冰蓄冷中央空调技术的应用

合集下载

冰蓄冷空调系统的应用与经济分析

冰蓄冷空调系统的应用与经济分析

冰蓄冷空调系统的应用与经济分析冰蓄冷空调系统是一种利用低峰时段制冷,然后在高峰时段释放冷量供空调使用的节能系统。

它由冷冻机组、冷冻水蓄冷罐和冷冻水泵组成。

1. 商业建筑:冰蓄冷系统适用于商业建筑,如写字楼、购物中心和酒店。

由于商业建筑在白天需求较大的制冷量,而在夜间需求较少,因此使用冰蓄冷系统可以在夜间制冷,然后在白天使用蓄存的冷量供空调使用,减少用电峰值,降低能源消耗。

2. 工业生产:冰蓄冷系统也适用于工业生产,如制药、食品加工和化工厂。

这些厂房通常需要大量制冷,而且制冷负荷波动较大。

使用冰蓄冷系统可以利用低峰时段制冷,提高能源利用率,减少能源成本。

3. 制冷储藏:冰蓄冷系统可以用于制冷储藏,如冷藏库、冷冻库和冷链物流。

通过在低峰时段制冷,可以提高储藏温度稳定性,减少能量损失,延长商品保质期,提高储藏效果。

1. 节能效果:冰蓄冷系统通过在低峰时段制冷,可以利用电力资源的低谷时段,提高用电效率,降低用电峰值。

与传统空调系统相比,可以节约20%至30%的用电量,降低能源消耗。

2. 耗电成本:冰蓄冷系统的冷冻机组和冷冻水泵的运行耗电量较大,在选型和设计时需考虑到运行成本。

由于冰蓄冷系统利用夜间低价电制冷,较传统空调系统能更充分地利用电力资源,从长期来看,总体运行成本可能会更低。

3. 投资回收期:冰蓄冷系统的投资成本相对较高,主要包括冷冻机组、冷冻水蓄冷罐和冷冻水泵等设备的购置和安装费用。

由于冰蓄冷系统可以降低用电峰值,减少能源消耗,从而节约用电成本,投资回收期较短,通常在3至5年左右。

冰蓄冷空调系统的应用广泛,包括商业建筑、工业生产和制冷储藏等领域。

它也具有较好的经济效益,可以节约能源、降低用电成本,并在一定时间内实现投资回收。

在节能减排和提高能效的背景下,冰蓄冷空调系统具有广阔的应用前景。

冰蓄冷在制冷空调中的应用前景与发展趋势

冰蓄冷在制冷空调中的应用前景与发展趋势

冰蓄冷在制冷空调中的应用前景与发展趋势采用冰蓄冷在制冷空调,是空调技术革命的又一卓越贡献,是解决我国特大型城市夏季电力问题的最优方案之一,也是未来楼宇空调发展的必然趋势。

可以大幅度的降低夏天用电高峰负荷,大量减少夏天高温季节停电拉闸的概率;有利于人们的和谐幸福安定工作和生活。

标签:冷蓄冷;制冷空调;应用前景冰蓄冷中央空调是指建筑物空调时间所需要冷量的部分或全部在非空调时间利用蓄冰介质水的显热及潜热迁移等特性,在常规水冷冷水机组系统的基础上,通过计算机与PLC的控制,利用夜间低谷低价电力时段将冷量通过冰的形式储存起来,白天需要供冷时根据空调负荷要求释放出来的一种新颖技术制冷技术。

这样在用电高峰时期就可以少开甚至不开主机。

当空调使用时间与非空调使用时间和电网高峰和低谷同步时,就可以将电网高峰时间的空调用电量转移至电网低谷时使用,达到节约电费的目的。

一、冰蓄冷技术1、冰蓄冷空调系统。

在常规全空气空调系统中,送风温差一般控制在8~10℃,送风温度在15~18℃范围,如果系统有再热,则盘管出口空气温度可低到12℃左右。

而在冰蓄冷系统中,利用低温冷水,可将盘管出口空气温度降到4~6℃,送风温差可达20℃左右,形成所谓“低温送风系统”。

20世纪末期,我国的冰蓄冷技术日趋完善,于是全面提出冰蓄冷与低温送风相结合的技术的理论,对这种系统的特点、技术性能、设计方法以及要注意的问题进行探讨,说明冰蓄冷与低温送风相结合的系统的优越性,这是冰蓄冷技术的重大突破,理论方面也已经很完善。

进入21世纪以后,冰蓄冷与低温送风空调系统的理论日趋成熟,在吸取了国外大量先进技术以后,2002年首次由国内设计完成的集成冰蓄冷、低温送风、变风量等多项国内国际先进的空调新技术的系统在国家电力公司所属国家电力调度中心圓满竣工,接着西北电力调度中心等电力部门都成功应用了冰蓄冷与低温送风相结合的技术。

至此,我国已经完全实现了这项技术从理论到实践的过渡,近年来,对于这种新型的冰蓄冷空调技术,我国虽然取得初步成果,但是仍有很多需要改进的地方,在实践方面还需要进一步完善。

冰蓄冷技术典型应用

冰蓄冷技术典型应用

一项冰蓄冷技术空调的典型应用冰蓄冷技术宜在有中央空调系统的办公、商业及高档住宅中采用。

电力冰蓄冷装置基本上就是在原有中央空调系统中增加一套蓄冷储冰槽,制冰机组在用电低谷时段将电能转为为冷能,并将冷能通过冷媒循环储存在储冰槽中,待到需要调节温度时将所储存的冷能再通过空调系统释放出来,此时关闭制冷机组,从而减少高峰用电量。

华南城1号广场,总建筑面积50万平米,空调面积近40万平米。

由110KV林锦店变电站Ⅲ华南线和Ⅳ华南线10KV 双电源供电,受电点为华南城1号广场的1#中心配和2#中心配。

1#中心配受电变压器8台,分别为2台800KVA和6台1600KVA,共计11200KVA; 2#中心配受电变压器12台,分别为2台800KVA和10台1600KVA,共计17600KVA;1号广场蓄冰空调系统的蓄冷设备由380V电源供电,蓄冷专用电变压器为4台1600KVA,共计6400KVA。

二、冰蓄冷技术简介及1号广场冰蓄冷设备情况(一)冰蓄冷技术简介冰蓄冷空调系统本身并不节能,但它起到了电力移峰填谷的作用,一般来说它对用电客户和电力供应生产带来的效益如下:1.对用电客户的效益:降低整个建筑变压器装机容量约10%;降低末端的供回水温差,减少末端泵循环能耗;依靠峰谷电价差,降低运行成本15%-30%;电源中断时,利用冰蓄冷以及水泵所需要的电力可继续供冷。

2.对电力供应的效益:移峰填谷有益于电网供电平衡,可降低输、配电损失;充分利用移峰电力,提高发电的热效率;减少新电厂建设需求。

(二)1号广场冰蓄冷设备情况冰蓄冷系统主要由双工况冷水机组、蓄冰装置、板式换热器、水泵(板换冷冻泵、冷却泵、乙二醇泵)、冷却塔组成,其中双工况冷水机组、水泵以及冷塔风扇是系统中主要用电设备。

1号广场冰蓄冷系统用电设备分2014年和2015年两期投入,设备构成及用电容量情况如下:冰蓄冷系统主要用电设备构成1号广场冰蓄冷系统2014年投入设备负荷容量序号类别单机容量数量小计kW 台kW1 双工况冷水机组780 4 31202 基载冷水机组396 1 3963 乙二醇泵1324 5284 冷却水泵90 4 3605 板换负载泵110 5 5506 基载冷冻泵45 1 457 基载冷却泵55 1 558 冷却塔风扇电机11 18 198小计- - - 52521号广场冰蓄冷系统2015年最终投入设备负荷容量序号类别单机容量数量小计kW 台kW1 双工况冷水机组780 5 39002 基载冷水机组396 2 7923 乙二醇泵132 5 6604 冷却水泵905 4505 板换负载泵1106 6606 基载冷冻泵45 1 457 基载冷却泵55 1 558 冷却塔风扇电机11 18 198小计- - - 6760三、冰蓄冷用电和常规系统用电负荷对比分析(一)1号广场冰蓄冷系统与常规系统负荷容量对比1号广场冰蓄冷系统设计负荷为6760KW,若按常规空调制冷系统设计各设备功率为10330KW,冰蓄冷比常规制冷系统的用电负荷减少了35%。

冰蓄冷空调系统的应用与经济分析

冰蓄冷空调系统的应用与经济分析

冰蓄冷空调系统的应用与经济分析随着人们对生活质量的不断追求和环保意识的不断增强,空调行业也随之不断发展。

目前,市场上的空调产品种类丰富,其中,冰蓄冷空调系统已经逐渐成为了市场的主流。

那么,究竟什么是冰蓄冷空调系统?它有哪些应用及经济分析呢?下面我们来探讨一下。

冰蓄冷空调系统是一种运用空气或水作为传递介质的冷热储能空调系统。

它通过蓄冷剂制冷,将电力峰值进行调整,即在低电价时将电力转化为制冷储存,而在高电价时进行制冷降温。

因此,冰蓄冷空调系统具有以下几个应用方面:1)节能 - 由于冰蓄冷空调系统可以根据电力费率的不同而进行储存和使用,因此可以调节或降低电力费用。

2)环保 - 与传统空调系统相比,冰蓄冷空调系统不需要采用氟利昂等有害物质进行制冷,因此对环境的污染程度较低。

3)稳定 - 冰蓄冷空调系统可以稳定地供应冷却水,在夏季的高峰期和冬季高峰期都能满足用电需求,同时也可以降低电力负荷以降低电力峰值并保证供电质量。

冰蓄冷空调系统的经济性是决定其市场占有率的重要因素。

以下分析冰蓄冷空调系统的经济性:1)设备成本 - 冰蓄冷空调系统相比于传统制冷空调系统耗费一定的成本,但在长久的运用过程中,其节约能力较强,因此可以发挥出长久的经济效益。

2)能源成本 - 由于冰蓄冷空调系统能够通过外部或峰、谷电价差等多种方式实现经济制冷,其能源耗费相对较低,成本也相对较为经济。

3)环境成本 - 在环保意识逐渐提升的当今社会,冰蓄冷空调系统的环境成本得到了越来越多的重视,它对环境造成的污染程度降低,得到了广大用户的好评。

4)综合成本 - 在对设备成本、能源成本、环境成本等综合考量之后,冰蓄冷空调系统的综合成本相对较低,因此可以得到较好的经济效益。

综上所述,冰蓄冷空调系统的应用和经济分析得到了越来越多的用户认可与青睐。

在未来,冰蓄冷空调系统很可能会成为空调市场的主流,推动空调行业的发展。

冰蓄冷空调系统的应用与经济分析

冰蓄冷空调系统的应用与经济分析

冰蓄冷空调系统的应用与经济分析1. 引言1.1 冰蓄冷空调系统介绍冰蓄冷空调系统是一种利用冰的蓄冷效应来降低空调系统运行能耗的节能技术。

通常在夜间电力供应较为充裕时,利用低峰电力时段制冷,将水制成冰块并存储起来。

白天高峰电力时段,通过冰蓄冷系统释放存储的冰块来提供冷却效果,从而降低空调系统的电能消耗。

冰蓄冷空调系统不仅可以减少耗电量,还可以优化电力利用效率,降低用电峰值,减少供电紧张情况发生的可能性。

冰蓄冷空调系统适用于各类建筑物,包括商业建筑、办公楼、酒店、医院等。

它不仅可以为建筑物提供舒适的室内环境,还可以降低空调系统的运行成本,节约能源资源。

由于冰蓄冷空调系统具有节能环保的特点,受到了越来越多企业和政府机构的重视和推广。

通过合理规划和设计,冰蓄冷空调系统可以有效地提高建筑物的能源利用效率,同时降低运行成本,为企业和社会带来可观的经济效益和环境效益。

1.2 冰蓄冷空调系统的优势1. 节能环保:冰蓄冷空调系统采用冷冻水进行储存和循环利用,相比传统空调系统,具有更高的能效比和节能效果。

在峰电时段利用低成本的电力制冷水,然后在用冷却的过程中,据需求释放制冷水中的冷量,降低建筑物的负荷需求,从而有效降低了建筑物的全年度电力需求。

2. 调峰平谷:冰蓄冷空调系统可以根据电网的峰谷电价差异,合理利用低谷时段的电力进行制冷水的储存,从而在高峰时段减少电力需求,降低用电成本。

3. 稳定性强:冰蓄冷空调系统储存的冷水可以提供长时间的稳定制冷效果,避免了传统空调系统频繁启停带来的温度波动,提高了室内舒适度。

4. 声音低:由于制冷机组设在噪音较大的低谷时段运行,采用隔音的冰箱组,可以有效降低室内外的噪音污染。

2. 正文2.1 冰蓄冷空调系统的原理冰蓄冷空调系统的原理是利用冰的蓄冷储能特性,在夜间低峰期通过制冷机组将水冷却至冰点以下并冻结成冰块,然后将这些冰块储存在特殊设计的冰块储存装置中。

白天高峰期,空调系统需要制冷时,冰块被融化而释放出储存的冷量,冷水通过冰块储存装置输送至空调系统的蒸发器,实现空调系统的制冷作用。

最新-探究冰蓄冷中央空调系统控制中的应用 精品

最新-探究冰蓄冷中央空调系统控制中的应用 精品

探究冰蓄冷中央空调系统控制中的应用1引言冰蓄冷中央空调是将电网夜间谷荷多余电力以冰的冷量形式储存起来,在白天用电高峰时将冰融化提供空调服务。

由于我国大部分地区夜间电价比白天低得多,所以采用冰储冷中央空调能大大减少用户的运行费用。

冰蓄冷中央空调系统配置的设备比常规空调系统要增加一些,自动化程度要求较高,但它能自动实现在满足建筑物全天空调要求的条件下将每天所蓄的能量全部用完,最大限度地节省运行费用。

2控制系统结构控制系统由下位机现场控制工作站与上位机中央管理工作站组成,下位机采用可编程序控制器与触摸屏,上位机采用工业级计算机与打印机,系统配置必要的附件如通信设备接口、网卡、调制解调器等,实现蓄冷系统的参数化与全自动智能化运行。

下位机和触摸屏在现场可以进行系统控制、参数设置和数据显示。

上位机进行远程管理和打印,它包含下位机和触摸屏的所有功能。

整个系统以下位机的工业级可编程序控制器为核心,实现自动化控制。

控制设备与器件包括传感检测元件、电动阀、变频器等。

21下位机系统区域工作站21121触摸屏采用27彩色触摸屏作为操作面板,完全取代常规的开关按钮、指示灯等器件,使控制柜面谈得更整洁。

并且,27触摸屏在现场可实现状态显示、系统设置、模式选择、参数设置、故障记录、负荷记录、时间日期、实时数据显示、负荷曲线与报表统计等功能,中文操作界面直观友好。

212可编程序控制器7-300系列适用于各行各业、各种场合中的检测、监测及控制的自动化,其强大功能使其无论在独立运行中,或相连成网络皆能实现复杂控制功能。

该产品具有光电隔离,高电磁兼容;具有很高的工业适用性,允许的环境温度达60℃;具有很强的抗干扰、抗振动与抗冲击性能,因此在严酷的工作环境中得到了广泛的应用。

自由通讯口方式也是7-300型的一个很有特色的功能,它使7-300型可以与任何通讯协议公开的其它设备、控制器进行通讯,即7-300型可以由用户自己定义通讯协议例协议,波特率为15可调整。

冰蓄冷空调技术探讨与应用

冰蓄冷空调技术探讨与应用从冰蓄冷空调工作的原理,蓄冷方式,系统的流程配置等方面对冰蓄冷空调技术进行了一定的探讨,同时就其在北京周边的华北地区的应用进行了一定的分析。

标签:冰蓄冷空调;蓄冷系统;应用1 引言在夏季,我国各省市电力供应紧缺的形势日益严峻,特别是在大城市,白天时空调负荷量很大,在这种情况下,大城市应用蓄冷空调技术便是必不可少的。

因为蓄冷空调技术不仅可以很好地转移尖峰用电至低谷用电的时间段,也能在一定程度上改善城市峰谷供电平衡,减少电站新建数量和输配电的损失量,同时,采用蓄冷空调技术也可以起到削峰的作用。

现如今大部分的国家都在研究开发区域性蓄冷空调供冷站,冰蓄冷低温送风空调系统,开发新型的蓄冷空调机组等。

2 冰蓄冷空调工作的原理空调蓄冷的原理就在于其是将电网低谷时间段“便宜能源”储存起来,当处于需要用大量能量的峰值时段时,将事先贮存的冷能释放出来,满足峰值时期负荷的要求。

目前,由于各国着力研究空调工程的蓄冷,蓄冷方式种类比较多,如果按贮存冷能的方式来划分的话,则可以分为显热蓄冷和潜热蓄冷。

在夜间,由于电力负荷程度很低,则可以采用电动制冷机制冷,以使水结冰,进而利用冰的相变潜热达到冷量贮存的效果;而当白天电力达到高峰负荷时期时,便可以利用空调在工作时发出的热量将冰释冷,进而在一定程度上满足生产需要。

3 蓄冷常用方式3.1 水蓄冷系统水蓄冷系统的工作原理在于利用水的显热进行冷量蓄存,现如今这种方式的主要缺点在于:由于利用的是水显热进行冷量蓄存,但是水的蓄冷密度较低,所以可以利用的温差小,同时冷损耗大。

3.2 冰盘管式蓄冷系统冰盘管式蓄冷系统的工作原理在于采用载冷剂间接冷却,在冷却的过程中,低温载冷剂将从冷水机组进入盘管内循环,以使得管外的水转化为冰。

在释冷这个过程中,将空调系统的回水送入到蓄冰槽中去,与管道外部的冰接触,以使得冰融化,进而达到制冷的效果。

3.3 冰晶式蓄冷系统冰晶式蓄冷系统的工作原理在于将水与乙二醇或丙二醇的混合溶液的温度降至冻结点温度以下,以使其产生冰晶。

浅谈对我国冰蓄冷空调技术的应用与研究

浅谈对我国冰蓄冷空调技术的应用与研究摘要:近年来,随着中国经济的增长,人们生活水平的改善,人们对办公、生活环境也提出了更高的要求。

为了满足要求,各类建筑,尤其是办公大楼,写字楼均安装了中央空调。

然而,常规的中央空调由于能耗较大,增加了成本,造成了不必要的浪费。

为了符合我国政府提出的节能减排政策,蓄能空调应运而生,冰蓄冷空调作为蓄能空调的一种,凭借诸多优点和良好的运行获得了人们的好评。

能源紧张的问题有增无减,已严重威胁到人类的正常生活,因此合理利用能源、最大限度地使用能源已然成为当今社会最被关注的话题。

随着人民群众生活水平一天天的提高,空调已经成为了人们必不可少的一环。

但空调的运行离不开电力的供给,为了既能保证获得冷热风又同时能够最大程度的减少电能的使用,冰蓄冷空调技术应运而生,并作为在用户侧进行电力负荷管理、改善电力负荷昼夜峰谷差不断增加和用电高峰期电力短缺的重要手段之一,得到人们的广泛关注。

关键词:冰蓄冷;空调技术;电力1冰蓄冷的内容及工作原理21世纪以来,节能环保作为人们最为关注的问题,人类苦苦钻研、潜心思考,不断摸索出一些既能缓解能源短缺问题又能满足人们日益增长的美好生活需要的技术手段,而冰蓄冷空调技术将作为这些手段技术当中颇为重要的一项,具有较好的社会效应,经济效益也较好。

在当今这个将节能与环保作为重要关注点的世界,冰蓄冷空调技术将作为我国利用夜间电负荷进行移峰填谷,提高电网用电负荷率和电能的使用效率,节约电价费用及空调运行费用并减少污染物或有害气体的排放量进而保护环境的一项重要的新手段、新技术。

1.1冰蓄冷的内容所谓冰蓄冷空调技术简而言之就是在夜间用电负荷相对较低的用电低谷时间,通过制冷机制冰蓄冷,根据冰蓄冷介质显热或者潜热性质将冷量储存起来,等到白天用电负荷较高的时间即用电高峰期溶冰,将夜间所储存的冷量再释放出来,与冷冻机组共同供冷,满足建筑物内空调高峰负荷或者生产工艺需要的一项新型技术。

冰蓄冷空调系统原理及应用

冰蓄冷空调系统原理及应用冰蓄冷空调系统是一种先用电动机将冷却剂冷却到低温,然后将其储存在蓄冷设备中的空调系统。

它可以在夜间低电价时段使用电力,将冷却剂冷却到较低温度,然后将其储存下来,白天通过蓄冷设备释放冷量,达到降温的目的。

1.电动机和压缩机:电动机将冷却剂吸入,并将其压缩成高压、高温的气体状态。

2.冷却剂管道和换热器:冷却剂通过管道传输,在换热器中与空气或水进行换热,从而将空气或水的温度降低。

3.蓄冷设备:蓄冷设备是冰蓄冷系统的核心部分,用于储存冷却剂。

在夜间低电价时段,电动机将冷却剂冷却到低温,并将其储存在蓄冷设备中。

白天,通过控制阀门的开启和关闭,冷却剂释放出来,用于降低室内温度。

4.控制系统:冰蓄冷空调系统的控制系统根据室内温度和外界环境条件,控制电动机的启停以及蓄冷设备的开启和关闭,以实现室内温度的精确控制。

1.节约能源:冰蓄冷空调系统通过在夜间低电价时段储存冷却剂,并在白天释放冷量,能够更高效地利用电力资源,减少能源消耗。

2.提高能源利用率:由于低温冷却剂的制备和蓄冷设备的储存,冰蓄冷空调系统能够提高制冷效果和能源利用率,从而降低运行成本。

3.灵活控制:冰蓄冷空调系统的控制系统可以根据室内温度和外界环境条件,实现对室内温度的精确控制。

并且,它可以根据能源价格的变化灵活调整运行模式。

4.方便维护:冰蓄冷空调系统的维护相对简单,只需要定期进行冷却剂的添加和设备的检查维护即可。

冰蓄冷空调系统在建筑物、工厂、商场、酒店等场所有着广泛的应用前景。

由于其节能环保的特点,越来越多的地区和国家开始采用冰蓄冷空调系统来替代传统的空调系统。

它能够有效降低能耗,减少电力需求峰值,提高能源的利用率,同时减少对地球环境的负荷,达到节能减排的目的。

总之,冰蓄冷空调系统通过先用电动机将冷却剂冷却到低温,然后将其储存在蓄冷设备中,通过控制系统实现精确控制。

它具有节约能源、提高能源利用率、灵活控制和方便维护等优点,广泛应用于各个领域中。

中央空调蓄冷技术应用分析

中央空调蓄冷技术应用分析在城市建筑能耗加速增长的背景下,中央空调采用蓄冷技术对电网负荷移峰填谷正在逐渐地受到市场的重视。

文章分析了中央空调四种主要蓄冷技术的特点及优缺点,并从经济性角度着重探讨了实际应用比较成熟的水蓄冷和冰蓄冷两种技术。

标签:中央空调;水蓄冷;冰蓄冷;经济性1 中央空调主要蓄冷技术目前的中央空调蓄冷技术主要包括水蓄冷、冰蓄冷、共晶盐蓄冷和气体水合物蓄冷等。

1.1 水蓄冷技术利用4℃~7℃的低温水进行显热蓄冷。

通过管道及阀门的切换,满足蓄冷和放冷工况的需求,如图1所示。

1.2 冰蓄冷技术选用蓄冰和低温送风系统相结合的蓄冷、供冷方式,可节省初投资、运行费用,已成为建筑空调技术发展的方向之一。

冰蓄冷系统流程图如图2所示。

(1)优点:蓄冷槽融冰放冷属恒温相变过程,水温稳定,冰蓄冷槽的冷损失小。

(2)缺点:蒸发温度降低,使压缩机COP减小;设备与管路比水蓄冷的复杂,常规空调系统改造,用冰蓄冷困难较大。

1.3 共晶盐蓄冷技术共晶盐蓄冷技术是常见的中央空调蓄冷技术中的一种,与上述两种技术相比有着比较明显的优点。

共晶盐蓄冷又被称为共晶盐相变蓄冷,能够通过共晶盐材料提升制冷剂运转效率。

因此,该系统不仅有着冰蓄冷系统的优势,还有着水蓄冷系统的优势。

当前我国对共晶盐蓄冷技术开展的研究主要集中在共晶盐相变材料的研发、选择、配比、组装等方面,并且已经取得了一定的成效。

1.4 气体水合物蓄冷技术该技术在环保节能方面有着比较突出的表现,是一种新型的蓄冷方式,能够避免出现冰蓄冷技术效率不高、水蓄冷技术密度较低、共晶盐蓄冷技术交换律不高等问题,被认为是最为理想的蓄冷技术选择。

该技术的原理主要是利用了气体水化物的特征,气体水化物实质是一种包络状的晶体,将来自外界的气体分子全部紧紧的包裹在自身的水分子网格状结构中,通过物理力量、分子间的作用力,相互吸引,并且使得水在0℃之上构成比较牢固稳定的晶体,达到蓄冷的目的。

当前对这项技术的研究主要集中在系统研发、组装方面,并且从力学的角度对其展开研究,希望找到能效更高的添加剂应用在这一系统中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

文章编号:1009-6825(2011)30-0128-02冰蓄冷中央空调技术的应用收稿日期:2011-06-17作者简介:仝小鹏(1973-),男,工程师,陕西建工集团设备安装工程有限公司,陕西西安710065仝小鹏摘要:结合西北某机场制冷站工程,介绍了冰蓄冷中央空调技术的实际应用,分别阐述了冰蓄冷系统的工艺原理,结构组成及施工工艺,并通过经济性分析,总结了冰蓄冷中央空调技术的优点,指出该技术前景广阔,值得推广。

关键词:中央空调,冰蓄冷技术,施工工艺,优点中图分类号:TU831.3文献标识码:A冰蓄冷中央空调技术是对能源利用方式的一种转移和改变。

随着能源危机和峰、谷电价差异的出现,能够移峰填谷的冰蓄冷中央空调技术应运而生。

本文结合某机场制冷站工程对冰蓄冷系统的原理、施工工艺、技术及经济等方面进行了分析与探讨。

1工程概况本工程为西北某机场制冷站,是扩建工程的配套项目,中央空调系统采用的是冰蓄冷系统,负责新建航站楼近8万m 2的夏季空调负荷。

最大冷负荷为4800Rt 。

蓄冷设备为4台640Rt 的双工况制冷机组(既可制冷也可制冰)和1台580Rt 的单工况制冷机组(仅制冷)。

蓄冰装置为储冰量13400Rt ·h 的36套BAC 冰盘管。

其他设备为4台板式换热器及其配套设施。

每天22:008:00制冰,9:00 17:00融冰补充冷量,从而满足新建航站楼的空调要求。

2工艺介绍与常规空调比较,冰蓄冷系统增加了一套介质为乙二醇的管路系统。

制冷工况时,乙二醇管路接通双工况机组和冰盘管,形成一闭式回路,将机组释放的能量通过冰盘管的换能过程,使浸泡冰盘管冰槽中的水变成0ħ的冰水混合物,将冷量储存起来。

释冷工况时,乙二醇管路则接通了冰盘管与板式交换器,形成一闭式回路,将冰槽中储存的冷量通过冰盘管及板式交换器两个换能过程,从而将空调水的温度降下来,得到要求的冷媒参数。

制冰融冰的过程转换是通过电动阀门按程序自动控制的。

由于整个制冷系统采用微电脑控制,自动化程度很高,可在多种运行模式下转换,从而使冰蓄冷工艺在最大效益下运行。

冰蓄冷系统流程图见图1。

冷却塔冰槽制冷机阀3负荷泵冷冻水循环板式冷交换器阀2乙二醇循环阀1制冷泵冷却水泵冷却水循环图1冰蓄冷系统流程图2.1单制冰系统在夜间用电低峰时,启动制冷机,将储冰槽中冷冻成冰。

乙二醇经制冷机ң冰槽(储冷)ң阀门2ң制冷泵ң制冷机(完成制冰过程)。

2.2融冰系统当空调系统冷负荷不大时,利用冰槽内冰的冷量通过板式冷交换器向空调系统供冷,供冷期间制冷机不运转,避开了用电高峰。

乙二醇在冰槽内释放冷量(融冰)ң阀门3ң负荷泵ң板换ң制冷泵ң阀门1ң冰槽。

2.3联合供冷系统当日间冷负荷最大时,单靠制冷机或冰槽内的冷量不足以将空调冷冻水的温度降下来时,制冷机和冰槽共同工作从而保证空调系统对冷量的要求。

乙二醇经制冷机(制冷)ң冰槽(融冰释冷)ң负荷泵ң板换ң制冷泵ң制冷机。

3施工工艺为了工程质量目标的实现,体现公司计划落实,目标细化,措施得当,反馈有效和控制有力的指导思想,集中抓好前期管理,强化过程管理,确保后期质量管理。

3.1施工技术准备由于此项冰蓄冷技术工程为西北最大,且类似工程施工实例少,主要集中精力抓前期工作,为后续施工提供了保证。

在工程前期对相关施工人员进行短期培训,了解冰蓄冷技术工艺流程,熟悉冰蓄冷技术施工工艺,使施工人员对冰蓄冷技术得到系统认识,减少后续工作失误。

在设计方交底前,充分熟悉图纸,充分了解工艺流程,先进行内部会审,形成意见,并提出执行方案,以便在设计交底时充分和设计人员沟通。

单位技术人员以管道布置为主,结合通风,电气管路的布置情况,按设计做出各工种管路的各局部剖面图,分析平面及立体布置,结合已选型设备的实际尺寸,选择最合理的管线布置,并征得设计方的认可。

制冷站内 273以上的管线500余米,但原设计并无支架的大样图,根据管线布置的具体情况,我单位技术部做出不同管路支架的大样图,得到建设方、设计方及监理方的认可,保证了工程质量和进度。

3.2乙二醇管路的清洗要点冰蓄冷系统的主要部分为蓄冰设备和蓄冰装置。

系统中的施工重点就是乙二醇水溶液循环管道的施工。

乙二醇会与管道中的焊渣、锈蚀物产生一种纤维状的粘合物,容易堵塞设备管路,从而影响储冷和释冷的效果,所以管路冲洗尤为重要。

在施工前期编制详尽可行的作业指导书,明确冲洗的流量及流速,在施工过程中,落实到责任人专门负责。

冲洗管道时应反复冲洗,特别应注意清洗设备接口处的过滤器。

相关负责人应检查落实清洗水的情况,直至肉眼观察冲洗水的进水与出水无差别,并将水排尽后,立即向管路内注入乙二醇介质。

3.3管路和设备的绝热冰蓄冷工程中乙二醇管路温度最低达到-6ħ,冷冻循环水管路最低也到3ħ,所以管路及设备的绝热就特别重要,绝热采用的是橡塑材料,乙二醇管路要求绝热厚度为50mm ,水管路为40mm 。

在施工中确保管路及设备绝热密实不间断,在保证绝热效·821·第37卷第30期2011年10月山西建筑SHANXIARCHITECTUREVol.37No.30Oct.2011文章编号:1009-6825(2011)30-0129-03低功耗高可靠性智能IC 卡水表的设计收稿日期:2011-06-11作者简介:余勇兵(1972-),男,上海交通大学机械与动力学院工程硕士,工程师,宁波东海集团有限公司,浙江宁波315105钟健(1974-),男,工程师,宁波东海集团有限公司,浙江宁波315105余勇兵钟健摘要:针对当前IC 卡水表普遍存在的故障率高、可靠性低的情况,提出了一种智能IC 卡水表的设计方案,对电控阀进行了高可靠性的重新设计,以MSP430F413为单片机进行了低功耗的硬件电路设计,达到了预期的设计目标。

关键词:低功耗,高可靠性,智能水表,电控阀中图分类号:TU991.63文献标识码:A为了推动智能IC 卡水表的发展,全国许多研究机构及自来水公司投入力量对智能IC 卡类产品进行开发研究,并成功地开发出了自己的产品。

从理论角度看,智能IC 卡水表已经进入成熟期。

但是,为什么现在智能IC 卡水表的推动工作还很困难呢,这不难理解。

因为从实际情况看,现在的智能IC 卡水表确实还存在着许多影响其大规模推广使用的问题[1]。

其中最主要的问题是IC 卡水表的质量和可靠性问题,因此,致力于降低IC 卡水表的故障率,提高IC 卡水表运行的稳定可靠性,依然是广大研发单位和生产厂家的首要任务[2]。

本文将提出一种低功耗、高可靠性智能IC 卡水表的设计方法。

1电控阀设计1.1阀门的选择阀门是IC 卡水表的关键部件,要求压力损失小,体积小,功耗低。

目前市场上采用的阀门主要分为四类:电磁阀、球阀、陶瓷阀、先导阀。

1)电磁阀:利用线圈通电激磁产生的电磁力来驱动磁芯开关的阀门,要求断电后阀芯仍然保持在原有位置。

但此类阀门抗外界敲击能力较差,且压损大,可靠性差。

2)球阀:櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅櫅利用直果的前提下,做好观感处理。

4经济性分析采用冰蓄冷后,系统一次性投资可减少3台580Rt 制冷主机及相应辅机,由于增加了储冰槽等设备,整个系统设备投资增加约680万元。

可节省电力增容费:3ˑ580ˑ1500=261万元。

每年运行费用可节约电费:[(0.92kW /Rt ˑ13400Rt ·h ˑ1.06)-(1.27kW /Rt ˑ13400Rt ·h ˑ0.35)]ˑ100=85.45万元。

简单投资回收期=(680-261)/85.45=4.9年。

由此可见,该机场航站楼采用冰蓄冷空调,其资金回收期不超过5年,作为西北地区最大的冰蓄冷工程,势必起到较好的社会效益,有利于推动冰蓄冷中央空调的发展,为电网移峰填谷及国家推动冰蓄冷工程的应用贡献了力量。

5冰蓄冷中央空调技术的优点1)利用电网谷荷电力,平衡电网负荷,减缓发电厂和配套设施的建设。

2)制冷机组容量减少,减少电力增容费和供电设备费以及每年运行的基本电费。

3)利用峰谷荷电力差价,降低空调运行费用。

4)冷冻水温度可低到1ħ 4ħ,能实现低温送风,冷却速度快,空调质量好,并节约空调末端用电功率和设备费用。

5)冷却塔、冷却水泵配管等辅助设施减少,节约投资和运行费用。

6)有条件使全年空调需冷量和供冷量一对一配合,可节约全年运转电力。

7)具有应急冷源,利用建筑物自备电源,可不间断空调使用,提供其可靠性。

8)可用于无电力增容条件或限制增容的空调工程。

6冰蓄冷中央空调技术展望近年来随着产业结构的调整和社会消费水平的提高,用电负荷的构成也发生明显变化,使电网高峰时段用电负荷增长很大;而在电网低谷时间,用电明显减少,电网峰谷荷差拉大,低谷发电设备能力被闲置,水电弃水严重,资源浪费。

据东北、京津唐、福建、四川、广东、浙江、山西、山东几个电网的统计,电网峰谷荷差均在25% 40%。

采用经济和技术手段,使一部分可转移的高峰电力转移到电网谷荷时段用电,这将产生极大的社会效益,因此中央空调采用储冷技术实现向谷荷电要冷气是国家用电政策之所需,而国外发达国家冰蓄冷空调应用很广泛,均制订优惠政策予储冰系统,对用户转移高峰电力予以奖励,同时对有意使用储冰系统的用户享受半价甚至完全免费的谷荷电价,我国电力部门也对冰蓄冷给予极高的关注,各地电力部门纷纷制订优惠政策予以鼓励,所以说冰蓄冷空调技术的应用是世界性趋势,符合国际上提出的低碳、可持续发展要求,相信在我国的应用将会越来越广泛。

参考文献:[1]GB 50243-2002,通风与空调工程施工质量验收规范[S ].[2]GB 50019-2003,采暖通风与空气调节设计规范[S ].[3]06K610,冰蓄冷系统设计与施工图集[S ].Application of ice thermal storage central air-conditioning technologyTONG Xiao-pengAbstract :Integrating with the southwest airport refrigeration plant project ,it introduces the actual application of ice thermal storage central air-conditioning technology ,and respectively expounds the technological principle ,structural composition and construction technology of ice thermal storage system.Through economic analysis ,it summarizes the merits of ice thermal storage air-conditioning technology ,and points out the pros-pects of the technology ,which is worth promoting.Key words :central air-conditioning ,ice thermal storage technology ,construction technology ,merits·921·第37卷第30期2011年10月山西建筑SHANXIARCHITECTUREVol.37No.30Oct.2011。

相关文档
最新文档