线性规划问题的一般形式转化为标准形式时,引入的松驰数量在目标函数中的系数为零。

11.将线性规划模型化成标准形式时,“≤”的约束条件要在不等式左_端加入松弛变量。

12.线性规划模型包括决策(可控)变量,约束条件,目标函数三个要素。

13.线性规划问题可分为目标函数求极大值和极小_值两类。

14.线性规划问题的标准形式中,约束条件取等式,目标函数求极大值,而所有变量必须非负。

15.线性规划问题的基可行解与可行域顶点的关系是顶点多于基可行解16.在用图解法求解线性规划问题时,如果取得极值的等值线与可行域的一段边界重合,则这段边界上的一切点都是最优解. 17.求解线性规划问题可能的结果有无解,有唯一最优解,有无穷多个最优解。

18。

如果某个约束条件是“≤"情形,若化为标准形式,需要引入一松弛变量。

19。

如果某个变量X j 为自由变量,则应引进两个非负变量X j ′ , X j 〞, 同时令X j =X j ′- X j 。

运筹学复习要点

运筹学复习要点

运筹学复习要点运筹学复习要点第二章线性规划与单纯形法一、标准型:规定具有下述条件的线性规划问题为标准型式的线性规划问题:1、目标函数为求最大;2、约束条件为等式约束;3、决策变量为非负。

二、线性规划问题具有的特征:1、每一问题都用一组决策变量(x1, x2, . . . ,xn)表示某一方案;2这组决策变量的值就代表一个具体方案,一般这些变量值是非负的;3、存在一定的约束条件,它们可用线性等式或不等式表示;4、都有一个要求达到的目标,它们可用决策变量的线性函数表示,称目标函数。

根据问题不同,要求目标函数实现最大化或最小化。

三、图解法的结论:1、可行域一定是凸集,即该区域内任意两点间连线上的点仍在该区域内;2、线性规划最优解不可能在凸集内的点上实现;3、线性规划问题有可能存在无穷多最优解;4、如果可行域无界,则最优解可能是无界解;5、如果不存在可行域,则没有可行解,也一定不存在最优解;6图解法只适用于两个决策变量的情况。

四、单纯形法:其基本思路是首先确定一个初始基可行解,然后判断该基可行解是否为最优解。

如果是最优解,则求解过程结束;如果不是最优解,则在此基础上变换找出另一个基可行解,该基可行解的目标函数值应该优于原基可行解。

再判断新的基可行解是否为最优解,如果是最优解,则求解过程结束;如果不是最优解,则在此基础上变换再找出另一个新基可行解,如此进行下去,直到找到最优解为止。

五、最优性检验与解的形式:最优解的判别定理,若X(0) = (b′1, b′2, ……… ,b′m, 0, …… , 0)T为对应于基B的一个基可行解,且对于一切j = m + 1, …… , n,有σj6 0,则X(0)为最优解,称σj为检验数。

无穷最多解判别定理,若X(0) = (b′1, b′2, …… , b′m, 0, …… , 0)T为对应于基B的一个基可行解,且对于一切j = m + 1, …… , n,有σj6 0,又存在某个非基变量的检验数σm+k= 0,则线性规划问题有无穷多最优解。

运筹学复习题

一、根据题意写出下列各题的数学模型1、某公司在今后四个月内需租用仓库堆放物资。

每个月所需的仓库面积分如下表所示,2123415102012月份所需仓库面积(百m )当租借合同期限越长时,仓库的租借费用享受的折扣优惠也越大,具体数字如下表所示,21234100m 2800450060007300月份个月个月个月个月合同期内仓库面积的租借费用(元)租借仓库的合同每月初都可办理,每份合同具体规定租用面积数和期限。

因此该厂可根据需要在任一个月初办理租借合同,且每次可同时签若干份租用面积和租借期不同的合同。

求租借费用最小的租借方案。

(建立模型,不求解)2、某公司拟在市东、西、南三区建立门市部,拟议中有7个位置(1,2,...,7)i A i 可供选择。

规定:在东区,由123,,A A A 中至多选两个;在西区,由45,A A 中至少选一个;在南区,由67,A A 中至少选一个。

如选择i A 点,设备投资估计为i b 元,每年可获利润估计为i c 元,但投资总额不能超过B 元。

试建立年利润最大的数学模型。

3、某咨询公司受厂商的委托对新上市的一种产品进行消费者反映的调查。

该公司采用了挨户调查的方法,委托他们调查的厂商以及该公司的市场研究专家对该调查提出下列几点要求: (a )必须调查2000户以上家庭;(b )在晚上调查的户数和白天调查的户数相等; (c )至少调查700户有孩子的家庭; (d )至少调查450户无孩子的家庭。

调查一户家庭所需费用如下表所示。

试建立总调查费用最少的数学模型。

25302024家庭白天调查晚上调查有孩子元元无孩子元元4、有一份中文说明书,需译成英、日、德、俄四种文字。

现有甲、乙、丙、丁四人。

他们将中文说明书翻译成不同语种的说明书所需时间如下表所示。

试建立花费总时间最少的数学模型。

任务人员2151341041415914161378119英日德俄甲乙丙丁5.某钻井队要从以下10个可供选择的井位中确定5个钻井探油,使总的钻探费用最小。

运筹学复习题——考试题

《运筹学》复习题一、填空题(1分×10=10分)1.运筹学的主要研究对象是(组织系统的管理问题)。

2.运筹学的核心主要是运用(数学)方法研究各种系统的优化。

3.模型是一件实际事物或现实情况的代表或抽象。

4.通常对问题中变量值的限制称为(约束条件),它可以表示成一个等式或不等式的集合。

5.运筹学研究和解决问题的基础是(最优化技术),并强调系统整体优化功能。

6.运筹学用(系统)的观点研究(功能)之间的关系。

7.运筹学研究和解决问题的优势是应用各学科交叉的方法,具有典型综合应用特性。

8.运筹学的发展趋势是进一步依赖于计算机的应用和发展。

9.运筹学解决问题时首先要观察待决策问题所处的环境。

10.用运筹学分析与解决问题,是一个科学决策的过程。

11.运筹学的主要目的在于求得一个合理运用人力、物力和财力的最佳方案。

12.运筹学中所使用的模型是数学模型。

用运筹学解决问题的核心是(建立数学模型),并对模型求解。

13.用运筹学解决问题时,要分析,定义待决策的问题。

14.运筹学的系统特征之一是用系统的观点研究功能关系。

15.数学模型中,“s.t.”表示约束。

16.建立数学模型时,需要回答的问题有性能的客观量度,可控制因素,不可控因素。

17.运筹学的主要研究对象是各种有组织系统的管理问题及经营活动。

18. 1940年8月,英国管理部门成立了一个跨学科的11人的运筹学小组,该小组简称为OR。

19.线性规划问题是求一个(线性目标函数),在一组(线性约束)条件下的极值问题。

20.图解法适用于含有两个变量的线性规划问题。

21.线性规划问题的可行解是指满足所有约束条件的解。

22.在线性规划问题的基本解中,所有的(非基变量)等于零。

23.在线性规划问题中,基可行解的非零分量所对应的列向量线性无关24.若线性规划问题有最优解,则最优解一定可以在可行域的顶点(极点)达到。

25.线性规划问题有可行解,则必有基可行解。

26.如果线性规划问题存在目标函数为有限值的最优解,求解时只需在其基可行解的集合中进行搜索即可得到最优解。

运筹学复习-20页文档资料


∴最小树的权为24,最小树为
V4
T={v1v2,v1v3,v2v5,v5v6,v6v7,v6v4}
用Prim算法求最小树
用Prim算法(就近法)求赋权连通图G的最小树
TT=={{vv11},,vv22,}v3},v5},v6},v7},v4} S={v2,v3,v4,v5,v6,v7}
V2
5
V6
4
求最大流问题的基本算法
最小费用最大流问题的网络图论 解法
求最小费用最大流问题的基本算法
最小生成树问题
避圈法、Prim法
2019/10/3
用Kruskal算法求最小树
用Kruskal算法(避圈法)求赋权连通图G的最小树
V2
5
V6
4
2
9
4
5
12
V1
3
8
V3
6
6
V5
V7
10 7
7
11
2019/10/3
运筹学复习 绍兴文理学院 工学院计算机系
2019/10/3
《运筹学》 期末复习提纲
线性规划的单纯形法、图解法
线性规划的对偶规划对偶单纯形法
运输问题及其初始解、最优解
整数规划 组合优化问题
模型、
排序与统筹 对策论的最优纯对策 搜索论
2019/10/3
算法、 计算
线性规划的图解法
0 0
0
v5 0
5
0
2
0
0 2 2 0 0 v6 4 3
0 v3
01
0 0 v7
0102568
0
1
3
10
v4
2 0 最大流为:10,解为…

运筹学复习资料

运筹学复习一、单纯形方法〔表格、人工变量、根底知识〕线性规划解的情况:唯一最优解、多重最优解、无界解、无解。

其中,可行域无界,并不意味着目标函数值无界。

无界可行域对应着解的情况有:唯一最优解、多重最优解、无界解。

有界可行域对应唯一最优解和多重最优解两种情况。

线性规划解得根本性质有:满足线性规划约束条件的可行解集〔可行域〕构成一个凸多边形;凸多边形的顶点〔极点〕与根本可行解一一对应〔即一个根本可行解对应一个顶点〕;线性规划问题假设有最优解,那么最优解一定在凸多边形的某个顶点上取得。

单纯形法解决线性规划问题时,在换基迭代过程中,进基的非基变量的选择要利用比值法,这个方法是保证进基后的单纯型依然在解上可行。

换基迭代要求除了进基的非基变量外,其余非基变量全为零。

检验最优性的一个方法是在目标函数中,用非基变量表示基变量。

要求检验数全部小于等于零。

“当x1由0变到45/2时,x3首先变为0,故x3为退出基变量。

〞这句话是最小比值法的一种通俗的说法,但是很有意义。

这里,x1为进基变量,x3为出基变量。

将约束方程化为每个方程只含一个基变量,目标函数表示成非基变量的函数。

单纯型原理的矩阵描述。

在单纯型原理的表格解法中,有一个有趣的现象就是,单纯型表中的某一列的组成的列向量等于它所在的单纯型矩阵的最初的基矩阵的m*m矩阵与其最初的那一列向量的乘积。

最初基变量对应的基矩阵的逆矩阵。

这个样子:'1222 1 0 -382580 1 010 0 158P B P -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦51=5 所有的检验数均小于或等于零,有最优解。

但是如果出现非基变量的检验数为0,那么有无穷多的最优解,这时应该继续迭代。

解的结果应该是: X *= a X 1*+(1-a)X 2*〔0<=a<=1〕说明:最优解有时不唯一,但最优值唯一;在实际应用中,有多种方案可供选择;当问题有两个不同的最优解时,问题有无穷多个最优解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档