2008年10月份试题精编(1)数学试题
自考数学2008年到2006年历年真题及答案

全国2008年10月高等教育自学考试高等数学(一)试题课程代码:00020一、单项选择题(本大题共5小题,每小题2分,共10分)高数一自考网络课程通过率93% 报名请点击进入在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设函数y =f (x )的定义域为(1,2],则f (ax )(a <0)的定义域是( )A.(a a 2,1 ]B.[a a 1,2)C.(a ,2a]D.(a a ,2]知识点:函数的定义域 答案:B 解:2112ax x a a<≤⇒≤< 2.设f (x )=x |x |,则f ′(0)=( )A.1B.-1C.0D.不存在 知识点:函数的导数 答案:C 解:()222_00200_,0(),00'(0)lim lim 00'(0)lim lim 00'(0)'(0)'(0)0x x x x x x f x x x x x x f x x x f x x f f f --++→→+→→+⎧≥==⎨-<⎩--==-=--===-∴===3.下列极限中不能应用洛必达法则的是( )A.x x x ln lim +∞→B.x x x 2cos lim ∞→C.x xx -→1ln lim 1 D.x e x x ln lim -+∞→知识点:洛必达法则 答案: B解:A.ln 1limlim 0x x x x x→+∞→+∞==B.xxx 2cos lim ∞→ 这个用有界量乘以无穷小量等于无穷小量C.11ln 1limlim 11x x x x x→→=-=--D.ln 1lim ln limlim 0xx xx x x x e x e xe -→+∞→+∞→+∞===4.设f (x )是连续函数,且⎰=xx x dt t f 0cos )(,则f (x )=( )A.cos x -x sin xB.cos x +x sin xC.sin x -x cos xD.sin x +x cos x 知识点:变上限积分的导数 答案:A 解:()0()(())'cos 'cos sin xf x f t dt x x x x x ===-⎰5.设某商品的需求量D 对价格p 的需求函数为D =50-5p,则需求价格弹性函数为( ) A.250-p p B.p p -250 C.51p p -250 D.51250-p p 知识点:需求价格弹性 答案:B 解:'()52505505ED P P P PD P P EP D D P=-===-⎛⎫- ⎪⎝⎭ 高数一自考网络课程通过率93% 报名请点击进入二、填空题(本大题共10小题,每小题3分,共30分) 请在每小题的空格中填上正确答案。
2008年10月自考高等数学(一)试题及答案.

高等数学(一)试卷第1页(共10页)全国2008年10月高等教育自学考试高等数学(一)试题课程代码:00020一、单项选择题(本大题共5小题,每小题2分,共10分)高数一自考网络课程通过率93%报名请点击进入在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设函数y =f (x )的定义域为(1,2],则f (ax )(a <0)的定义域是()A.(a a 2,1]B.[a a 1,2)C.(a ,2a]D.(a a ,2]知识点:函数的定义域答案:B解:2112ax x a a<≤⇒≤<2.设f (x )=x |x |,则f ′(0)=()A.1B.-1C.0D.不存在知识点:函数的导数答案:C 解:()222_00200_,0(),00'(0)lim lim 0'(0)lim lim 00'(0)'(0)'(0)0x x x x x x f x x x x x x f x x x f x x f f f −−++→→+→→+⎧≥==⎨−<⎩−−==−=−−===−∴===3.下列极限中不能应用洛必达法则的是()A.x x x ln lim +∞→ B.x xx 2cos lim ∞→ C.xxx −→1ln lim 1 D.xe x x ln lim −+∞→知识点:洛必达法则答案:B高等数学(一)试卷第2页(共10页)解:A.ln 1limlim 0x x x x x→+∞→+∞==B.xxx 2cos lim∞→这个用有界量乘以无穷小量等于无穷小量C.11ln 1limlim 11x x x x x→→=−=−−D.ln 1lim ln lim lim 0x x xx x x x e x e xe −→+∞→+∞→+∞===4.设f (x )是连续函数,且∫=xx x dt t f 0cos )(,则f (x )=()A.cos x -x sin xB.cos x +x sin xC.sin x -x cos xD.sin x +x cos x知识点:变上限积分的导数答案:A 解:()0()(())'cos 'cos sin xf x f t dt x x x x x===−∫5.设某商品的需求量D 对价格p 的需求函数为D =50-5p,则需求价格弹性函数为()A.250−p pB.pp −250 C.51p p −250 D.51250−p p 知识点:需求价格弹性答案:B 解:'()52505505ED P P P PD P P EP D D P =−===−⎛⎞−⎜⎟⎝⎠高数一自考网络课程通过率93%报名请点击进入二、填空题(本大题共10小题,每小题3分,共30分)请在每小题的空格中填上正确答案。
MBA联考综合能力数学平均值函数历年真题试卷汇编1_真题(含答案与解析)-交互

MBA联考综合能力数学(平均值、函数)历年真题试卷汇编1(总分58, 做题时间90分钟)1. 问题求解问题求解本大题共15小题。
下列每题给出的五个选项中,只有一项是符合试题要求的。
1.[2013年1月]甲班共有30名学生,在一次满分为100分的考试中,全班平均成绩为90分,则成绩低于60分的学生至多有( )。
SSS_SINGLE_SELA 8个B 7个C 6个D 5个E 4个该问题分值: 2答案:B解析:设60分以下的学生有x人,则他们的总分至多为59x,剩下人的分数和至多为100(30—x),因此总分至多为59x+100(30—x)=3 000—41x,由题意知3 000—41x≥30×90,解得x≤7,即至多7人,因此选B。
2.[2010年10月]某学生在军训时进行打靶测试,共射击10次。
他的第6、7、8、9次射击分别射中9.0环、8.4环、8.1环、9.3环,他的前9次射击的平均环数高于前5次的平均环数。
若要使10次射击的平均环数超过8.8环,则他第10次射击至少应该射中( )(打靶成绩精确到0.1环)。
SSS_SINGLE_SELA 9.0环B 9.2环C 9.4环D 9.5环E 9.9环该问题分值: 2答案:E解析:第6、7、8、9次射击的平均环数为=8.7,而10次射击的平均环数超过8.8环,则总环数至少为8.8×10+0.1,则前9次射击的总环数至多为8.7×9—0.1.则第10次射击至少为(8.8×10+0.1)一(8.7×9—0.1)=9.9环。
因此选E。
3.[2009年10月]已知某车间的男工人数比女工人数多80%,若在该车间一次技术考核中全体工人的平均成绩为75分.而女工平均成绩比男工平均成绩高20%,则女工的平均成绩为( )。
SSS_SINGLE_SELA 88分B 86分C 84分D 82分E 80分该问题分值: 2答案:C解析:设女工人数为x,男工平均成绩为y,利用十字交叉法,有即,解得y=70,所以女工平均成绩为70×1.2=84。
2008-2009学年度上学期08级10月份月考数学试卷

一、选择题(每小题5分,共60分)1、已知集合},8,7,3{},9,6,3,1{},,5,4,3,2,1,0{===C B A ,则C B A ⋃⋂)(等于( ) A 、{0,1,2,6} B 、{3,7,8,} C 、{1,3,7,8} D 、{1,3,6,7,8}2、设ABC ∆的边长c b a ,,是集合S 中的三个元素,则ABC ∆一定不是( )A 、锐角三角形B 、钝角三角形C 、直角三角形D 、等腰三角形 3、给出以下关系式:①R ∈2②Q ∈5.2③Φ∈0④N ∉-3,其中正确的个数是( ) A 、1个 B 、2个 C 、3个 D 、4个 4、 满足}30|{<≤∈=x N x A 的真子集的个数是( ) A 、8B 、7C 、6D 、55、集合},12|{z n n x x A ∈+==, },14|{z k k y y B ∈±==,则A 与B 的关系为( )A 、AB ⊆ B 、A ⊆BC 、A=BD 、A≠B 6、若},,0{},,1{2b a a aba +=,则20052005ab +的值为( )A 、0B 、1C 、1-D 、1或1- 7、设}|{},21|{a x x B x x A <=<<=,若,则实数a 的取值范围是( )A 、}2|{≥a aB 、}2|{>a aC 、}1|{≥a aD 、}1|{≤a a 8、下列各组函数)()(x g x f 和相同的是()A 、2)()(,)(x x g x x f == B 、x x f =)(,xx x g 2)(=C 、0)(,1)(x x g x f ==D 、)0()0()(|,|)(<≥⎩⎨⎧-==x x xx x g x x f9、在映射}.,|),{(:R y x y x B A B A f ∈==→中,且),(),(:y x y x y x f +-→,则与A 中的元素(-1,2)对应的B 中的元素为( ) A 、(-3,1) B 、(1,3) C 、(-1,-3) D 、(3,1)10、已知)()6(,4)1(2=-=+f x x f 则A 、32B 、21C 、12D 、45 11、若)(x f y =的定义域是[0,2],则函数)1(+x f 的定义域是 ( ) A、[-1,1]B、[1,3]C、]23,21[D、]21,0[12、函数32)(2--=ax x x f 在区间(–∞,2)上为减函数,则有 ( )A 、]1,(-∞∈aB 、 ),2[+∞∈aC 、]2,1[∈a D 、),2[]1,(+∞⋃-∞∈a 二、填空题(每小题4分,共16分)13、在国内投寄平信,每封信不超过20克重付邮资80分,超过20克重而不超过40克重付邮资160分,将每封信的应付邮资(分)表示为信重)400(≤<x x 克的函数,其表达式为)(x f =________14、设函数⎩⎨⎧<≥+=)2(2)2(2)(2x x x x x f ,则=-)4(f ____,又知8)(=x f ,则x =____15、设集合{}12|),(-==x y y x A ,{}3|),(+==x y y x B ,求=⋂B A __________. 16、设集合},4,1{x A =,},1{2x B =,且},4,1{x B A =⋃,则满足条件的实数x =_________. 三、解答题17、(12分)若}1,12,3{32+--∈-a a a ,求实数a 的值。
2008年10月全国自考高等数学(工专)历年真题参考答案

2008年10月全国自考高等数学(工专)历年真题参考答案一、单项选择题(本大题共5小题,每小题2分,共10分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.A. AB. BC. CD. D答案:C2.下列变量在给定的变化过程中为无穷小量的是()A. AB. BC. CD. D答案:A3.A. AB. BC. CD. D答案:C4. 下列反常积分收敛的是()A. AB. BC. CD.D答案:D5.A. AB. BC. CD.D答案:B二、填空题(本大题共10小题,每小题3分,共30分)请在每小题的空格中填上正确答案。
错填、不填均无分。
1. 本题答案为:____答案:2.本题答案为:____答案:43.本题答案为:____答案:4.本题答案为:____答案:5.曲线y=sinx在(0,2π)内的拐点是___ 答案:6.本题答案为:____答案:7.本题答案为:____答案:08.本题答案为:____答案:9.本题答案为:____答案:10.本题答案为:____答案:三、计算题(本大题共8小题,每小题6分,共48分)1.答案:2.答案:3.答案:4.答案:5.答案:6.答案:7.答案:8.答案:四、综合题(本大题共2小题,每小题6分,共12分)1.答案:2.答案:本资料由广州自考网收集整理,更多自考资料请登录下载考试必看:自考一次通过的秘诀!。
2008年全国各地高考数学试题及解答分类汇编大全

2008年全国各地高考数学试题及解答分类汇编大全(15统计、统计案例、算法初步、框图、推理与证明)一、选择题:1.(2008广东理)某校共有学生2000名,各年级男、女生人数如表1.已知在全校学生中随机抽取1名,抽到二年级女生的 概率是0.19 .现用分层抽样的方法在全校抽取64名 学生, 则应在三年级抽取的学生人数为( C ) A .24 B. 18 C. 16 D. 12解:由19.02000=x,得38019.02000=⨯=x , 三年级人数为500)370380377373(2000=+++-=+z y ,设应在三年级抽取m 人,则200064500=m ,解得m=16. 故答C.2、(2008海南、宁夏文、理)右面的程序框图,如果输入三个实数a 、b 、c ,要求输出这三个数中最大的数,那么在空白的判断框中,应该填入下面四个选项中的( A ) A. c > x B. x > c C. c > b D. b > c3. (2008山东理)右图是根据《山东统计年整2007》中的资料作成的1997年至2006年我省城镇居民百户家庭人口数的茎叶图,图中左边的数字从左到右分别表示城镇居民百户家庭人口数的百位数字和十位数字,右边的数字表示城镇居民百户家庭人口数的个位数字,从图中可以得到1997年至2006年我省城镇居民百户家庭人口数的平均数为( B )(A )304.6 (B )303.6 (C)302.6 (D)301.64.(2008山东文)从某项综合能力测试中抽取100人的成绩,统计如表,则这100人成绩的标准差为( B )A B C .3 D .855.(2008陕西文) 某林场有树苗30000棵,其中松树苗4000棵.为调查树苗的生长情况,采用分层抽样的方法抽取一个容量为150的样本,则样本中松树苗的数量为( C ) A .30 B .25 C .20 D .156.(2008陕西纹、理) 为提高信息在传输中的抗干扰能力,通常在原信息中按一定规则加入相关数据组成传输信息.设定原信息为012i a a a a ,{01}∈,(012i =,,),传输信息为00121h a a a h ,其中001102h a a h h a =⊕=⊕,,⊕运算规则为:000⊕=,011⊕=,101⊕=,110⊕=,例如原信息为111,则传输信息为01111.传输信息在传输过程中受到干扰可能导致接收信息出错,则下列接收信息一定有误的是( C )A .11010B .01100C .10111D .000117. (2008重庆文) 某交高三年级有男生500人,女生400人,为了解该年级学生的健康情况,从男生中任意抽取25人,从女生中任意抽取20人进行调查.这种抽样方法是 ( D )(A)简单随机抽样法 (B)抽签法 (C)随机数表法 (D)分层抽样法二、填空题:1.(2008广东文)为了调查某厂工人生产某种产品的能力,随机抽查了20位工人某天生产该产品的数量。
八年级2008十月月考
2008年八年级数学十月月考一、选择题:(每小题3分,共30分)1、若直角三角形两直角边分别为a 、b ,斜边为c ,那么勾股定理就是( )A.a 2+b 2=c 2B. a 2=b 2+c 2C. b 2=c 2+ a 2D. a 2-b 2=c 22、下列各组线段中的三个长度:①9,12,15;②7,24,25;③32,42,52;④3a,4a,5a(a>0);其中可以构成直角三角形的有( )A.5组B.4组C.3组D.2组3、字母B 所代表的正方形的面积是( )A.12B.3C.144D.1944、在Rt △ABC 中,∠C =90°,周长为30,斜边长与一条直角边之比为13﹕5,则这个三角形三边分别为( )A.5,4,3B.13,12,5C.10,8,6D.26,24,105、一个数的平方根是它本身,则这个数是( )A.1B.0C.0或1D.0或1或-16 )A.9B.3C.±9D. ±37、已知一个直角三角形的两边长分别为3和4 ,则第三边边长的平方是( )A.25B.14C.7D.7或258、在Rt △ABC 中,∠B =90°,两直角边AB =7,BC =24,在三角形内有一点P 到各边的距离相等,则这个距离是( )A.1B.3C.6D.无法求出9、下列说法正确的是( ) A.227是无理数 B.无限小数是无理数 C.无理数是无限不循环小数 D.无理数包括正无理数,0和负无理数10、下列说法:①一个无理数与一个有理数的和一定是无理数;②两个无理数之和一定是无理数;③两个无理数之积一定是无理数;④一个有理数与一个无理数之积一定是无理数。
其中错误的说法有( )A.1个B.2个C.3个D.4个二、填空题:将答案填写在答题框指定的位置。
(每小题3分,共15分)11、在△ABC 中,∠C=90°, AB =8,则2AB +2AC +2BC =_____12、若△ABC 的三边a ,b ,c 满足关系︱a -12︱+(b -5)2=0,则a =_____;b =______;c =______。
2008年全国统一高考数学试卷(理科)(全国卷一)及解析
2008年全国统一高考数学试卷(理科)(全国卷Ⅰ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)函数的定义域为()A.{x|x≥0}B.{x|x≥1}C.{x|x≥1}∪{0}D.{x|0≤x≤1} 2.(5分)掷一个骰子,向上一面的点数大于2且小于5的概率为p1,拋两枚硬币,正面均朝上的概率为p2,则()A.p1<p2 B.p1>p2 C.p1=p2D.不能确定3.(5分)在△ABC中,=,=.若点D满足=2,则=()A.B.C.D.4.(5分)设a∈R,且(a+i)2i为正实数,则a=()A.2 B.1 C.0 D.﹣15.(5分)已知等差数列{a n}满足a2+a4=4,a3+a5=10,则它的前10项的和S10=()A.138 B.135 C.95 D.236.(5分)若函数y=f(x)的图象与函数y=ln的图象关于直线y=x 对称,则f(x)=()A.e2x﹣2B.e2x C.e2x+1D.e2x+27.(5分)设曲线在点(3,2)处的切线与直线ax+y+1=0垂直,则a=()A.2 B.C.D.﹣28.(5分)为得到函数的图象,只需将函数y=sin2x的图象()A.向左平移个长度单位B.向右平移个长度单位C.向左平移个长度单位D.向右平移个长度单位9.(5分)设奇函数f(x)在(0,+∞)上为增函数,且f(1)=0,则不等式<0的解集为()A.(﹣1,0)∪(1,+∞)B.(﹣∞,﹣1)∪(0,1)C.(﹣∞,﹣1)∪(1,+∞)D.(﹣1,0)∪(0,1)10.(5分)若直线=1与圆x2+y2=1有公共点,则()A.a2+b2≤1 B.a2+b2≥1 C. D.11.(5分)已知三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC内的射影为△ABC的中心,则AB1与底面ABC所成角的正弦值等于()A.B. C. D.12.(5分)如图,一环形花坛分成A,B,C,D四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为()A.96 B.84 C.60 D.48二、填空题(共4小题,每小题5分,满分20分)13.(5分)若x,y满足约束条件,则z=2x﹣y的最大值为.14.(5分)已知抛物线y=ax2﹣1的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为.15.(5分)在△ABC中,AB=BC,.若以A,B为焦点的椭圆经过点C,则该椭圆的离心率e=.16.(5分)等边三角形ABC与正方形ABDE有一公共边AB,二面角C﹣AB﹣D的余弦值为,M,N分别是AC,BC的中点,则EM,AN 所成角的余弦值等于.三、解答题(共6小题,满分74分)17.(10分)设△ABC的内角A,B,C所对的边长分别为a,b,c,且acosB﹣bcosA=c.(Ⅰ)求的值;(Ⅱ)求tan(A﹣B)的最大值.18.(12分)四棱锥A﹣BCDE中,底面BCDE为矩形,侧面ABC⊥底面BCDE,BC=2,,AB=AC.(Ⅰ)证明:AD⊥CE;(Ⅱ)设CE与平面ABE所成的角为45°,求二面角C﹣AD﹣E的大小.19.(12分)已知函数f(x)=﹣x2+ax+1﹣lnx.(Ⅰ)当a=3时,求函数f(x)的单调递增区间;(Ⅱ)若f(x)在区间(0,)上是减函数,求实数a的取值范围.20.(12分)已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性即没患病.下面是两种化验方法:方案甲:逐个化验,直到能确定患病动物为止.方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.(Ⅰ)求依方案甲所需化验次数不少于依方案乙所需化验次数的概率;(Ⅱ)ξ表示依方案乙所需化验次数,求ξ的期望.21.(12分)双曲线的中心为原点O,焦点在x轴上,两条渐近线分别为l1,l2,经过右焦点F垂直于l1的直线分别交l1,l2于A,B两点.已知||、||、||成等差数列,且与同向.(Ⅰ)求双曲线的离心率;(Ⅱ)设AB被双曲线所截得的线段的长为4,求双曲线的方程.22.(12分)设函数f(x)=x﹣xlnx.数列{a n}满足0<a1<1,a n+1=f (a n).(Ⅰ)证明:函数f(x)在区间(0,1)是增函数;(Ⅱ)证明:a n<a n+1<1;(Ⅲ)设b∈(a1,1),整数.证明:a k+1>b.2008年全国统一高考数学试卷(理科)(全国卷Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2008•全国卷Ⅰ)函数的定义域为()A.{x|x≥0}B.{x|x≥1}C.{x|x≥1}∪{0}D.{x|0≤x≤1}【分析】偶次开方的被开方数一定非负.x(x﹣1)≥0,x≥0,解关于x的不等式组,即为函数的定义域.【解答】解:由x(x﹣1)≥0,得x≥1,或x≤0.又因为x≥0,所以x≥1,或x=0;所以函数的定义域为{x|x≥1}∪{0}故选C.2.(5分)(2008•全国卷Ⅰ)掷一个骰子,向上一面的点数大于2且小于5的概率为p1,拋两枚硬币,正面均朝上的概率为p2,则()A.p1<p2 B.p1>p2 C.p1=p2D.不能确定【分析】计算出各种情况的概率,然后比较即可.【解答】解:大于2小于5的数有2个数,∴p1==;投掷一次正面朝上的概率为,两次正面朝上的概率为p2=×=,∵>,∴p1>p2.故选B.3.(5分)(2008•全国卷Ⅰ)在△ABC中,=,=.若点D满足=2,则=()A.B.C.D.【分析】把向量用一组向量来表示,做法是从要求向量的起点出发,尽量沿着已知向量,走到要求向量的终点,把整个过程写下来,即为所求.本题也可以根据D点把BC分成一比二的两部分入手.【解答】解:∵由,∴,∴.故选A4.(5分)(2008•全国卷Ⅰ)设a∈R,且(a+i)2i为正实数,则a=()A.2 B.1 C.0 D.﹣1【分析】注意到a+bi(a,b∈R)为正实数的充要条件是a>0,b=0 【解答】解:(a+i)2i=(a2+2ai﹣1)i=﹣2a+(a2﹣1)i>0,a=﹣1.故选D.5.(5分)(2008•全国卷Ⅰ)已知等差数列{a n}满足a2+a4=4,a3+a5=10,则它的前10项的和S10=()A.138 B.135 C.95 D.23【分析】本题考查的知识点是等差数列的性质,及等差数列前n项和,根据a2+a4=4,a3+a5=10我们构造关于基本量(首项及公差)的方程组,解方程组求出基本量(首项及公差),进而代入前n项和公式,即可求解.【解答】解:∵(a3+a5)﹣(a2+a4)=2d=6,∴d=3,a1=﹣4,∴S10=10a1+=95.故选C6.(5分)(2008•全国卷Ⅰ)若函数y=f(x)的图象与函数y=ln的图象关于直线y=x对称,则f(x)=()A.e2x﹣2B.e2x C.e2x+1D.e2x+2【分析】由函数y=f(x)的图象与函数y=ln的图象关于直线y=x 对称知这两个函数互为反函数,故只要求出函数y=f(x)的反函数即可,欲求原函数的反函数,即从原函数y=ln中反解出x,后再进行x,y互换,即得反函数的解析式.【解答】解:∵,∴,∴x=(e y﹣1)2=e2y﹣2,改写为:y=e2x﹣2∴答案为A.7.(5分)(2008•全国卷Ⅰ)设曲线在点(3,2)处的切线与直线ax+y+1=0垂直,则a=()A.2 B.C.D.﹣2【分析】(1)求出已知函数y在点(3,2)处的斜率;(2)利用两条直线互相垂直,斜率之间的关系k1•k2=﹣1,求出未知数a.【解答】解:∵y=∴y′=﹣∵x=3∴y′=﹣即切线斜率为﹣∵切线与直线ax+y+1=0垂直∴直线ax+y+1=0的斜率为﹣a.∴﹣•(﹣a)=﹣1得a=﹣2故选D.8.(5分)(2008•全国卷Ⅰ)为得到函数的图象,只需将函数y=sin2x的图象()A.向左平移个长度单位B.向右平移个长度单位C.向左平移个长度单位D.向右平移个长度单位【分析】先根据诱导公式将函数化为正弦的形式,再根据左加右减的原则进行平移即可得到答案.【解答】解:∵,只需将函数y=sin2x的图象向左平移个单位得到函数的图象.故选A.9.(5分)(2008•全国卷Ⅰ)设奇函数f(x)在(0,+∞)上为增函数,且f(1)=0,则不等式<0的解集为()A.(﹣1,0)∪(1,+∞)B.(﹣∞,﹣1)∪(0,1)C.(﹣∞,﹣1)∪(1,+∞)D.(﹣1,0)∪(0,1)【分析】首先利用奇函数定义与得出x与f(x)异号,然后由奇函数定义求出f(﹣1)=﹣f(1)=0,最后结合f(x)的单调性解出答案.【解答】解:由奇函数f(x)可知,即x与f (x)异号,而f(1)=0,则f(﹣1)=﹣f(1)=0,又f(x)在(0,+∞)上为增函数,则奇函数f(x)在(﹣∞,0)上也为增函数,当0<x<1时,f(x)<f(1)=0,得<0,满足;当x>1时,f(x)>f(1)=0,得>0,不满足,舍去;当﹣1<x<0时,f(x)>f(﹣1)=0,得<0,满足;当x<﹣1时,f(x)<f(﹣1)=0,得>0,不满足,舍去;所以x的取值范围是﹣1<x<0或0<x<1.故选D.10.(5分)(2008•全国卷Ⅰ)若直线=1与圆x2+y2=1有公共点,则()A.a2+b2≤1 B.a2+b2≥1 C. D.【分析】用圆心到直线的距离小于或等于半径,可以得到结果.【解答】解:直线与圆有公共点,即直线与圆相切或相交得:d≤r ,∴故选D.11.(5分)(2008•全国卷Ⅰ)已知三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC内的射影为△ABC的中心,则AB1与底面ABC所成角的正弦值等于()A.B. C. D.【分析】法一:由题意可知三棱锥A1﹣ABC为正四面体,设棱长为2,求出AB1及三棱锥的高,由线面角的定义可求出答案;法二:先求出点A1到底面的距离A1D的长度,即知点B1到底面的距离B1E的长度,再求出AE的长度,在直角三角形AEB1中求AB1与底面ABC所成角的正切,再由同角三角函数的关系求出其正弦.【解答】解:(法一)因为三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC内的射影为△ABC的中心,设为D,所以三棱锥A1﹣ABC为正四面体,设棱长为2,则△AA1B1是顶角为120°等腰三角形,所以AB1=2×2×sin60°=2,A1D==,所以AB1与底面ABC所成角的正弦值为==;(法二)由题意不妨令棱长为2,点B1到底面的距离是B1E,如图,A1在底面ABC内的射影为△ABC的中心,设为D,故DA=,由勾股定理得A1D==故B1E=,如图作A1S⊥AB于中点S,易得A1S=,所以AB1==2,所以AB1与底面ABC所成角的正弦值sin∠B1AE==.故选B.12.(5分)(2008•全国卷Ⅰ)如图,一环形花坛分成A,B,C,D四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为()A.96 B.84 C.60 D.48【分析】这道题比起前几年出的高考题要简单些,只要分类清楚没有问题,分为三类:分别种两种花、三种花、四种花,分这三类来列出结果.【解答】解:分三类:种两种花有A42种种法;种三种花有2A43种种法;种四种花有A44种种法.共有A42+2A43+A44=84.故选B二、填空题(共4小题,每小题5分,满分20分)13.(5分)(2008•全国卷Ⅰ)若x,y满足约束条件,则z=2x﹣y的最大值为9.【分析】首先作出可行域,再作出直线l0:y=2x,将l0平移与可行域有公共点,直线y=2x﹣z在y轴上的截距最小时,z有最大值,求出此时直线y=2x﹣z经过的可行域内的点的坐标,代入z=2x﹣y中即可.【解答】解:如图,作出可行域,作出直线l0:y=2x,将l0平移至过点A处时,函数z=2x﹣y有最大值9.14.(5分)(2008•全国卷Ⅰ)已知抛物线y=ax2﹣1的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为2.【分析】先根据抛物线y=ax2﹣1的焦点坐标为坐标原点,求得a,得到抛物线方程,进而可知与坐标轴的交点的坐标,进而可得答案.【解答】解:由抛物线y=ax2﹣1的焦点坐标为坐标原点得,,则与坐标轴的交点为(0,﹣1),(﹣2,0),(2,0),则以这三点围成的三角形的面积为故答案为215.(5分)(2008•全国卷Ⅰ)在△ABC中,AB=BC,.若以A,B为焦点的椭圆经过点C,则该椭圆的离心率e=.【分析】设AB=BC=1,,则,由此可知,从而求出该椭圆的离心率.【解答】解:设AB=BC=1,,则,∴,.答案:.16.(5分)(2008•全国卷Ⅰ)等边三角形ABC与正方形ABDE有一公共边AB,二面角C﹣AB﹣D的余弦值为,M,N分别是AC,BC 的中点,则EM,AN所成角的余弦值等于.【分析】先找出二面角的平面角,建立边之间的等量关系,再利用向量法将所求异面直线用基底表示,然后利用向量的所成角公式求出所成角即可.【解答】解:设AB=2,作CO⊥面ABDE,OH⊥AB,则CH⊥AB,∠CHO为二面角C﹣AB﹣D的平面角,结合等边三角形ABC与正方形ABDE可知此四棱锥为正四棱锥,则,=故EM,AN所成角的余弦值故答案为:三、解答题(共6小题,满分74分)17.(10分)(2008•全国卷Ⅰ)设△ABC的内角A,B,C所对的边长分别为a,b,c,且acosB﹣bcosA=c.(Ⅰ)求的值;(Ⅱ)求tan(A﹣B)的最大值.【分析】本题考查的知识点是正弦定理及两角和与差的正切函数,(Ⅰ)由正弦定理的边角互化,我们可将已知中,进行转化得到sinAcosB=4cosAsinB,再利用弦化切的方法即可求的值.(Ⅱ)由(Ⅰ)的结论,结合角A,B,C为△ABC的内角,我们易得tanA=4tanB>0,则tan(A﹣B)可化为,再结合基本不等式即可得到tan(A﹣B)的最大值.【解答】解:(Ⅰ)在△ABC中,,由正弦定理得即sinAcosB=4cosAsinB,则;(Ⅱ)由得tanA=4tanB>0当且仅当时,等号成立,故当时,tan(A﹣B)的最大值为.18.(12分)(2008•全国卷Ⅰ)四棱锥A﹣BCDE中,底面BCDE为矩形,侧面ABC⊥底面BCDE,BC=2,,AB=AC.(Ⅰ)证明:AD⊥CE;(Ⅱ)设CE与平面ABE所成的角为45°,求二面角C﹣AD﹣E的大小.【分析】(1)取BC中点F,证明CE⊥面ADF,通过证明线面垂直来达到证明线线垂直的目的.(2)在面AED内过点E作AD的垂线,垂足为G,由(1)知,CE⊥AD,则∠CGE即为所求二面角的平面角,△CGE中,使用余弦定理求出此角的大小.【解答】解:(1)取BC中点F,连接DF交CE于点O,∵AB=AC,∴AF⊥BC.又面ABC⊥面BCDE,∴AF⊥面BCDE,∴AF⊥CE.再根据,可得∠CED=∠FDC.又∠CDE=90°,∴∠OED+∠ODE=90°,∴∠DOE=90°,即CE⊥DF,∴CE⊥面ADF,∴CE⊥AD.(2)在面ACD内过C点作AD的垂线,垂足为G.∵CG⊥AD,CE⊥AD,∴AD⊥面CEG,∴EG⊥AD,则∠CGE即为所求二面角的平面角.作CH⊥AB,H为垂足.∵平面ABC⊥平面BCDE,矩形BCDE中,BE⊥BC,故BE⊥平面ABC,CH⊂平面ABC,故BE⊥CH,而AB∩BE=B,故CH⊥平面ABE,∴∠CEH=45°为CE与平面ABE所成的角.∵CE=,∴CH=EH=.直角三角形CBH中,利用勾股定理求得BH===1,∴AH=AB﹣BH=AC﹣1;直角三角形ACH中,由勾股定理求得AC2=CH2+AH2=3+(AC﹣1)2,∴AB=AC=2.由面ABC⊥面BCDE,矩形BCDE中CD⊥CB,可得CD⊥面ABC,故△ACD为直角三角形,AD===,故CG===,DG==,,又,则,∴,即二面角C﹣AD﹣E的大小.19.(12分)(2010•大纲版Ⅱ)已知函数f(x)=﹣x2+ax+1﹣lnx.(Ⅰ)当a=3时,求函数f(x)的单调递增区间;(Ⅱ)若f(x)在区间(0,)上是减函数,求实数a的取值范围.【分析】(1)求单调区间,先求导,令导函数大于等于0即可.(2)已知f(x)在区间(0,)上是减函数,即f′(x)≤0在区间(0,)上恒成立,然后用分离参数求最值即可.【解答】解:(Ⅰ)当a=3时,f(x)=﹣x2+3x+1﹣lnx∴解f′(x)>0,即:2x2﹣3x+1<0函数f(x)的单调递增区间是.(Ⅱ)f′(x)=﹣2x+a﹣,∵f(x)在上为减函数,∴x∈时﹣2x+a﹣≤0恒成立.即a≤2x+恒成立.设,则∵x∈时,>4,∴g′(x)<0,∴g(x)在上递减,∴g(x)>g()=3,∴a≤3.20.(12分)(2008•全国卷Ⅰ)已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性即没患病.下面是两种化验方法:方案甲:逐个化验,直到能确定患病动物为止.方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.(Ⅰ)求依方案甲所需化验次数不少于依方案乙所需化验次数的概率;(Ⅱ)ξ表示依方案乙所需化验次数,求ξ的期望.【分析】(1)由题意得到这两种方案的化验次数,算出在各个次数下的概率,写出化验次数的分布列,求出方案甲所需化验次数不少于依方案乙所需化验次数的概率.(2)根据上一问乙的化验次数的分布列,利用期望计算公式得到结果.【解答】解:(Ⅰ)若乙验两次时,有两种可能:①先验三只结果为阳性,再从中逐个验时,恰好一次验中概率为:②先验三只结果为阴性,再从其它两只中验出阳性(无论第二次试验中有没有,均可以在第二次结束),∴乙只用两次的概率为.若乙验三次时,只有一种可能:先验三只结果为阳性,再从中逐个验时,恰好二次验中概率为在三次验出时概率为∴甲种方案的次数不少于乙种次数的概率为:(Ⅱ)ξ表示依方案乙所需化验次数,∴ξ的期望为Eξ=2×0.6+3×0.4=2.4.21.(12分)(2008•全国卷Ⅰ)双曲线的中心为原点O,焦点在x轴上,两条渐近线分别为l1,l2,经过右焦点F垂直于l1的直线分别交l1,l2于A,B两点.已知||、||、||成等差数列,且与同向.(Ⅰ)求双曲线的离心率;(Ⅱ)设AB被双曲线所截得的线段的长为4,求双曲线的方程.【分析】(1)由2个向量同向,得到渐近线的夹角范围,求出离心率的范围,再用勾股定理得出直角三角形的2个直角边的长度比,联想到渐近线的夹角,求出渐近线的斜率,进而求出离心率.(2)利用第(1)的结论,设出双曲线的方程,将AB方程代入,运用根与系数的关系及弦长公式,求出待定系数,即可求出双曲线方程.【解答】解:(1)设双曲线方程为,由,同向,∴渐近线的倾斜角为(0,),∴渐近线斜率为:,∴.∵||、||、||成等差数列,∴|OB|+|OA|=2|AB|,∴|AB|2=(|OB|﹣|OA|)(|OB|+|OA|)=(|OB|﹣|OA|)•2|AB|,∴,∴,可得:,而在直角三角形OAB中,注意到三角形OAF也为直角三角形,即tan∠AOB=,而由对称性可知:OA的斜率为k=tan,∴,∴2k2+3k﹣2=0,∴;∴,∴,∴.(2)由第(1)知,a=2b,可设双曲线方程为﹣=1,∴c=b.由于AB的倾斜角为+∠AOB,故AB的斜率为tan(+∠AOB )=﹣cot(∠AOB)=﹣2,∴AB的直线方程为y=﹣2(x﹣b),代入双曲线方程得:15x2﹣32bx+84b2=0,∴x1+x2=,x1•x2=,∴4=•=•,即16=﹣112b2,∴b2=9,所求双曲线方程为:﹣=1.22.(12分)(2008•全国卷Ⅰ)设函数f(x)=x﹣xlnx.数列{a n}满足0<a1<1,a n+1=f(a n).(Ⅰ)证明:函数f(x)在区间(0,1)是增函数;(Ⅱ)证明:a n<a n+1<1;(Ⅲ)设b∈(a1,1),整数.证明:a k+1>b.【分析】(1)首先求出函数的导数,然后令f′(x)=0,解出函数的极值点,最后根据导数判断函数在区间(0,1)上的单调性,从而进行证明.(2)由题意数列{a n}满足0<a1<1,a n+1=f(a n),求出a n+1=a n﹣a n lna n,然后利用归纳法进行证明;=f(a n)可得a k+1=a k﹣b﹣a k,然后(3)由题意f(x)=x﹣xlnx,a n+1进行讨论求解.【解答】解:(Ⅰ)证明:∵f(x)=x﹣xlnx,∴f′(x)=﹣lnx,当x∈(0,1)时,f′(x)=﹣lnx>0故函数f(x)在区间(0,1)上是增函数;(Ⅱ)证明:(用数学归纳法)(i)当n=1时,0<a1<1,a1lna1<0,a2=f(a1)=a1﹣a1lna1>a1,∵函数f(x)在区间(0,1)是增函数且函数f(x)在x=1处连续,∴f(x)在区间(0,1]是增函数,a2=f(a1)=a1﹣a1lna1<1,即a1<a2<1成立,(ⅱ)假设当x=k(k∈N+)时,a k<a k+1<1成立,即0<a1≤a k<a k+1<1,那么当n=k+1时,由f(x)在区间(0,1]是增函数,0<a1≤a k<a k+1<1,得f(a k)<f(a k+1)<f(1),=f(a n),而a n+1则a k=f(a k),a k+2=f(a k+1),a k+1<a k+2<1,+1也就是说当n=k+1时,a n<a n+1<1也成立,根据(ⅰ)、(ⅱ)可得对任意的正整数n,a n<a n+1<1恒成立.=f(a n)可得(Ⅲ)证明:由f(x)=x﹣xlnx,a n+1a k+1=a k﹣a k lna k=,1)若存在某i≤k2,满足a i≤b3,则由(Ⅱ)知:a k+1﹣b<a i﹣b≥04,2)若对任意i≤k6,都有a i>b,则a k+1=a k﹣a k lna k==≥a1﹣b1﹣ka1ln=0,即a k>b成立.+1。
2008-数一真题大全及答案
的非零特征值为___________. 【答案】应填 1.
【详解】根据题设条件,得
A(1
,
2
)
=
(
A1
,
A2
)
=
(0,
21
+
2
)
=
(1
,
2
)
0 0
2 1
.
记 P = (1,2 ) ,因1,2 线性无关,故 P = (1,2 ) 是可逆矩阵.因此
AP
=
P
0 0
2 1
,从而
P−1
AP
=
=1.
故所求得切线方程为 y = x +1.
( 11 ) 已 知 幂 级 数 an (x + 2)n 在 x = 0 处 收 敛 , 在 x = −4 处 发 散 , 则 幂 级 数 n=0
an (x − 2)n 的收敛域为
.
n=0
【答案】 (1,5] .
【详解】由题意,知 an (x + 2)n 的收敛域为 (−4, 0] ,则 an xn 的收敛域为 (−2, 2] .所
.
【答案】 应填 y = x +1.
【详解】设 F(x, y) = sin(xy) + ln( y − x) − x ,则
Fx (x,
y)
=
y cos(xy) +
−1 y−x
−1,
Fx (x,
y)
=
x cos(xy)
+
1 y−
x
,
Fx (0,1)
=
−1,
Fy (0,1)
= 1.于是斜率
k
=
−
2008年数学试题参考答案
2008年数学试题参考答案一、选择题题号 1 2 3 4 5 6 7 8 9 10 答案 DBBCAACBDC二、选择题 11.70; 12,1; 13.5-; 14.27;15.9分(或9);16.20; 17.2; 18.76.三、解答题 19.解:原式21(1)x x xx -=⨯-11x =-.当2x =-时,原式13=-.20.解:(1)500; (2)如图1;(3)A 型号发芽率为90%,B 型号发芽率为92.5%, D 型号发芽率为94%,C 型号发芽率为95%.∴应选C 型号的种子进行推广. (4)3701(B )6303703804705P ==+++取到型号发芽种子. 21.解:(1)由33y x =-+,令0y =,得330x -+=.1x ∴=.(10)D ∴,. (2)设直线2l 的解析表达式为y kx b =+,由图象知:4x =,0y =;3x =,32y =-.4033.2k b k b +=⎧⎪∴⎨+=-⎪⎩,326.k b ⎧=⎪∴⎨⎪=-⎩,∴直线2l 的解析表达式为362y x =-. (3)由3336.2y x y x =-+⎧⎪⎨=-⎪⎩,解得23.x y =⎧⎨=-⎩,(23)C ∴-,. 3A D = ,193322A D C S ∴=⨯⨯-=△.(4)(63)P ,.22.解:(1)B -,C -; (2)过点C 作C D O A ⊥于点D ,如图2,则C D =.图1/km在R t AC D △中,30ACD ∠=,C D =,cos 302C D C A∴==.200C A ∴=.20020630-=,5611+=,∴台风从生成到最初侵袭该城要经过11小时.23.观察计算 (1)2a +; (2探索归纳(1)①<;②>;(2)222212(2)420d d a a -=+-=-.①当4200a ->,即5a >时,22120d d ->,120d d ∴->.12d d ∴>;②当4200a -=,即5a =时,22120d d -=,120d d ∴-=.12d d ∴=;③当4200a -<,即5a <时,22120d d -<,120d d ∴-<.12d d ∴<.综上可知:当5a >时,选方案二; 当5a =时,选方案一或方案二;当15a <<(缺1a >不扣分)时,选方案一. 24.解:(1)A B A P =;AB AP ⊥. (2)BQ AP =;BQ AP ⊥.证明:①由已知,得EF FP =,EF FP ⊥,45EPF ∴∠=.又A C B C ⊥ ,45C Q P C PQ ∴∠=∠=.CQ CP ∴=.在Rt BCQ △和R t A C P △中,B C A C =,90BCQ ACP ∠=∠= ,CQ CP =,Rt Rt BCQ ACP ∴△≌△,BQ AP ∴=.②如图3,延长BQ 交A P 于点M .Rt Rt BCQ ACP △≌△,12∴∠=∠.在Rt BCQ △中,1390∠+∠=,又34∠=∠,lAB FC Q 图3M1234EP241390∴∠+∠=∠+∠=.90Q M A ∴∠=.BQ AP ∴⊥.(3)成立.证明:①如图4,45EPF ∠= ,45C PQ ∴∠= . 又A C B C ⊥ ,45C Q P C PQ ∴∠=∠= .CQ CP ∴=. 在Rt BCQ △和R t A C P △中,B C A C =,90BCQ ACP ∠=∠= ,CQ CP =,Rt Rt BCQ ACP ∴△≌△.BQ AP ∴=.②如图4,延长QB 交A P 于点N ,则PBN CBQ ∠=∠.Rt Rt BCQ ACP △≌△,BQC APC ∴∠=∠.在Rt BCQ △中,90BQC CBQ ∠+∠= ,90APC PBN ∴∠+∠=.90PNB ∴∠=. QB AP ∴⊥.25.解:(1)甲地当年的年销售额为211420x x ⎛⎫-+ ⎪⎝⎭万元; 2399020w x x =-+-甲.(2)在乙地区生产并销售时, 年利润222111590(5)9010105w x nx x x x n x ⎛⎫=-+-++=-+-- ⎪⎝⎭乙. 由214(90)(5)535145n ⎛⎫⨯-⨯--- ⎪⎝⎭=⎛⎫⨯- ⎪⎝⎭,解得15n =或5-. 经检验,5n =-不合题意,舍去,15n ∴=. (3)在乙地区生产并销售时,年利润2110905w x x =-+-乙,将18x =代入上式,得25.2w =乙(万元);将18x =代入2399020w x x =-+-甲,lABQP EF图4N C得23.4w =甲(万元).w w > 乙甲,∴应选乙地. 26.解:(1)25. (2)能.如图5,连结D F ,过点F 作FH AB ⊥于点H , 由四边形C D E F 为矩形,可知Q K 过D F 的中点O 时,Q K 把矩形C D E F 分为面积相等的两部分(注:可利用全等三角形借助割补法或用中心对称等方法说明),此时12.5QH OF ==.由20B F =,H B F C B A △∽△,得16H B =. 故12.5161748t +==.(3)①当点P 在E F 上6(25)7t ≤≤时,如图6.4QB t =,7D E EP t +=,由PQE BCA △∽△,得7202545030t t --=.21441t ∴=.②当点P 在F C 上6(57)7t ≤≤时,如图7.已知4QB t =,从而5P B t =,由735P F t =-,20B F =,得573520t t =-+. 解得172t =.(4)如图8,213t =;如图9,39743t =.(注:判断P G A B ∥可分为以下几种情形:当6027t <≤时,点P 下行,点G 上行,可知其中存在P G A B ∥的时刻,如图8;此后,点G 继续上行到点F 时,4t =,而点P 却在下行到点E 再沿E F 上行,发现点P 在E F 上运动时不存在P G A B ∥;当6577t ≤≤时,点P G ,均在F C 上,也不存在P G A B ∥;由于点P 比点G 先到达点C 并继续沿C D 下行,所以在6787t <<中存在P G A B ∥的时刻,如图9;当810t ≤≤时,点P G ,均在C D 上,不存在P G A B ∥)E B图5B图6E B图7B图8E B图92009年数学试题参考答案一、选择题二、填空题13.>; 14.1.2 × 107; 15.36.4; 16.1; 17.3; 18.20. 三、解答题 19.解:原式=()()1()a b a b a a a b +-+⋅-=1a b ++. 当a = 2,1-=b 时, 原式 = 2.【注:本题若直接代入求值,结果正确也相应给分】 20.解:(1)∵OE ⊥CD 于点E ,CD =24,∴ED =12C D =12.在Rt △DOE 中,∵sin ∠DOE =ED O D=1213,∴OD =13(m ).(2)OE 5.∴将水排干需:5÷0.5=10(小时).21.解:(1)30%; (2)如图1; (3)8021203=;(4)由于月销量的平均水平相同,从折线的走势看,A 品牌的月销量呈下降趋势,而B 品牌的月销量呈上升趋势. 所以该商店应经销B 品牌电视机.时间/月图1第一 第二 第三 第四 电视机月销量折线统计图22.解:(1)-3.t =-6.(2)分别将(-4,0)和(-3,-3)代入2y ax bx =+,得0164,393.a b a b =-⎧⎨-=-⎩解得 1,4.a b =⎧⎨=⎩向上.(3)-1(答案不唯一).【注:写出t >-3且t ≠0或其中任意一个数均给分】 23.解:实践应用(1)2;lc .16;13.(2)54.拓展联想(1)∵△ABC 的周长为l ,∴⊙O 在三边上自转了lc 周.又∵三角形的外角和是360°, ∴在三个顶点处,⊙O 自转了3601360=(周).∴⊙O 共自转了(lc+1)周.(2)lc+1.24.(1)证明:∵四边形BCGF 和CDHN 都是正方形,又∵点N 与点G 重合,点M 与点C 重合,∴FB = BM = MG = MD = DH ,∠FBM =∠MDH = 90°. ∴△FBM ≌ △MDH . ∴FM = MH .∵∠FMB =∠DMH = 45°,∴∠FMH = 90°.∴FM ⊥HM .(2)证明:连接MB 、MD ,如图2,设FM 与AC 交于点P . ∵B 、D 、M 分别是AC 、CE 、AE 的中点, ∴MD ∥BC ,且MD = BC = BF ;MB ∥CD , 且MB =CD =DH .∴四边形BCDM 是平行四边形. ∴ ∠CBM =∠CDM .又∵∠FBP =∠HDC ,∴∠FBM =∠MDH . ∴△FBM ≌ △MDH .图2AHCDEBFG NMP∴FM = MH , 且∠MFB =∠HMD .∴∠FMH =∠FMD -∠HMD =∠APM -∠MFB =∠FBP = 90°. ∴△FMH 是等腰直角三角形. (3)是.25.解:(1)0 ,3.(2)由题意,得2240x y +=, ∴11202y x =-.23180x z +=,∴2603z x =-.(3)由题意,得 121206023Q x y z x x x=++=+-+-.整理,得 11806Q x=-.由题意,得112022603x x ⎧-⎪⎪⎨⎪-⎪⎩解得 x ≤90.【注:事实上,0≤x ≤90 且x 是6的整数倍】由一次函数的性质可知,当x =90时,Q 最小. 此时按三种裁法分别裁90张、75张、0张.26.解:(1)1,85;(2)作QF ⊥AC 于点F ,如图3, AQ = CP = t ,∴3AP t=-.由△AQF ∽△ABC,4BC ==, 得45Q F t =.∴45Q Ft=.∴14(3)25S t t=-⋅,即22655St t=-+.(3)能. ①当DE ∥QB 时,如图4.∵DE ⊥PQ ,∴PQ ⊥QB ,四边形QBED 是直角梯形.P图4P图3F此时∠AQP =90°. 由△APQ ∽△ABC ,得AQ AP ACAB=,即335t t -=. 解得98t=.②如图5,当PQ ∥BC 时,DE ⊥BC ,四边形QBED 是直角梯形. 此时∠APQ =90°. 由△AQP ∽△ABC ,得 AQ AP ABAC=,即353t t -=. 解得158t =.(4)52t=或4514t=.【注:①点P 由C 向A 运动,DE 经过点C . 方法一、连接QC ,作QG ⊥BC 于点G ,如图6.PC t=,222QC QG CG =+2234[(5)][4(5)]55t t =-+--.由22PCQC=,得22234[(5)][4(5)]55tt t =-+--,解得52t =.方法二、由C QC P A Q==,得Q A C Q C A∠=∠,进而可得B BC Q∠=∠,得C QB Q=,∴52AQBQ ==.∴52t =.②点P 由A 向C 运动,DE 经过点C ,如图7.22234(6)[(5)][4(5)]55t t t -=-+--,4514t =】P图52010年河北省初中毕业生升学文化课考试数学试题参考答案一、选择题二、填空题13.5 14.5 15.41 16.1 17.36 π 18. =三、解答题19.解:)1(21-=+x x , 3=x .经检验知,3=x 是原方程的解.20.解:(1)如图1; 【注:若学生作图没用圆规,所画路线光滑且基本准确即给4分】(2)∵90π346π180⨯⨯=,∴点P 经过的路径总长为6 π. 21.解:(1)144;(2)如图2;)甲校的平均分为8.3分,中位数为7分;由于两校平均分相等,乙校成绩的中位数大于甲 校的中位数,所以从平均分和中位数角度上判断, 乙校的成绩较好. )因为选8名学生参加市级口语团体赛,甲校得10分的有8人,而乙校得10分的只有5人,所以应选甲校.22.解:(1)设直线DE 的解析式为b kx y +=,∵点D ,E 的坐标为(0,3)、(6,0),∴ ⎩⎨⎧+==.60,3b k b解得 ⎪⎩⎪⎨⎧=-=.3,21b k ∴ 321+-=x y .∵ 点M 在AB 边上,B (4,2),而四边形OABC 是矩形, ∴ 点M 的纵坐标为2. 又 ∵ 点M 在直线321+-=x y 上,∴ 2 = 321+-x .∴ x = 2.∴ M (2,2).(2)∵xm y =(x >0)经过点M (2,2),∴ 4=m .∴xy 4=.又 ∵ 点N 在BC 边上,B (4,2),∴点N 的横坐标为4.图1乙校成绩条形统计图8分 9分 分数10分 图27分∵ 点N 在直线321+-=x y 上, ∴ 1=y .∴ N (4,1). ∵ 当4=x 时,y =4x= 1,∴点N 在函数 xy 4= 的图象上. (3)4≤ m ≤8.23.解:(1)4 5 6;(2)不对.∵OP = 2,PQ = 3,OQ = 4,且42≠32 + 22,即OQ 2≠PQ 2 + OP 2, ∴OP 与PQ 不垂直.∴PQ 与⊙O 不相切. (3)① 3;②由①知,在⊙O 上存在点P ,P '到l 的距离为3,此时,OP 将不能再向下转动,如图3.OP 在绕点O 左右摆动过程中所扫过的最大扇形就是P 'OP .连结P 'P ,交OH 于点D . ∵PQ ,P 'Q '均与l 垂直,且PQ =P '3Q '=,∴四边形PQ Q 'P '是矩形.∴OH ⊥P P ',PD =P 'D . 由OP = 2,OD = OH -HD = 1,得∠DOP = 60°. ∴∠PO P ' = 120°.∴ 所求最大圆心角的度数为120°.24.解:(1)AO = BD ,AO ⊥BD ;(2)证明:如图4,过点B 作BE ∥CA 交DO 于E ,∴∠ACO = ∠BEO .又∵AO = OB ,∠AOC = ∠BOE , ∴△AOC ≌ △BOE .∴AC = BE .又∵∠1 = 45°,∴∠ACO = ∠BEO = 135°.∴∠DEB = 45°.∵∠2 = 45°,∴BE = BD ,∠EBD = 90°.∴AC = BD . 延长AC 交DB 的延长线于F ,如图4.∵BE ∥AC ,∴∠AFD = 90°.∴AC ⊥BD .(3)如图5,过点B 作BE ∥CA 交DO 于E ,∴∠BEO = ∠ACO .又∵∠BOE = ∠AOC , ∴△BOE ∽ △AOC . ∴AOBO ACBE =.又∵OB = kAO ,图4A D OB C21 MNEFA OBC1D 2图5M NEl图3由(2)的方法易得 BE = BD .∴k AC BD =.25.解:(1)y = 2t ;(2)当BP = 1时,有两种情形:①如图6,若点P 从点M 向点B 运动,有 MB = BC 21= 4,MP = MQ = 3, ∴PQ = 6.连接EM ,∵△EPQ 是等边三角形,∴EM ⊥PQ .∴33=EM . ∵AB = 33,∴点E 在AD 上.∴△EPQ 与梯形ABCD 重叠部分就是△EPQ ,其面 积为39.②若点P 从点B 向点M 运动,由题意得 5=t . PQ = BM + M Q -BP = 8,PC = 7.设PE 与AD 交于点F ,QE 与AD 或AD 的延长线交于点G ,过点P 作PH ⊥AD 于点H ,则 HP = 33,AH = 1.在Rt △HPF 中,∠HPF = 30°, ∴HF = 3,PF = 6.∴FG = FE = 2.又∵FD = 2, ∴点G 与点D 重合,如图7.此时△EPQ 与梯形ABCD 的重叠部分就是梯形FPCG ,其面积为3227. (3)能.4≤t ≤5.26.解:(1)140 57500;(2)w 内 = x (y -20)- 62500 = 1001-x 2+130 x 62500-,w 外 = 1001-x 2+(150a -)x . (3)当x = )1001(2130-⨯-= 6500时,w 内最大;分 由题意得 2214()(62500)1300(150)100114()4()100100a ⨯-⨯----=⨯-⨯-, 解得a 1 = 30,a 2 = 270(不合题意,舍去).所以 a = 30.(4)当x = 5000时,w 内 = 337500, w 外 =5000500000a -+.若w 内 < w 外,则a <32.5;C P M图6若w内= w外,则a = 32.5;若w内>w外,则a>32.5.所以,当10≤a <32.5时,选择在国外销售;当a = 32.5时,在国外和国内销售都一样;当32.5<a ≤40时,选择在国内销售.图7。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2008年10月份试题精编(1)数学试题
(一)
一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有
一项是符合题目要求的.
1.下列函数中,在x =0处的导数不等于零的是 ( ) A .)1(x x y -=
B .x e x y -+=
C .y=l n (1-x 2)
D .x e x y ⋅=2
2.设曲线2x y =在点P 处的切线斜率为3,则点P 的坐标为 ( )
A .(3,9)
B .(-3,9)
C .(
49
,23) D .(4
9,23-
) 3.某质点的运动方程是2)12(--=t t S ,则在t=1s 时的瞬时速度为 ( )
A .-1
B .-3
C .7
D .13 4.函数0)(x x x f =在处连续是0)(x x x f =在处可导的
( )
A .充分不必要条件
B .必要不充分条件
C .充要条件
D .不充分不必要条件
5.函数)0,4
(2cos π
在点x y =处的切线方程是
( )
A .024=++πy x
B .024=+-πy x
C .024=--πy x
D .024=-+πy x
6.函数3
2
)1()2()(-+=x x x f 的极大值点是
( )
A .x =2
B .x =1
C .x =-1
D .x =-2
7.函数2
12x x
y +=在 ( )
A .(-∞,+∞)内是增函数
B .(-∞,+∞)内是减函数
C .(-1,1)内是增函数,在其余区间内是减函数
D .(-1,1)内是减函数,在其余区间内是增函数
8.函数x x x f cos 3sin )(3+=的值域为 ( )
A .[-4,4]
B .[-3,3]
C .)4,4[-
D .(-3,3)
9.已知函数2)7215()14(3
1)(223
+--+--=
x m m x m x x f 在(-∞,+∞)上是增函数, 则m 的取值范围是 ( )
A .m <-4或m >-2
B .-4<m <-2
C .2<m <4
D .m <2或m >4
10.已知函数bx ax x x f --=23)(的图象与x 轴切于点(1,0),则)(x f 的极值为( ) A .极大值
274
,极小值0 B .极大值0,极小值27
4
C .极小值-27
4
,极大值0
D .极大值-
27
4
,极小值0 11.已知a x x g x g a x x f =-=在其中)(),()()(处连续但不可导,则a x x f =在)(处( ) A .连续但不可导 B .可能可导,也可能不可导
C .不连续
D .可导
12.已知函数1)6()(23++++=x a ax x x f 有极大值和极小值,则a 的取值范围是( ) A .21<<-a
B .63<<-a
C .63>-<a a 或
D .21>-<a a 或
(二)
一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有
一项是符合题目要求的. 1.方程3lg =+x x 的解所在的区间为
( )
A .(0,1)
B .(1,2)
C .(2,3)
D .(3,+∞)
2.设全集 A U B A U ,],5,4,3,2,1{==( U B)={1,2},A ∩B=φ,则满足( U A )∩B 的子集的个数是
( )
A .2
B .6
C .7
D .8
3.设双曲线1149222
2
22=+=-y x a
y a x 与圆没有公共点,则实数a 的取值范围是 ( )
A .),0()0,(+∞-∞
B .)2
1
,0()0,21( -
C .),3
1()31,(+∞--∞
D .),2
1()31,31()21,(+∞---∞
4.已知条件甲:x y x y x 2:,42222≤+≤+条件乙,则甲是乙的 ( )
A .充分不必要条件
B .必要不充分条件
C .充要条件
D .不充分不必要条件 5.不等式x x >+2的解集是
( )
A .}22|{<≤-x x
B .}21|{<<-x x
C .}20|{<≤x x
D .}2|{<x x
6.直线3+=x y 与曲线14
||92=-x x y 的交点个数是 ( )
A .0
B .1
C .2
D .3 7.如果实数x 、y 满足3)2(3
2
=++y x ,那么
x
y
的最大值是
( )
A .
2
1 B .
2
3 C .3 D .π4
3
8.正三棱锥S —ABC 相邻两个侧面所成的二面角为α,则α的取值范围是 ( )
A .),0(π
B .),6
(
ππ
C .),3
(
ππ
D .)2
,3(
ππ 9.设x x x f s
i n )(=,若)()(]2
,2[,2121x f x f x x >-∈且π
π,则下列结论中成立的是( )
A .21x x >
B .021>+x x
C .21x x <
D .2
22
1x x >
10.不等式)2
1,0(0log 2
∈<-x x x a 当时恒成立,则a 的取值范围是 ( )
A .
116
1
<≤a B .
116
1
<<a C .16
10≤<a D .16
10<<a 11.设θ是第二象限角,则必有
( )
A .2
cot 2
tan θ
θ
< B .2
cot 2
tan θ
θ
>
C .2
cos
2
sin
θ
θ
>
D .2
cos
2
sin
θ
θ
<
12.已知定义在R 上的函数)(x f 是增函数,且经过A (0,-1),B (3,1)两点,那么
1|)1(|<+x f 的解集是
( )
A .}3|{≥x x
B .}21|{<<-x x
C .}2|{≥x x
D .}21|{>-≤x x x 或
参考答案
(一)
1.A 2.C 3.B 4.B 5.D 6.D 7.D 8.B 9.C 10.A 11.D 12.C
(二)
1.C 2.D 3.C 4.B 5.A 6.D 7.C 8.C 9.D 10.A 11.B 12.B。