与圆有关的最值
高中数学与圆有关的最值问题

高中数学与圆有关的最值问题
在解决与圆有关的最值问题时,我们可以使用以下方法:
1. 建立坐标系:将问题转化为在坐标系中求最值的问题。
2. 确定变量:确定影响最值的变量,并建立函数关系式。
3. 利用函数的性质:利用函数的单调性、对称性、最值等性质,求出最值。
4. 结合圆的性质:利用圆的性质,如半径、弦长、圆心等,求出最值。
下面是一个例子:
求圆x^2 + y^2 = 4 上一点到原点的距离的最大值和最小值。
解:设圆上的点为(2cosθ, 2sinθ),则该点到原点的距离为√(4cos^2θ+ 4sin^2θ) = 2。
因此,最大值为2+2=4,最小值为2-2=0。
与圆相关的最值问题

与圆相关的最值问题
与圆相关的最值问题可以包括多个方面,例如圆的周长、面积、弧长等。
以下是一些常见的与圆相关的最值问题及其解决方法:
1. 圆的周长最值问题:
* 设圆的半径为r,则周长C=2πr。
当r取最小值时,C取最小值。
* 解决方法:当圆内接于一个固定多边形时,该多边形的所有边都与圆相切,此时r取最小值。
2. 圆的面积最值问题:
* 设圆的半径为r,则面积A=πr^2。
当r取最小值时,A取最小值。
* 解决方法:与周长最值问题类似,当圆内接于一个固定多边形时,该多边形的所有边都与圆相切,此时r取最小值。
3. 圆的弧长最值问题:
* 设圆的半径为r,圆心角为θ,则弧长L=rθ。
当θ取最大值时,L取最大值。
* 解决方法:当圆内接于一个固定多边形时,该多边形的所有边都与圆相切,此时θ取最大值。
4. 圆内接四边形面积最值问题:
* 设圆内接四边形的边长分别为a, b, c, d,则面积S=(a×b+c ×d)/2。
当a=b=c=d时,S取最大值。
* 解决方法:当四边形为正方形时,S取最大值。
5. 圆内接三角形面积最值问题:
* 设圆内接三角形的边长分别为a, b, c,则面积S=(a×b+b×c+c×a)/4。
当a=b=c时,S取最大值。
* 解决方法:当三角形为等边三角形时,S取最大值。
以上是与圆相关的常见最值问题及其解决方法,希望对您有所帮助。
与圆有关的最值问题课件高二上学期数学人教A版选择性

赋代数式子几何意 义
利用数形结合 思想解决问题
4
例题 已知圆C: x 32 y2 4 ,O为坐标原点;Q是圆C上的一点.
双动点问题
化归
单动点问题
把双动点改为双动直线,就能得到以下的新问题.
例题 已知圆C: x 32 y2 4 ,O为坐标原点;Q是圆C上的一点.
问题(4)若P在直线m: 3x-4y+12=0上,过P作圆C的两条切线,切点 分别为A、B ,则四边形PACB面积的最小值为______ .
问题(3) 若P在直线m: 3x-4y+12=0上,则|PQ|的最小值是____ .
方法一:P固定,Q运动;d为圆心C到直线m的距离.
|PQ|≥|PC|-r=|PC|-2
≥d-2 =
21 2 11.55 Nhomakorabea答案:11 . 5
例题 已知圆C: x 32 y2 4 ,O为坐标原点,Q是圆C上的一点.
由 |3+b| 2, 11
得 b=-3+2 2 或 b=-3-2 2 .
答案: 3 2 2, 3 2 2 .
小结 一般地: (1)形如 k y b 的最值问题,可转化为动直线斜率的最值问题.
xa (2)形如 m ax by 的最值问题,可转化为动直线截距的最值问题.
(3)形如 r2 (x a)2 ( y b)2 的最值问题,可转化为曲线上的点到点(a, b)的距离平方的最值问题.
除距离、面积、角度这些有明显几何意义的问题外,有时也会碰到以 下问题:
例题 已知圆C: x 32 y2 4 ,O为坐标原点;Q是圆C上的一点.
问题(6) 设Q(x,y),则 y 2 的最大值和最小值分别是___,___ .
x2
与圆有关的最值问题

O B
2
P
r 2 po r (1 2sin ) po 1 1 2( ) po 2 2 2 设po t (t 1) 则PAPB (t 1)(1 t ) t t 3 2 2 3
C O x
3 5. 易得 PM 的最小值为 10
二、利用所求式的几何意义转化为线 性规划问题求最值
例2:若实数x、y满足 x y 2x 4 y 0 求(1)x-2y的最大值.
2 2
y 1 ( 2) x 2
的取值范围。 2 2 ( x 2) ( y 1) 的取值范围。 ( 3) (4) x y 1 的取值范围。
2 2 ( x 2) ( y 1) (3)
表示为圆上任意一点P到点A(2,1)距离的平方
P
因为 所以
PA [CA 5, CA 5]
. C
A(2,1)
PA2 ( x 2)2 ( y 1)2 [50 10 2,50 10 2]
(4) 因为圆上任一点P(x,y)到直线 x y 1 0 的距离
E M A N G C F H O x
解(1)令圆心C到弦EF的距离为 EF+GH 2( 4 d12 4 d 2 2 )
d1,到弦GH的距离为 d2,则
又 d12 d22 CA2 1
4 d12 4 d22 4 d12 4 d22 2 2
(当且仅当 d1 d 2
2 取等号) 2 故EF+GH 2 8 1 14 2
与圆有关的最值问题

与圆有关的最值问题圆是自然界中优美的图形之一,也是数学中的重要研究对象.由于其图形的对称性和完美性,很多与圆有关的最值问题都可以运用圆的图形特点,利用数形结合来求解.当然,我们也会用到函数思想和基本不等式来处理与圆有关的最值问题.在处理与圆有关的最值问题时,应把握两个“思想”:几何思想和代数思想.所谓几何思想,即利用圆心,将最值问题转化为与圆心有关的问题.所谓代数思想,即利用圆的参数方程.【与圆有关的最值类型】①一定点与定圆上动点间距离的最大与最小值.处理方法:利用定点到圆心的距离加(减)圆的半径. ①定直线与定圆上动点间距离的最大与最小值. 处理方法:定点到圆心的距离加(减)圆的半径. ①分别在两定圆上的两动点间距离的最大与最小值. 处理方法:圆心距加(减)两圆的半径.例1.(1)圆x 2+y 2=1上点到直线l :3x +4y -25=0距离的最大和最小值分别是( ).A.6;3.B.6;4.C.5;3.D.5;4.(2)已知点P (a ,b )在圆x 2+y 2-2x +4y -20=0上,则a 2+b 2的最小值是_____. 解:(1)法1.圆心O 到直线的距离为d=25√32+42=5,而圆的半径为1,① 圆x 2+y 2=1上点到直线l :3x +4y -25=0距离的最大和最小值分别是5+1=6和5-1=4.故应选B.法2.设圆x 2+y 2=1上的点P(cos θ,sinθ),点P 到直线l :3x +4y -25=0距离d ′, 则 d ′=|3cosθ+4sinθ−25|5=|sin (θ+φ)−5|,① −1≤sin (θ+φ)≤1,① 圆x 2+y 2=1上点到直线l :3x +4y -25=0距离的最大和最小值分别是6和4.故应选B.(2)法1. ① 圆x 2+y 2-2x +4y -20=0的圆心和半径分别为(1,-2),r=5.而圆心到原点的距离d=√5,① 5−√5≤√a 2+b 2≤5+√5,⇒30−10√5≤a 2+b 2≤30+10√5. 因此,a 2+b 2的最小值是30-10 5.法2. ① 点P (a ,b )在圆x 2+y 2-2x +4y -20=0上,可设P(1+5cos θ,-2+5sin θ), ① a 2+b 2=(1+5cos θ)2+(-2+5sin θ)2=30+10√5sin (θ+φ),① −1≤sin (θ+φ)≤1, ① a 2+b 2的最小值是30-10 5.例2.在圆x 2+y 2=4上且与直线4x+3y -12=0距离最小的点的坐标是( ). A.(85,65). B.( 85,−65). C.( −85,65) D.( −85,−65). 解:法1.过原点且与直线4x+3y -12=0垂直的直线为3x -4y=0, 联立{x 2+y 2=4,3x −4y =0,⇒{x =85y =65或{x =−85y =−65.结合图4.7—1知选A. xyO 4x+3y -12=0CAE FGHxOM N y 图3.7—2法2.由圆的几何性质可知,所求点为与直线4x+3y -12=0平行且与圆x 2+y 2=4相切的切点.设切线方程为4x+3y+c=0,由|c|5=2,⇒c =∓10.结合图3.7—1 知,c=10.联立{4x +3y −10=0,x 2+y 2=4,⇒{x =85y =65, 故应选A. 法3.对于选择题,可结合图形知所求点应在第一象限内,再看选择支,极易确定选A.想一想①:1.圆x 2+y 2=1上与直线4x -3y -12=0距离最短的点坐标是 .2.已知A (0,1),B (2,3).Q 为圆C:(x -3)2+y 2=1上任一点,则S ΔOAB 的最小值为 .3.若实数x 、y 满足x 2+y 2+2x -4y=0,求x -2y 的最大值.例2.(1)已知a 、b 是单位向量且a ①b.若向量c 满足|c -a -b |=1,则|c |的取值范围是 .(2)已知点A(-1,1)和圆C :(x -5)2+(y -7)2=4.一束光线从A 点经过x 轴反射到圆周C 的最短路程是( ).A.10.B.2√6.C.4√6.D.8. 解:(1) ① a 、b 是单位向量且a ①b ,可设a=(1,0),b=(0,1),c=(x ,y),又① |c -a -b |=1,① (x -1)2+(y -1)2=1. ① 原点O 到圆心(1,1)的距离为√2.① |c | =√x 2+y 2∈[√2−1,√2+1].(2)由光学原理知,点A 关于x 轴的对称点A ′(-1,-1)在反射线上,① 光线从A 点经过x 轴反射到圆周C 的最短路程是过A ′且与圆相切的切线段长|A ′T|=√(−1−5)2+(−1−7)2−4= 4√6.应选C.例3.已知圆C :(x+2)2+y 2=4,过点A(-1,0)作两条互相垂直的直线l 1,l 2,l 1交圆C 与E 、F两点,l 2交圆C 与G 、H 两点.(1)EF+GH解:(1)令圆心C 到弦EF 的距离为d 1,到弦GH 则EF +GH =2(√4−d 12+√4−d 22),又d 12+d 22=CA 2=1由:√4−d 12+√4−d 222≤√8−(d 12+d 22)2=√8−12= √142,(当且仅当d 1=d 2= √22取等号).故EF +GH ≤√14. (2)① EF ⊥GH ,① S 四边形EFGH =12EF ×GH =2(√4−d 12√4−d 22 ≤2×8−(d 12+d 22)2=7.(当且仅当d 1=d 2= √22取等号).例4(1)如图3.7—3(1).点A 的坐标为(3,0),点B 为y 轴正半轴上的一点,点C 是第一象限内一点,且AC=2.设tan①BOC=m ,则m 的取值范围是_________.(2)如图3.7—3(2).在边长为1的等边①OAB 中,以边AB 为直径作①D , C 为半圆弧AB 上的一个动点(不与A 、B 两点重合).BC=a ,AC=b ,求a+b 的最大值.(3)如图3.7—3(3).线段AB=4,C 为线段AB 上的一个动点,以AC 、BC 为边作等边①ACD 和等边①BCE ,①O 外接于①CDE ,则①O 半径的最小值为( ). A.4. B. 2√33. C. √33. D.2._ B_y_ COED解:(1)由已知,点C 是第一象限内在圆(x -3)2+y 2=4点,结合图2.8—4(1)知,tan①AOC ∈(0,2√55],∵①AOC 与①BOC 互余,① m ≥√52. (2)① AC 2+BC 2=AB 2,即a 2+b 2=1 由柯西不等式得,(12+12)(a 2+b 2)≥(a+b)2, ① (a+b)≤√2,故 a +b 的最大值为√2.(3)设外接圆的半径为R ,由已知可得∠DOE =600.再由正弦定理知DE=2Rsin600,① R=√33DE .在∆DCE 内由余弦定理可得DE 2=DC 2+CE 2-DC ∙CE =(DC+CE)2-3DC ∙CE =16-3DC ∙CE ≥16-3(DC+CE 2)2=4,即DE ≥2. ① R=√33DE ≥2√33.应选B.想一想①:1.如图3.7—4.①M ,①N 的半径分别为2cm ,4cm ,圆心距MN=10cm .P 为①M 上的任意一点,Q 为①N 上的任意一点,直线PQ 与连心线所夹的锐角度数为α,当P 、Q 在两圆上任意运动时,tan α的最大值为( ).A.√612B.43.C.√33.D.34.2.如图3.7—5.①BAC=600,半径长为1的圆O 与①BAC 的两边相切, P 为圆O 上一动点,以P 为圆心,PA 长为半径的圆P 交射线AB 、AC 于D 、E 两点,连接DE ,则线段DE 长度的最大值为( ). A.3. B.6. C. .3√32.D. 3√3.例5.(1)过点M(−2,,0)的直线l 与曲线y=√4−x 2相交于A ,B 两点,当∆ABO (O 为坐标原点)的面积最大时,直线l 的斜率为 . (2)两个圆C 1:x 2+y 2+2ax+a 2-4=0(a ∈R )与圆C 2:x 2+y 2-2by+b 2-1=0(b ∈R )恰有三条公切线,则a+2b 的取值范围为 . 解:(1) ① 曲线y=√4−x 2的方程可变形为x 2+y 2=4(y ≥0),① 此曲线表示以原点为圆心,2为半径,在x 轴及其上方的半圆,如图3.7—6.① S ∆ABO =12OA ×OB ×sin∠AOB =2sin∠AOB , 当∆ABO 的面积最大时,∠AOB =900,此时∆ABO为等腰直角三角形,① 点O 到直线AB 的距离为√2. 设直线AB 的方程为 y=k(x+2√2),即kx -y+2√2k =0, ①2√2k √1+k 2=√2,解得k=±√33,又由已知k>0,① k= √33.(2) ① 圆C 1的圆心为C 1(-a ,0),半径为2;圆C 2的圆心为C 2(0,b),半径为1.l xy MABO 图3.7—6图3.7—4P QMNA D E BCP. . O图3.7—5由已知两圆外切,① | C 1 C 2|=2+1=3,即a 2+b 2=9.令a+2b=m ,则 √1+4≤3,解得 −3√5≤m ≤3√5,① a+2b 的取值范围为[−3√5,3√5].习题3.71.已知A 、B 两点的坐标分别为(-2,0)、(0,1),①C 的圆心坐标为(0,-1),半径为1,D 是①C 上的一个动点,射线AD 与y 轴交于点E ,则①ABE 面积的最大值是( ).A.3.B. 103. C.103. D.4. 2.圆x 2+y 2-2x -2y+1=0上的点到直线2x y -=距离的最大值是( ).A.2.B.1+√2.C.2+√22. D.1+2√2.3.由直线y=x +1上一点向圆C :(x -3)2+y 2=1引切线,则切线长的最小值为 .4.已知P 为直线y=x +1上一动点,过P 作圆C :(x -3)2+y 2=1的切线PA ,PB(A 、B 为切点),则四边形PACB 面积的最小值为 .5.求过直线2x+y+4=0和圆x 2+y 2+2x -4y+1=0的交点,且满足下列条件之一的圆的方程.①过原点;①有最小面积.6.求圆(x -2)2+(y+3)2=4上的点到直线x -y +2=0最远和最近的距离.7.已知圆M 过两点C(1,-1),D(-1,1),且圆心M 在x+y -2=0上. (1)求圆M 的方程. (2)设P 是直线3x+4y+8=0上的动点,PA ,PB 是圆M 的两条切线,A ,B 为切点.求四边形PAMB 面积的最小值.8.在平面直角坐标系中,M(3,4),P 是以M 为圆心,2为半径的①M 上一动点,A(-1,0)、B(1,0),连接PA 、PB ,求PA 2+PB 2最大值.9.过定点M 的直线l 1:ax+y -1=0与过定点N 的直线l 2:x - ay +2a -1=0交于点P.求|PM|∙|PN|的最大值.【参考答案】想一想①:1. (45,−35). 2.4+√2. 3.10.想一想①:1.D.考虑PQ 为两圆的内公切线时的情形.2.在△ADE 中,由正弦定理得|DE|=2Rsin600,其中R 为△ADE 的外接圆半径.如图2.8—4(3)知,AP 的最大值为|OP|+1=3,① |DE|max =3√3. 故应选D.习题3.71. A.2. B.3. √7.4. √7.5.(1)设圆的方程为x 2+y 2+2x -4y+1+λ(2x +y +4)=0,① 所求圆过原点,得λ=−14. ①x 2+y 2+32x+74y =0为所求.(2)设圆的方程为x 2+y 2+2x -4y+1+λ(2x +y +4)=0,① R 2=D 2+E 2−4F 4=5λ2−16λ+164,① 当 λ=85时R 2最小. ① x 2+y 2+265x −125y +375=0为所求6.7√2−42;7√2+42. 7.(1)设圆M 的方程为:(x -a)2+(y -b)2=r 2(r >0).根据题意得, {(1−a)2+(1+b)2=r 2,(−1−a)2+(1−b)2=r 2,a +b −2=0. 解得a=b=1,r=2.故所求圆M 的方程为(x -1)2+(y -1)2=4.(2)① 四边形PAMB 的面积S=S ①PAM +S ①PBM =|AM|·|PA|+|BM|·|PB|,又|AM|=|BM|=2,|PA|=|PB|,① S=2|PA|,而|PA|=√|PM|2−|AM|2=√|PM|2−4, 即S=2√|PM|2−4.因此要求S 的最小值,只需求|PM|的最小值即可, 即在直线3x+4y+8=0上找一点P,使得|PM|的值最小, ① |PM|min =√32+42=3.因此,四边形PAMB 面积的最小值为S=2√|PM|2−4=2√5.8.设P(3+2cos θ,4+2sin θ),则PA 2+PB 2=60+24cos θ+32sin θ=60+40sin(θ+φ)≤100. ① PA 2+PB 2最大值为100.9. 1. 由已知有,直线l 1过定点M(0,1),直线l 2过定点N(1,2),且|MN|=√2,l 1⊥l 2.由平面几何的知识知,点P 在以MN 为直径的圆上运动.设点P 到MN 的距离为PD ,则有|PM|∙|PN|=|MN||∙|PD| =√2∙|PD|,∴ 当|PD|取最大值√22 时,(|PM|∙|PN|)max =√2∙√22=1.。
专题强化2 与圆有关的的最值问题(原卷版)..

微专题2与圆有关的最值问题知识梳理在某些题目中,已知所求代数式的结构特征具有明显的几何意义,可以和直线方程、圆的方程相联系,我们可以利用直线与圆的方程及解析几何的有关知识并结合图形的直观性来分析解决问题.最值问题解决方法(1)形如(x -a )2+(y -b )2形式的最值问题,可转化为动点(x ,y )到定点(a ,b )的距离的平方的最值问题.(2)定点到圆上动点距离的最值可以先计算定点到圆心的距离,然后利用数形结合确定距离的最值.(3)圆上动点到定直线距离的最值可以先计算圆心到直线的距离,然后利用数形结合确定距离的最值.(4)形如u =y -bx -a形式的最值问题,可转化为过点(x ,y )和(a ,b )的动直线斜率的最值问题.(5)形如l =ax +by 形式的最值问题,可转化为动直线y =-a b x +lb 的截距的最值问题.题型探究题型一、定点到圆上动点距离1.已知圆C :222x y +=,点(,3)A m m -,则点A 到圆C 上点的最小距离为()A .1B .2C .22D .3222.已知点(3,4)P --,Q 是圆22:4O x y +=上的动点,则线段PQ 长的最小值为()A .3B .4C .5D .63.若实数x ,y 满足()()225+12144x y +-=,则22x y +的最小值为______.4.若圆C 的方程为224450x y x y ++++=,点P 是圆C 上的动点,点O 为坐标原点,则OP 的最大值为______.5.已知实数x ,y 满足2266140x y x y +--+=,求2223x y x +++的最大值与最小值.6.已知,M N 分别是y 轴和圆22:650C x y x +++=上的动点,点()1,3P -,则PM MN +的最小值为()A .5B .4C .3D .2题型二、可转化为点到直线的距离问题1.已知点(,)M a b 在直线512260x y -+=上,则22a b +的最小值为________.2.圆C :()()22454x y -+-=上的动点P 到直线l :10mx y m +--=的距离的最大值是()A .6B .7C .8D .93.点M 在圆222x y +=上,点N 在直线5y x =-上,则|MN |的最小值是()A .2B .22C .322D .14.已知l :4y x =+,分别交x ,y 轴于A ,B 两点,P 在圆C :224x y +=上运动,则PAB △面积的最大值为()A .842-B .1682-C .842+D .1682+题型三、与斜率、截距有关的最值问题1.已知点(,)x y 在圆22(2)(3)1x y -++=上.(1)求x y +的最大值;(2)求yx的最大值;(3)求22245x y x y ++-+的最小值.2.已知点(),P x y 在圆:()2211x y +-=上运动.试求:(1)()223x y ++的最值;(2)12y x --的最值;跟踪训练1.已知半径为2的圆经过点()2,1,则其圆心到原点的距离的最小值为()A .52+B .52-C .5D .32.若点(5,3)P ,点M 在圆224240x y x y +-++=上运动,则PM 的最大值为___________.3.若(,)P x y 是圆221:(1)4C x y -+=上的任意一点,求(,)P x y 到原点的距离的最大值和最小值.4.已知(1,1)--P ,点Q 是圆22(2)(3)1x y -+-=上任意一点,求||PQ 的最大值.5.圆O :222x y +=上点P 到直线l :3410x y +=距离的最小值为()A .21-B .22-C .2D .06.已知圆221:420C x y x y +-+=与圆222:240C x y y +--=相交于A 、B 两点,则圆()()22:331C x y ++-=上的动点P 到直线AB 距离的最大值为()A .7212+B .221+C .5212+D .9212+7.已知直线l :x -my +4m -3=0(m ∈R ),点P 在圆221x y +=上,则点P 到直线l 的距离的最大值为()A .3B .4C .5D .68.已知实数x ,y 满足224640x y x y ++-+=,则x 的最大值是()A .3B .2C .1D .以上答案都不对9.已知()4,0A ,()0,3B -,点P 在圆()()22:234C x y ++-=上运动,则ABP △面积的最大值是()A .25B .20C .15D .1010.(多选)已知实数x ,y 满足方程224240x y x y +--+=,则下列说法正确的是()A .y x 的最大值为43B .yx的最小值为0C .22x y +的最大值为51+D .x y +的最大值为32+10.已知()M m n ,为圆C :()2221x y -+=上任意一点,则1nm +的最小值为()A .2-B .2C .24-D .2411.已知点(),P x y 在圆()()22113x y -+-=上运动,则43yx --的最大值为()A .630--B .630+C .630-+D .630-12.已知圆C :(x +2)2+y 2=1,P (x ,y )为圆C 上任一点.(1)求y -2x -1的最大值与最小值;(2)求x -2y 的最大值与最小值.。
高中数学 数形结合_巧解“与圆有关的最值问题” 知识点+例题
数形结合,巧解“与圆有关的最值问题”例1 平面上有两点A (1-,0),B (1,0),P 为圆x y x y 2268210+--+=上的一点,试求S AP BP =+||||22最小值.解析:把已知圆的一般方程化为标准方程得()()x y -+-=34422,设点P 的坐标为(,)x y 00,则2222220000||||(1)(1)S AP BP x y x y =+=+++-+222002(1)2(1)x y OP =++=+ 要使22||||BP AP S +=最小,需||OP 最小,即使圆上的点到原点的距离最小.结合图形,容易知道325||min =-=-=r OC OP ,所以20)13(22min =+=S .点评:设 P (x ,y ),使要求的式子转化为求圆上的点到原点的距离问题,利用数形结合法求最值,实质上是利用初中学过的“连结两点的线段中,直线段最短”这一性质.例2 点A 在圆()()x y -+-=53922上,则点A 到直线3420x y +-=的最短距离为( )A. 9B. 8C. 5D. 2解析:过C 作CD ⊥直线3420x y +-=于D ,交圆C 于A , 则AD CD r =-为所求 .∴AD例3 )0,3(P 在圆0122822=+--+y x y x 内一点.求(1)过P 的圆的最短弦所在直线方程(2)过P 的圆的最长弦所在直线方程解析:圆方程可以化成5)1()4(22=-+-y x ,圆心)1,4(O 1=OP k∴ 短l :)3(--=x y 即 03=-+y x ; 长l :)3(-=x y 即03=--y x . 点评:最长弦当然是直径了,而最短弦是与直径垂直的弦.例4 已知实数x ,y 满足方程22(2)3x y -+=.(1) 求y x的最大值与最小值; (2) 求y x -的最大值与最小值; (3) 求22x y +的最大值和最小值.分析:22(2)3x y -+=为圆的方程,(,)P x y 是圆心为(2,0)点.y x的几何意义是圆上一点与原点连线的斜率,y x -的几何意义是直线y x b =+在轴上的截距,22x y +的几何意义是圆上一点到原点距离的平方.解:(1)设y k x=,即y kx =.当直线y kx =与圆相切时,斜率k 取最大值与最小值,=k =.所以y xk = (2)设y x b -=,当直线y x b -=与圆相切时,纵截距b 取得最大值与最小值,=解得2b =-所以y x -的最大值为2-,最小值2-.(3表示圆上一点到原点距离,由平面几何知识知,其最大值为圆心到原点的距离加上圆的半径,其最小值为圆心到原点的距离减去圆的半径,分别是2与222x y +的最大值和最小值分别为7+7-.例5 过直线1y =上一点P (x ,y )作圆22(1)(1)1x y +++=的切线,求切线长的最小值.解析:如图所示,切线长2221PM PC CM PC =-=-,所以要求PM 的最小值,只需求PC 的最小值.PC 是直线上一点到圆心的距离,由于经直线外一点所引直线的垂线段的长度是该点到直线的距离的最小值,所以当PC 垂直于直线时,min 2PC =,此时,切线长最小,为3.小结与提升:圆的知识在初中与高中都要学习,是一典型的知识交汇点.现在的数学高考非常重视初高中知识的衔接问题,所以同学们在处理与圆有关的小题时,一定要数形结合,多联想一下与之有关的平面几何知识,以免“小题大作”.。
与圆有关的最值问题的解题策略例说
与抛物线## %#F" 交于不同的两点6)7!再以线段
67 为直径作圆 L%设 L 为该圆的圆心&!
试证抛物线顶点落在圆 L 的圆周上!并求出圆
L 的面积最小时这条直线67 的方程!
解析如 图 $!由 题 知!直 线
67 不可能与" 轴平行!于是可
设它的方程为*#%"&#F!再设
6%"6 !#6 &!7%"7 !#7 &! 则 由
!$ !$
!所以
! $"
Copyright©博看网. All Rights Reserved.
复习
#(##年$月 上半月!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!解法探究
备考
% & +B
的最小值为0 槡!$!这时 !$
+
!#!!& !$ !$
!
点评本题的计 算 量 不 大但 学 生 的 思 维 要 求 比
% 函数或方程法
函数与方程思想是数学中最基本的思想方法之
一!圆 的 方 程 本 身 就 是 方 程!而 方 程 又 可 以 向 函 数 转
化!最 终 转 化 为 函 数 的 最 值 问 题!函 数 与 方 程 之 间 的
相互转化!体现了它们之间的对立统一关系!
例! 设F ,(且为常数!过点C%#F!(&的直线
所以2TB94B4+!=B4+:%
B44+(B=4+ 4B4+ ( B=4+
"$2TB!&槡$B6@! %
槡#($&%2TB!&槡$B6@!&
高中数学期末备考:解析几何03圆中最值问题含解析
3.圆最值问题一.重要结论1.圆中与距离最值有关的常见的结论:结论1.圆外一点A 到圆上距离最近为AO r ,最远为AO r ;结论2.过圆内一点的弦最长为圆的直径,最短的弦为与过该点的直径垂直的弦;结论3.直线与圆相离,则圆上点到直线的最短距离为圆心到直线的距离d r ,最近为d r ;2.圆中与面积有关的最值结论:结论4.圆的内接三角形面积最大当且仅当其为等边三角形;结论5.过圆外一点P 向圆O 引两条切线,切点记为B A ,,则四边形ABPO 面积的最值等价于圆心到点P 的距离最值.3.圆中与角度有关的最值问题.结论6.圆上两点与圆外一点的连线的夹角(圆外一点为顶点)中,以这两条直线为切线时最大.结论7.圆上一点、圆心与圆外一点连线的夹角(圆外一点为顶点)中,以这条直线为切线时最大.结论8.圆上一点、圆外两点连线的夹角(圆外一点为顶点)中,以这条直线为切线时最大.结论9.圆内两点,圆上一点(圆上点为顶点)的最大夹角问题(米勒圆问题).4.其他与圆有关的最值问题结论10.两个动点分别在两条平行线上运动,这两个动点间的最短距离为两条平行线间的距离.二.强化练习1.已知圆P 的方程为22680x y x y ,过点 1,2M 的直线与圆P 交于A ,B 两点,则弦AB 的最小值为()A.B.10C.D.52.在圆22:230M x y x 中,过点 0,1E 的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为()A.B.C.D.3.已知点(,)P x y 是圆2264120x y x y 上的动点,则x y 的最大值为()A.5B.5C.6D.54.已知方程22220x y kx y k 表示的圆中,当圆面积最小时,此时k ()A.-1B.0C.1D.25.直线 1210m x my m 与圆229x y 交于,M N 两点,则弦长MN 的最小值为()A.1B.26.设A 是圆22(1)9x y 上的动点,PA 是圆的切线,且4PA ,则点P 到点 5,8Q 距离的最小值为()A.4B.5C.6D.157.已知P 为抛物线24y x 上一个动点,Q 为圆 22241x y 上一个动点,那么点P 到点Q 的距离与点P 到抛物线的准线距离之和的最小值是()A.6B.5C.4D.38.已知点M ,N 分别在圆 221:129C x y 与圆 222:2864C x y 上,则MN 的最大值为()11B.1711D.159.已知P 是半圆C x 上的点,Q 是直线10x y 上的一点,则PQ 的最小值为()1110.(2021新高考1卷).已知点P 在圆 225516x y 上,点 4,0A , 0,2B ,则()A.点P 到直线AB 的距离小于10B.点P 到直线AB 的距离大于2C.当PBA 最小时,PBD.当PBA 最大时,PB 参考答案1.已知圆P 的方程为22680x y x y ,过点 1,2M 的直线与圆P 交于A ,B 两点,则弦AB 的最小值为()A.B.10C.D.5【答案】A2.在圆22:230M x y x 中,过点 0,1E 的最长弦和最短弦分别为AC 和BD ,则四边形ABCD 的面积为()A.B.C.D.【答案】B3.已知点(,)P x y 是圆2264120x y x y 上的动点,则x y 的最大值为()A.5B.5C.6D.5【答案】A4.已知方程22220x y kx y k 表示的圆中,当圆面积最小时,此时k ()A.-1B.0C.1D.2【答案】B5.直线 1210m x my m 与圆229x y 交于,M N 两点,则弦长MN 的最小值为()A.1B.2【答案】D6.设A 是圆22(1)9x y 上的动点,PA 是圆的切线,且4PA ,则点P 到点 5,8Q 距离的最小值为()A.4B.5C.6D.15【答案】B7.已知P 为抛物线24y x 上一个动点,Q 为圆 22241x y 上一个动点,那么点P到点Q 的距离与点P 到抛物线的准线距离之和的最小值是()A.6B.5C.4D.3【答案】C8.已知点M ,N 分别在圆 221:129C x y 与圆 222:2864C x y 上,则MN的最大值为()11 B.1711D.15【答案】C9.已知P 是半圆C x 上的点,Q 是直线10x y 上的一点,则PQ 的最小值为()2112D.22【答案】D 10.ACD解析:圆 225516x y 的圆心为 5,5M ,半径为4,直线AB 的方程为142x y,即240x y ,圆心M 到直线AB4 ,所以,点P 到直线AB 的距离的最小值为425 ,最大值为4105,A 选项正确,B 选项错误;如下图所示:当PBA 最大或最小时,PB 与圆M 相切,连接MP 、BM ,可知PM PB ,BM4MP ,由勾股定理可得BP CD 选项正确.故选:ACD.多圆最值问题研究一.基本原理1.将军饮马模型:如图,动点C 为直线l 上一点,B A ,为直线l 一侧的两个定点,那么CA CB 的最小值即为做点B 关于l 的对称点'B ,然后连接'BB 后其长度.2.三角不等式:任意两边之和大于等于第三边,任意两边之差小于等于第三边,取等条件当且仅当三点共线.如图动点P 为直线l 上一点,B A ,为直线l 一侧的两个定点,那么P A PB 的最大值当且仅当B A P ,,三点共线.倘若B A ,在l 两侧,则需先利用对称将其搬到一侧再寻找最大值!此时,P A PB 的最小值为0,即P 为AB 中垂线与l 的交点.总结:“和最小,化异侧,差最大,转同侧”二.典例分析1.距离和的最小值(公众号:凌晨讲数学)例1.已知圆221:430C x y y ,圆222:6260C x y x y ,M N ,分别为圆1C 和圆2C 上的动点,P 为直线:1l y x 上的动点,则||MP NP 的最小值为A.3 B.333解析:由圆 221:21C x y ,圆 222314C x y ,可知圆1C 圆心为 0,2 ,半径为1,如图,圆2C 圆心为 3,1 ,半径为2,圆1C 关于直线:1l y x 的对称圆为圆 221':311C x y ,连结12'C C ,交l 于P ,则P 为满足使PM PN 最小的点,此时M 点为1'PC 与圆1'C 的交点关于直线l 对称的点,N 为2PC 与圆2C 的交点,最小值为 12'21C C ,而12'C C ,PM PN 的最小值为3 ,故选A.2.距离差的最大值(公众号:凌晨讲数学)例2.已知圆 221:111C x y ,圆 222:459C x y ,点M 、N 分别是圆1C 、圆2C 上的动点,点P 为x 轴上的动点,则PN PM 的最大值是()A.4B.9C.7D.2解析:圆 221:111C x y 的圆心为 11,1C ,半径为1,圆 222:459C x y 的圆心为 24,5C ,半径为3.max min maxPN PM PN PM ∵,又2max 3PN PC ,1min1PMPC ,2121max314PN PMPC PC PC PC .点 24,5C 关于x 轴的对称点为24,5C ,2121125PC PC PC PC C C,所以,max549PN PM ,故选:B.3.逆用阿波罗尼斯圆1.阿氏圆定义:已知平面上两点B A ,,则所有满足1,|||| PB P A 的动点P 的轨迹是一个以定比为n m :内分和外分定线段AB 的两个分点的连线为直径的圆.若)0,(),0,(b B a A ,则圆的半径为|||1|2AB ,圆心为)0|,|11(22AB .(公众号:凌晨讲数学)2.结论:已知圆222)()(r b y a x 上任意一点P 和坐标轴上任意两点B A ,,求形如)(PB P A PB P A 的最值问题,可逆用阿氏圆转化为三点共线最值计算.例3.已知圆C 是以点 2,M 和点 6,N 为直径的圆,点P 为圆C 上的动点,若点2,0A ,点 1,1B ,则2PA PB 的最大值为()B.4C.8解析:由题设,知:(4,0)C 且||8MN ,即圆C 的半径为4,∴圆C :22(4)16x y ,如上图,坐标系中(4,0)D 则24OD AC CP OC ,∴12AC PC CP DC ,即△APC △PCD ,故12PA PD ,(亦可逆用阿氏圆,其实就是阿氏圆的几何推导).∴2||||PA PB PD PB ,在△PBD 中||||||PD PB BD ,∴要使||||PD PB 最大,,,P B D 共线且最大值为||BD 的长度.∴||BD 故选:A例4.在平面直角坐标系xOy 中,点P 在圆22:(8)16C x y -+=上运动,(6,0),(6,1),A B 则2PB PA 的最小值为()B.6C.D.2解析:P 为圆C 上任意一点,圆的圆心 8,0C ,半径4r ,如下图所示,4PC ∵,8OC ,2AC 12AC PC PC OC ,PAC OPC 12PA OP,即2OP PA ,2PB PA PB OP ,又PB OP OB (当且仅当P 为线段OB与圆C 的交点时取等号),2PB PA OB 2PB PA本题正确选项:A三.练习题(公众号:凌晨讲数学)1.已知,P Q 分别是直线:20l x y 和圆22:1C x y 上的动点,圆C 与x 轴正半轴交于点(1,0)A ,则PA PQ 的最小值为2B.251210122.已知P ,Q 分别是圆 22:48C x y ,圆 22:41D x y 上的动点,O 是坐标原点,则22PQ PO的最小值是______.3.平面直角坐标系中,点3,3A 、 3,3B 、23,0C ,动点P 在ABC 的内切圆上,则12PC PA 的最小值为_________.4.在平面直角坐标系xOy 中,若(0,1)A ,点B 是圆:C 22230x y x 上的动点,则2AB BO 的最小值为__________.。
与圆有关的最值问题
1 AC BD 1 2 3 1 2 3 30
2
2
2
2. 【湖北省黄石市 2017 届高三年级九月份调研,10】圆 x2 y2 2ax a2 4 0 和圆
x2
y2
4by 1 4b2
0
恰有三条公切线,若
a
R,
b
R
,且
ab
0
,则
1 a2
1 b2
1 [5 9
a2 b2
4b2 a2
]
1 [5 2 9
a2 b2
4b2 a2
]1
,当且仅当
a2 b2
=
4b2 a2
时取等
号,所以最小值为 1.[来源:Z#xx#]
考点:两圆位置关系,基本不等式求最值
【易错点睛】在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正
2.2 建立函数关系求最值 根据题目条件列出关于所求目标函数的关系式,然后根据关系的特点选用参数法、配方法、判别式法等
进行求解.
例 7 设 P, Q 分 别 为 x2 y 62 2 和 椭 圆 x2 y2 1 上 的 点 , 则 P, Q 两 点 间 的 最 大 距 离 是
10
一、与圆相关的最值问题的联系点
k
O
1.1 与直线的倾斜角或斜率的最值问题
利用公式 k = tan ( ≠90°)将直线的斜率与倾斜角紧密联系到一起,通过正切函数的图象可以解决已知
斜率的范围探求倾斜角的最值,或者已经倾斜角的范围探求斜率的最值.
处理方法:利用在正切函数
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
与圆有关的最值(取值范围)问题引例1:在坐标系中,点A的坐标为(3,0),点B为y轴正半轴上的一点,点C是第一象限内一点,且AC=2.设tan∠BOC=m,则m的取值范围是_________.引例2:如图,在边长为1的等边△OAB中,以边AB为直径作⊙D,以O为圆心OA长为半径作⊙O,C为半圆弧 AB上的一个动点(不与A、B两点重合),射线AC交⊙O于点E,BC=a,AC=b,求a b的最大值.引例3:如图,∠BAC=60°,半径长为1的圆O与∠BAC的两边相切,P为圆O上一动点,以P为圆心,PA长为半径的圆P交射线AB、AC于D、E两点,连接DE,则线段DE长度的最大值为( ).A.3 B.6 CD.一、题目分析:此题是一个圆中的动点问题,也是圆中的最值问题,主要考察了圆内的基础知识、基本技能和基本思维方法,注重了初、高中知识的衔接1.引例1:通过隐藏圆(高中轨迹的定义),寻找动点C与两个定点O、A构成夹角的变化规律,转化为特殊位置(相切)进行线段、角度有关计算,同时对三角函数值的变化(增减性)进行了延伸考查,其实质是高中“直线斜率”的直接运用;2.引例2:通过圆的基本性质,寻找动点C与两个定点A、B构成三角形的不变条件,结合不等式的性质进行转化,其实质是高中“柯西不等式”的直接运用;3.引例3:本例动点的个数由引例1、引例2中的一个动点,增加为三个动点,从性质运用、构图形式、动点关联上增加了题目的难度,解答中还是注意动点D、E与一个定点A 构成三角形的不变条件(∠DAE=60°),构造弦DE、直径所在的直角三角形,从而转化为弦DE与半径AP之间的数量关系,其实质是高中“正弦定理”的直接运用;综合比较、回顾这三个问题,知识本身的难度并不大,但其难点在于学生不知道转化的套路,只能凭直观感觉去寻找、猜想关键位置来求解,但对其真正的几何原理却无法通透.二、解题策略1.直观感觉,画出图形;2.特殊位置,比较结果;3.理性分析动点过程中所维系的不变条件,通过几何构建,寻找动量与定量(常量)之间的关系,建立等式,进行转化.三、中考展望与题型训练例一、斜率运用1.如图,A 点的坐标为(﹣2,1),以A 为圆心的⊙A 切x 轴于点B ,P (m ,n )为⊙A 上的一个动点,请探索n+m 的最大值.例二、圆外一点与圆的最近点、最远点1.如图,在Rt △ABC 中,∠ACB=90°,AC=4,BC=3,点D 是平面内的一个动点,且AD=2,M 为BD 的中点,在D 点运动过程中,线段CM 长度的取值范围是 .2.如图,⊙O 的直径为4,C 为⊙O 上一个定点,∠ABC=30°,动点P 从A 点出发沿半圆弧AB 向B 点运动(点P 与点C 在直径AB 的异侧),当P 点到达B 点时运动停止,在运动过程中,过点C 作CP 的垂线CD 交PB 的延长线于D 点.(1)在点P 的运动过程中,线段CD 长度的取值范围为 ;(2)在点P 的运动过程中,线段AD 长度的最大值为 .例三、正弦定理 1.如图,△ABC 中,∠BAC=60°,∠ABC=45°,AB=D 是线段BC 上的一个动点,以AD 为直径作⊙O 分别交AB ,AC 于E ,F 两点,连接EF ,则线段EF 长度的最小值为 .2. 如图,定长弦CD 在以AB 为直径的⊙O 上滑动(点C 、D 与点A 、B 不重合),M 是CD 的中点,过点C 作CP ⊥AB 于点P ,若CD=3,AB=8,则PM 长度的最大值是 .A例四、柯西不等式、配方法1.如图,已知半径为2的⊙O 与直线l 相切于点A ,点P 是直径AB 左侧半圆上的动点,过点P 作直线l 的垂线,垂足为C ,PC 与⊙O 交于点D ,连接PA 、PB ,设PC 的长为x (2<x <4),则当x= 时,PD•CD 的值最大,且最大值是为 .2.如图,线段AB=4,C 为线段AB 上的一个动点,以AC 、BC 为边作等边△ACD 和等边△BCE ,⊙O 外接于△CDE ,则⊙O半径的最小值为( ).D. 23.在平面直角坐标系中,以坐标原点O 为圆心,2为半径画⊙O ,P 是⊙O 上一动点,且P 在第一象限内,过点P 作⊙O 的切线与x 轴相交于点A ,与y 轴相交于点B ,线段AB 长度的最小值是 .例四、相切的应用(有公共点、最大或最小夹角)1.如图,在Rt △ABC 中,∠C=90°,AC=6,BC=8,D 为AB 边上一点,过点D 作CD 的垂线交直线BC 于点E ,则线段CE 长度的最小值是 .2.如图,Rt△ABC 中,∠C=90°,∠A=30°,AB=4,以AC 上的一点O 为圆心OA 为半径作⊙O ,若⊙O 与边BC 始终有交点(包括B 、C 两点),则线段AO 的取值范围是 .3.如图,⊙O的半径为2,点O到直线l的距离为3,点P是直线l上的一个动点,PQ切⊙O于点Q,则PQ的最小值为()A.B.C.3 D.2例五、其他知识的综合运用1.(2015•济南)抛物线y=ax2+bx+4(a≠0)过点A(1,﹣1),B(5,﹣1),与y轴交于点C.(1)求抛物线的函数表达式;(2)如图1,连接CB,以CB为边作▱CBPQ,若点P在直线BC上方的抛物线上,Q为坐标平面内的一点,且▱CBPQ的面积为30,求点P的坐标;(3)如图2,⊙O1过点A、B、C三点,AE为直径,点M为上的一动点(不与点A,E 重合),∠MBN为直角,边BN与ME的延长线交于N,求线段BN长度的最大值.2.(2013秋•相城区校级期末)如图,已知A、B是⊙O与x轴的两个交点,⊙O的半径为1,P是该圆上第一象限内的一个动点,直线PA、PB分别交直线x=2于C、D两点,E为线段CD的中点.(1)判断直线PE与⊙O的位置关系并说明理由;(2)求线段CD长的最小值;(3)若E点的纵坐标为m,则m的范围为.B【题型训练】1.如图,已知直线l与⊙O相离,OA⊥l于点A,OA=5,OA与⊙O相交于点P,AB与⊙O相切于点B,BP的延长线交直线l于点C,若在⊙O上存在点Q,使△QAC是以AC为底边的等腰三角形,则⊙O的半径r的取值范围为 .2.已知:如图,RtΔABC中,∠B=90º,∠A=30º,BC=6cm,点O从A点出发,沿AB以每秒的速度向B点方向运动,当点O运动了t秒(t>0)时,以O点为圆心的圆与边AC相切于点D,与边AB相交于E、F两点,过E作EG⊥DE交射线BC于G.(1)若点G在线段BC上,则t的取值范围是;(2)若点G在线段BC的延长线上,则t的取值范围是 .3.如图,⊙M,⊙N的半径分别为2cm,4cm,圆心距MN=10cm.P为⊙M上的任意一点,Q 为⊙N上的任意一点,直线PQ与连心线l所夹的锐角度数为α,当P、Q在两圆上任意运动时,tanα∠的最大值为(B)43;; (D)344.如图,在矩形ABCD中,AB=3,BC=4,O 为矩形ABCD的中心,以D为圆心1为半径作⊙D,P为⊙D上的一个动点,连接AP、OP,则△AOP面积的最大值为( ).(A)4 (B)215(C)358(D)174 5.如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,经过点C且与边AB相切的动圆与CA、CB 分别相交于点P、Q,则线段PQ长度的最小值是( ).A.194B.245C.5 D.6.如图,在等腰Rt△ABC中,∠C=90°,AC=BC=4,D是AB的中点,点E在AB边上运动(点E不与点A重合),过A、D、E三点作⊙O,⊙O交AC于另一点F,在此运动变化的过程中,线段EF长度的最小值为.7.如图,A、B两点的坐标分别为(2,0)、(0,2),⊙C的圆心的坐标为(-1,0),半径为1,若D是⊙C上的一个动点,线段DA与y轴交于点E,则△ABE面积的最小值是( ).A.2 B.1 C.2- D.28.如图,已知A、B两点的坐标分别为(-2,0)、(0,1),⊙C的圆心坐标为(0,-1),半径为1,D是⊙C上的一个动点,射线AD与y轴交于点E,则△ABE面积的最大值是( ).A.3 B.113C.103D.49.如图,等腰Rt△ABC中,∠ACB=90°,AC=BC=4,⊙C的半径为1,点P在斜边AB上,PQ 切⊙O于点Q,则切线长PQ长度的最小值为( ).10.如图∠BAC=60°,半径长1的⊙O与∠BAC的两边相切,P为⊙O上一动点,以P为圆心,PA长为半径的⊙P交射线AB、AC于D、E两点,连接DE,则线段DE长度的范围为 .11.在直角坐标系中,点A的坐标为(3,0),点P(m n,)是第一象限内一点,且AB=2,则m n-的范围为 .12.在坐标系中,点A的坐标为(3,0),点P是y轴右侧一点,且AP=2,点B上直线y=x+1上一动点,且PB⊥AP于点P,则tan ABP m∠=,则m的取值范围是 .13.在平面直角坐标系中,M(3,4),P是以M为圆心,2为半径的⊙M上一动点,A(-1,0)、B(1,0),连接PA、PB,则PA2+PB2最大值是 .蔡老师点评:与圆有关的最值问题,看着无从下手,但只要仔细观察,分析图形,寻找动点与定点之间不变的维系条件,构建关系,将研究的问题转化为变量与常量之间的关系,就能找到解决问题的突破口!几何中的定值问题,是指变动的图形中某些几何元素的几何量保持不变,或几何元素间的某些几何性质或位置关系不变的一类问题,解几何定值问题的基本方法是:分清问题的定量及变量,运用特殊位置、极端位置,直接计算等方法,先探求出定值,再给出证明.几何中的最值问题是指在一定的条件下,求平面几何图形中某个确定的量(如线段长度、角度大小、图形面积)等的最大值或最小值,求几何最值问题的基本方法有:1.特殊位置与极端位置法;2.几何定理(公理)法;3.数形结合法等.注:几何中的定值与最值近年广泛出现于中考试题中,由冷点变为热点.这是由于这类问题具有很强的探索性(目标不明确),解题时需要运用动态思维、数形结合、特殊与一般相结合、逻辑推理与合情想象相结合等思想方法.参考答案:引例1.解:C在以A为圆心,以2为半径作圆周上,只有当OC与圆A相切(即到C点)时,∠BOC最小,AC=2,OA=3,由勾股定理得:OC=,∵∠BOA=∠ACO=90°,∴∠BOC+∠AOC=90°,∠CAO+∠AOC=90°,∴∠BOC=∠OAC,tan∠BOC=tan∠OAC==,随着C的移动,∠BOC越来越大,∵C在第一象限,∴C不到x轴点,即∠BOC<90°,∴tan∠BOC≥,故答案为:m≥.引例1图引例2图+≤引例2.a b原题:(2013•武汉模拟)如图,在边长为1的等边△OAB中,以边AB为直径作⊙D,以O 为圆心OA长为半径作圆O,C为半圆AB上不与A、B重合的一动点,射线AC交⊙O于点E,BC=a,AC=b.(1)求证:AE=b+a;(2)求a+b的最大值;(3)若m是关于x的方程:x2+ax=b2+ab的一个根,求m的取值范围.【考点】圆的综合题.【分析】(1)首先连接BE,由△OAB为等边三角形,可得∠AOB=60°,又由圆周角定理,可求得∠E的度数,又由AB为⊙D的直径,可求得CE的长,继而求得AE=b+a;(2)首先过点C作CH⊥AB于H,在Rt△ABC中,BC=a,AC=b,AB=1,可得(a+b)2= a2+b2+2ab=1+2ab=1+2CH•AB=1+2CH≤1+2AD=1+AB=2,即可求得答案;(3)由x2+ax=b2+ab,可得(x﹣b)(x+b+a)=0,则可求得x的值,继而可求得m的取值范围.【解答】解:(1)连接BE,∵△OAB为等边三角形,∴∠AOB=60°,∴∠AEB=30°,∵AB为直径,∴∠ACB=∠BCE=90°,∵BC=a,∴BE=2a,CE=a,∵AC=b,∴AE=b+a;(2)过点C作CH⊥AB于H,在Rt△ABC中,BC=a,AC=b,AB=1,∴a2+b2=1,∵S△ABC=AC•BC=AB•CH,∴AC•BC=AB•CH,∴(a+b)2=a2+b2+2ab=1+2ab=1+2CH•AB=1+2CH≤1+2AD=1+AB=2,∴a+b≤,故a+b的最大值为,(3)∵x2+ax=b2+ab,∴x2﹣b2+ax﹣ab=0,∴(x+b)(x﹣b)+a(x﹣b)=0,∴(x﹣b)(x+b+a)=0,∴x=b或x=﹣(b+a),当m=b时,m=b=AC<AB=1,∴0<m<1,当m=﹣(b+a)时,由(1)知AE=﹣m,又∵AB<AE≤2AO=2,∴1<﹣m≤2,∴﹣2≤m<﹣1,∴m的取值范围为0<m<1或﹣2≤m<﹣1.【点评】此题考查了圆周角定理、等边三角形的性质、完全平方公式的应用以及一元二次方程的解法.此题难度较大,注意掌握数形结合思想与分类讨论思想的应用.引例3.解:连接EP,DP,过P点作PM垂直DE于点M,过O做OF⊥AC与F,连接AO,如图,∵∠BAC=60°,∴∠DPE=120°.∵PE=PD,PM⊥DE,∴∠EPM=60°,∴ED=2EM=2EP•sin60°=EP=PA.当P与A、O共线时,且在O点右侧时,⊙P直径最大.∵⊙O与∠BAC两边均相切,且∠BAC=60°,∴∠OAF=30°,OF=1,∴AO==2,AP=2+1=3,∴DE=PA=3.故答案为:D。