椭圆基础训练题(含答案)

合集下载

高三椭圆练习题及答案

高三椭圆练习题及答案

高三椭圆练习题及答案1. 技术背景在二维几何中,椭圆是一种重要的图形,具有许多应用。

高三学生需要掌握椭圆的基本概念、性质和相关的计算方法。

为了帮助高三学生巩固椭圆的知识,以下是一些椭圆练习题及答案。

2. 填空题(1) 如果椭圆E的长半轴和短半轴分别为a和b,则椭圆的离心率为________。

(2) 椭圆的焦点和直径的关系是________。

(3) 椭圆的离心率小于1,原点(0,0)在椭圆的________。

(4) 椭圆的离心率等于1,原点(0,0)在椭圆的________。

(5) 椭圆的离心率大于1,原点(0,0)在椭圆的________。

答案:(1) 椭圆的离心率为c/a;(2) 椭圆的焦点和直径的关系是焦点到椭圆周上任意一点的距离之和等于该点到椭圆的两个直径的距离之和;(3) 原点(0,0)在椭圆的右焦点所在的象限;(4) 原点(0,0)在椭圆的焦点所在的象限;(5) 原点(0,0)在椭圆的左焦点所在的象限。

3. 选择题(1) 下列各图中,哪个是椭圆?A. ![图1](image1.png)B. ![图2](image2.png)C. ![图3](image3.png)D. ![图4](image4.png)答案:C. ![图3](image3.png)(2) 椭圆的离心率等于1,这个椭圆的形状是________。

A. 长圆B. 倍圆C. 圆D. 短圆答案:C. 圆4. 计算题已知椭圆的焦点为F1(-3, 0)和F2(3, 0),离心率为2/3,求椭圆的方程。

答案:椭圆的焦距为2ae = 6,离心距为2c = 2/3 * 2a,解得a = 9,所以椭圆的方程为(x^2)/81 + (y^2)/36 = 1。

5. 应用题小明要设计一个椭圆形的游泳池,他希望池子的长半轴为8米,短半轴为6米。

假设池子的边界是一个完整的椭圆,求池子的周长和面积。

答案:椭圆的周长为2π * √((a^2 + b^2)/2) = 2π * √((8^2 + 6^2)/2) ≈ 39.97米。

椭圆的定义与标准方程__基础练习(含答案)

椭圆的定义与标准方程__基础练习(含答案)

椭圆的定义与标准方程一.选择题(共19小题)1.若F1(3,0),F2(﹣3,0),点P到F1,F2距离之和为10,则P点的轨迹方程是()A.B.C.D.或2.一动圆与圆x2+y2+6x+5=0及圆x2+y2﹣6x﹣91=0都内切,则动圆圆心的轨迹是()A.椭圆B.双曲线C.抛物线D.圆3.椭圆上一点P到一个焦点的距离为5,则P 到另一个焦点的距离为()A.4B.5C.6D.10 4.已知坐标平面上的两点A(﹣1,0)和B(1,0),动点P到A、B两点距离之和为常数2,则动点P的轨迹是()A.椭圆B.双曲线C.抛物线D.线段5.椭圆上一动点P到两焦点距离之和为()A.10 B.8C.6D.不确定6.已知两点F1(﹣1,0)、F2(1,0),且|F1F2|是|PF1|与|PF2|的等差中项,则动点P的轨迹方程是(轨迹方程是( )A.B.C.D.7.已知F1、F2是椭圆=1的两焦点,经点F2的直线交椭圆于点A、B,若|AB|=5,则|AF 1|+|BF1|等于(等于( )A.16 B.11 C.8D.38.设集合A={1,2,3,4,5},a,b∈A,则方程表示焦点位于y轴上的椭圆()A.5个B.10个C.20个D.25个9.方程=10,化简的结果是(,化简的结果是( )A.B.C.D.10.平面内有一长度为2的线段AB和一动点P,若满足|PA|+|PB|=8,则|P A|的取值范围是(围是( )A.[1,4]B.[2,6]C.[3,5]D.[3,6]11.设定点F1(0,﹣3),F2(0,3),满足条件|PF1|+|PF2|=6,则动点P的轨迹是()A.椭圆B.线段C.椭圆或线段或不存在圆或线段或不存在 D.不存在存在12.已知△ABC 的周长为20,且顶点B (0,﹣4),C (0,4),则顶点A 的轨迹方程是(是( ) A .(x ≠0)B .(x ≠0) C .(x ≠0)D . (x ≠0)13.已知P 是椭圆上的一点,则P 到一条准线的距离与P 到相应焦点的距离之比为(比为( )A .B .C .D .14.平面内有两定点A 、B 及动点P ,设命题甲是:“|PA|+|PB|是定值”,命题乙是:“点P 的轨迹是以A .B 为焦点的椭圆”,那么(,那么( ) A . 甲是乙成立的充分不必要条件是乙成立的充分不必要条件 B . 甲是乙成立的必要不充分条件是乙成立的必要不充分条件 C . 甲是乙成立的充要条件是乙成立的充要条件 D . 甲是乙成立的非充分非必要条件是乙成立的非充分非必要条件15.如果方程表示焦点在y 轴上的椭圆,则m 的取值范围是(的取值范围是( )A . 3<m <4 B .C .D .16.“mn >0”是“mx 2+ny 2=mn 为椭圆”的(的( )条件.)条件. A . 必要不充分要不充分 B . 充分不必要分不必要 C . 充要 D . 既不充分又不必要不充分又不必要17.已知动点P (x 、y )满足10=|3x+4y+2|,则动点P 的轨迹是( ) A . 椭圆 B . 双曲线曲线C . 抛物线物线D . 无法确定法确定18.已知A (﹣1,0),B (1,0),若点C (x ,y )满足=( ) A . 6 B .4 C .2 D . 与x ,y 取值有关取值有关19.在椭圆中,F 1,F 2分别是其左右焦点,若|PF 1|=2|PF 2|,则该椭圆离心率的取值范围是(离心率的取值范围是( ) A .B .C .D .二.填空题(共7小题) 20.方程+=1表示椭圆,则k 的取值范围是的取值范围是 _________ .21.已知A (﹣1,0),B (1,0),点C (x ,y )满足:,则|AC|+|BC|=_________ .22.设P 是椭圆上的点.若F 1、F 2是椭圆的两个焦点,则PF 1+PF 2= _________ .23.若k ∈Z ,则椭圆的离心率是的离心率是 _________ .24.P 为椭圆=1上一点,M 、N 分别是圆(x+3)2+y 2=4和(x ﹣3)2+y 2=1上的点,则|PM|+|PN|的取值范围是的取值范围是 _________ . 25.在椭圆+=1上,它到左焦点的距离是它到右焦点距离的两倍,则点P 的横坐标是标是 _________ .26.已知⊙Q :(x ﹣1)2+y 2=16,动⊙M 过定点P (﹣1,0)且与⊙Q 相切,则M 点的轨迹方程是:迹方程是: _________ .三.解答题(共4小题)27.已知定义在区间(0,+∞)上的函数f (x )满足,且当x >1时f (x )<0. (1)求f (1)的值)的值 (2)判断f (x )的单调性)的单调性(3)若f (3)=﹣1,解不等式f (|x|)<2 28.已知对任意x .y ∈R ,都有f (x+y )=f (x )+f (y )﹣t (t 为常数)并且当x >0时,f (x )<t (1)求证:f (x )是R 上的减函数;上的减函数;(2)若f (4)=﹣t ﹣4,解关于m 的不等式f (m 2﹣m )+2>0.29.已知函数y=f(x)的定义域为R,对任意x、x′∈R均有f(x+x′)=f(x)+f(x′),且对任意x>0,都有f(x)<0,f(3)=﹣3.上的单调减函数;(1)试证明:函数y=f(x)是R上的单调减函数;)是奇函数;(2)试证明:函数y=f(x)是奇函数;)上的值域.(3)试求函数y=f(x)在[m,n](m、n∈Z,且mn<0)上的值域.30.已知函数是奇函数.是奇函数.恒成立. (1)求a的值;(2)求证f(x)是R上的增函数;(3)求证xf(x)≥0恒成立.参考答案与试题解析一.选择题(共19小题)1.若F1(3,0),F2(﹣3,0),点P到F1,F2距离之和为10,则P点的轨迹方程是()A.B.C.D.或考点:椭圆的定义。

椭圆的试题及答案高中

椭圆的试题及答案高中

椭圆的试题及答案高中一、选择题1. 椭圆的焦点在x轴上,且离心率为\(\frac{1}{2}\),若椭圆的长轴长为6,则椭圆的短轴长为()。

A. 3B. 4C. 5D. 6答案:B解析:已知椭圆的离心率e=\(\frac{c}{a}\)=\(\frac{1}{2}\),长轴长2a=6,所以a=3。

根据离心率公式,可以得出c=\(\frac{3}{2}\)。

再根据椭圆的性质,b²=a²-c²,代入a和c的值,可得b²=\(\frac{9}{4}\),所以b=2,短轴长为2b=4。

2. 已知椭圆C的方程为\(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\),其中a>b>0,若椭圆C上存在一点P,使得\(\overrightarrow{OP}\cdot \overrightarrow{F_1F_2} = 0\),则a的取值范围是()。

A. \(a>1\)B. \(a>2\)C. \(a>3\)D. \(a>4\)答案:B解析:已知\(\overrightarrow{OP} \cdot \overrightarrow{F_1F_2} = 0\),说明OP垂直于F1F2,即点P在椭圆的短轴端点上。

根据椭圆的性质,短轴端点到焦点的距离为b,而焦点到原点的距离为c。

由于\(\overrightarrow{F_1F_2} = 2c\),所以\(\overrightarrow{OP} = b\)。

根据勾股定理,有\(a^2 = b^2 + c^2\)。

由于\(\overrightarrow{OP} \cdot \overrightarrow{F_1F_2} = 0\),所以\(b = 2c\)。

代入勾股定理,得到\(a^2 = 5c^2\)。

又因为椭圆的离心率e=\(\frac{c}{a}\),所以\(a = \frac{5}{4}c\)。

椭圆经典例题(带答案-适用于基础性巩固)

椭圆经典例题(带答案-适用于基础性巩固)

椭圆标准方程典型例题(参考答案)例1 已知椭圆06322=-+m y mx 的一个焦点为(0,2)求m 的值.解:方程变形为12622=+my x .因为焦点在y 轴上,所以62>m ,解得3>m . 又2=c ,所以2262=-m ,5=m 适合.故5=m .例2 已知椭圆的中心在原点,且经过点()03,P ,b a 3=,求椭圆的标准方程. 解:当焦点在x 轴上时,设其方程为()012222>>=+b a by a x .由椭圆过点()03,P ,知10922=+b a .又b a 3=,代入得12=b ,92=a ,故椭圆的方程为1922=+y x . 当焦点在y 轴上时,设其方程为()012222>>=+b a bx a y .由椭圆过点()03,P ,知10922=+ba .又b a 3=,联立解得812=a ,92=b ,故椭圆的方程为198122=+x y . 例3 ABC ∆的底边16=BC ,AC 和AB 两边上中线长之和为30,求此三角形重心G 的轨迹和顶点A 的轨迹.解: (1)以BC 所在的直线为x 轴,BC 中点为原点建立直角坐标系.设G 点坐标为()y x ,,由20=+GB GC ,知G 点的轨迹是以B 、C 为焦点的椭圆,且除去轴上两点.因10=a ,8=c ,有6=b ,故其方程为()013610022≠=+y y x . (2)设()y x A ,,()y x G '',,则()013610022≠'='+'y y x . ① 由题意有⎪⎪⎩⎪⎪⎨⎧='='33y y x x ,代入①,得A 的轨迹方程为()0132490022≠=+y y x ,其轨迹是椭圆(除去x 轴上两点).例4 已知P 点在以坐标轴为对称轴的椭圆上,点P 到两焦点的距离分别为354和352,过P 点作焦点所在轴的垂线,它恰好过椭圆的一个焦点,求椭圆方程. 解:设两焦点为1F 、2F ,且3541=PF ,3522=PF .从椭圆定义知52221=+=PF PF a .即5=a . 从21PF PF >知2PF 垂直焦点所在的对称轴,所以在12FPF Rt ∆中,21sin 1221==∠PF PF F PF ,可求出621π=∠F PF ,3526cos21=⋅=πPF c ,从而310222=-=c a b .∴所求椭圆方程为1103522=+y x 或1510322=+y x . 例5 已知椭圆方程()012222>>=+b a by a x ,长轴端点为1A ,2A ,焦点为1F ,2F ,P 是椭圆上一点,θ=∠21PA A ,α=∠21PF F .求:21PF F ∆的面积(用a 、b 、α表示).解:如图,设()y x P ,,由椭圆的对称性,不妨设()y x P ,,由椭圆的对称性,不妨设P 在第一象限.由余弦定理知: 221F F 2221PF PF +=12PF -·224cos c PF =α.①由椭圆定义知: a PF PF 221=+ ②,则-①②2得 αcos 12221+=⋅b PF PF . 故αsin 212121PF PF S PF F ⋅=∆ ααsin cos 12212+=b 2tan 2αb =. 例6 已知动圆P 过定点()03,-A ,且在定圆()64322=+-y x B :的内部与其相内切,求动圆圆心P 的轨迹方程. 解:如图所示,设动圆P 和定圆B 内切于点M .动点P 到两定点,即定点()03,-A 和定圆圆心()03,B 距离之和恰好等于定圆半径, 即8==+=+BM PB PM PB PA .∴点P 的轨迹是以A ,B 为两焦点,半长轴为4,半短轴长为73422=-=b 的椭圆的方程:171622=+y x . 例7 已知椭圆1222=+y x ,(1)求过点⎪⎭⎫ ⎝⎛2121,P 且被P 平分的弦所在直线的方程; (2)求斜率为2的平行弦的中点轨迹方程; (3)过()12,A 引椭圆的割线,求截得的弦的中点的轨迹方程; (4)椭圆上有两点P 、Q ,O 为原点,且有直线OP 、OQ 斜率满足21-=⋅OQ OP k k , 求线段PQ 中点M 的轨迹方程.解:设弦两端点分别为()11y x M ,,()22y x N ,,线段MN 的中点()y x R ,,则⎪⎪⎩⎪⎪⎨⎧=+=+=+=+④,③,②,①,y y y x x x y x y x 222222212122222121①-②得()()()()022*******=-++-+y y y y x x x x . 由题意知21x x ≠,则上式两端同除以21x x -,有()()0221212121=-+++x x y y y y x x ,将③④代入得022121=--+x x y y yx .⑤(1)将21=x ,21=y 代入⑤,得212121-=--x x y y ,故所求直线方程为: 0342=-+y x . ⑥ 将⑥代入椭圆方程2222=+y x 得041662=--y y ,0416436>⨯⨯-=∆符合题意,0342=-+y x 为所求. (2)将22121=--x x y y 代入⑤得所求轨迹方程为: 04=+y x .(椭圆内部分)(3)将212121--=--x y x x y y 代入⑤得所求轨迹方程为: 022222=--+y x y x .(椭圆内部分)(4)由①+②得 :()2222212221=+++y y x x , ⑦, 将③④平方并整理得 212222124x x x x x -=+, ⑧, 212222124y y y y y -=+, ⑨将⑧⑨代入⑦得:()224424212212=-+-y y y x x x , ⑩ 再将212121x x y y -=代入⑩式得: 221242212212=⎪⎭⎫ ⎝⎛--+-x x y x x x , 即 12122=+y x . 例8 已知椭圆1422=+y x 及直线m x y +=.(1)当m 为何值时,直线与椭圆有公共点?(2)若直线被椭圆截得的弦长为5102,求直线的方程. 解:(1)把直线方程m x y +=代入椭圆方程1422=+y x 得 ()1422=++m x x , 即012522=-++m mx x .()()020*********≥+-=-⨯⨯-=∆m m m ,解得2525≤≤-m . (2)设直线与椭圆的两个交点的横坐标为1x ,2x ,由(1)得5221m x x -=+,51221-=m x x .根据弦长公式得 :51025145211222=-⨯-⎪⎭⎫⎝⎛-⋅+m m .解得0=m .方程为x y =. 例9 以椭圆131222=+y x 的焦点为焦点,过直线09=+-y x l :上一点M 作椭圆,要使所作椭圆的长轴最短,点M 应在何处?并求出此时的椭圆方程.解:如图所示,椭圆131222=+y x 的焦点为()031,-F ,()032,F . 点1F 关于直线09=+-y x l :的对称点F 的坐标为(-9,6),直线2FF 的方程为032=-+y x . 解方程组⎩⎨⎧=+-=-+09032y x y x 得交点M 的坐标为(-5,4).此时21MF MF +最小.所求椭圆的长轴:562221==+=FF MF MF a ,∴53=a ,又3=c ,∴()3635322222=-=-=c a b .因此,所求椭圆的方程为1364522=+y x . 例10 已知方程13522-=-+-ky k x 表示椭圆,求k 的取值范围. 解:由⎪⎩⎪⎨⎧-≠-<-<-,35,03,05k k k k 得53<<k ,且4≠k .∴满足条件的k 的取值范围是53<<k ,且4≠k .例11 已知1cos sin 22=-ααy x )0(πα≤≤表示焦点在y 轴上的椭圆,求α的取值范围.解:方程可化为1cos 1sin 122=+ααy x .因为焦点在y 轴上,所以0sin 1cos 1>>-αα. 因此0sin >α且1tan -<α从而)43,2(ππα∈. 例12 求中心在原点,对称轴为坐标轴,且经过)2,3(-A 和)1,32(-B 两点的椭圆方程.解:设所求椭圆方程为122=+ny mx (0>m ,0>n ).由)2,3(-A 和)1,32(-B 两点在椭圆上可得⎪⎩⎪⎨⎧=⋅+-⋅=-⋅+⋅,11)32(,1)2()3(2222n m n m 即⎩⎨⎧=+=+,112,143n m n m 所以151=m ,51=n .故所求的椭圆方程为151522=+y x . 例13 知圆122=+y x ,从这个圆上任意一点P 向y 轴作垂线段,求线段中点M 的轨迹. 解:设点M 的坐标为),(y x ,点P 的坐标为),(00y x ,则2x x =,0y y =. 因为),(00y x P 在圆122=+y x 上,所以12020=+y x .将x x 20=,y y =0代入方程12020=+y x 得1422=+y x .所以点M 的轨迹是一个椭圆1422=+y x . 例14 已知长轴为12,短轴长为6,焦点在x 轴上的椭圆,过它对的左焦点1F 作倾斜解为3π的直线交椭圆于A ,B 两点,求弦AB 的长.解:(法1)利用直线与椭圆相交的弦长公式求解.2121x x k AB -+=]4))[(1(212212x x x x k -++=.因为6=a ,3=b ,所以33=c .因为焦点在x 轴上,所以椭圆方程为193622=+y x ,左焦点)0,33(-F ,从而直线方程为93+=x y . 由直线方程与椭圆方程联立得:0836372132=⨯++x x .设1x ,2x 为方程两根,所以1337221-=+x x ,1383621⨯=x x ,3=k , 从而1348]4))[(1(1212212212=-++=-+=x x x x k x x k AB . (法2)利用椭圆的定义及余弦定理求解.由题意可知椭圆方程为193622=+y x ,设m AF =1,n BF =1,则m AF -=122,n BF -=122. 在21F AF ∆中,3cos22112212122πF F AF F F AF AF -+=,即21362336)12(22⋅⋅⋅-⋅+=-m m m ; 所以346-=m .同理在21F BF ∆中,用余弦定理得346+=n ,所以1348=+=n m AB .(法3)利用焦半径求解.先根据直线与椭圆联立的方程0836372132=⨯++x x 求出方程的两根1x ,2x ,它们分别是A ,B 的横坐标. 再根据焦半径11ex a AF +=,21ex a BF +=,从而求出11BF AF AB +=.例15 椭圆192522=+y x 上的点M 到焦点1F 的距离为2,N 为1MF 的中点,则ON (O 为坐标原点)的值为A .4 B .2 C .8 D .23解:如图所示,设椭圆的另一个焦点为2F ,由椭圆第一定义得10221==+a MF MF ,所以82101012=-=-=MF MF ,又因为ON 为21F MF ∆的中位线,所以4212==MF ON ,故答案为A . 例16 在面积为1的PMN ∆中,21tan =M ,2tan -=N ,建立适当的坐标系,求出以M 、N 为焦点且过P 点的椭圆方程.解:以MN 的中点为原点,MN 所在直线为x 轴建立直角坐标系,设),(y x P .则⎪⎪⎪⎩⎪⎪⎪⎨⎧==+-=-.1,21,2cy c x yc x y∴⎪⎪⎩⎪⎪⎨⎧===233435c c y cx 且即)32,325(P ∴⎪⎪⎩⎪⎪⎨⎧=-=+,43,134********b a b a 得⎪⎩⎪⎨⎧==.3,41522b a∴所求椭圆方程为1315422=+y x例17 已知)2,4(P 是直线l 被椭圆193622=+y x 所截得的线段的中点,求直线l 的方程. 解:方法一:设所求直线方程为)4(2-=-x k y .代入椭圆方程,整理得036)24(4)24(8)14(222=--+--+k x k k x k ①设直线与椭圆的交点为),(11y x A ,),(22y x B ,则1x 、2x 是①的两根,∴14)24(8221+-=+k k k x x∵)2,4(P 为AB 中点,∴14)24(424221+-=+=k k k x x ,21-=k .∴所求直线方程为082=-+y x . 方法二:设直线与椭圆交点),(11y x A ,),(22y x B .∵)2,4(P 为AB 中点,∴821=+x x ,421=+y y . 又∵A ,B 在椭圆上,∴3642121=+y x ,3642222=+y x 两式相减得0)(4)(22212221=-+-y y x x , 即0))((4))((21212121=-++-+y y y y x x x x .∴21)(4)(21212121-=++-=--y y x x x x y y .∴直线方程为082=-+y x .方法三:设所求直线与椭圆的一个交点为),(y x A ,另一个交点)4,8(y x B --.∵A 、B 在椭圆上,∴36422=+y x ①。

(完整版)椭圆小题专项训练有详解答案

(完整版)椭圆小题专项训练有详解答案

椭圆小题专项训练一、单项选择1、已知点1F , 2F 分别是椭圆22121x y k k +=++(1k >-)的左、右焦点,弦AB 过点1F ,若2ABF ∆的周长为8,则椭圆的离心率为( ) A.12 B. 1415 D. 342、椭圆221164x y +=上的一点A 关于原点的对称点为B , F 为它的右焦点,若AF BF ⊥,则AFB V 的面积是( )33、已知椭圆2222:1(0)x y C a b a b+=>>的离心率为32,过右焦点F 且斜率为(0)k k >的直线与C 相交于A B 、两点.若3AF FB =u u u r u u u r,则k =( )23 D.24、椭圆221259x y +=上一点M 到焦点1F 的距离为2, N 是1MF 的中点,0为坐标原点,则ON 等于( ) A. 2 B. 4 C. 8 D.325、已知两点()()121,0,1,0F F -,若12F F 是21,PF PF 的等差中项,则动点P 的轨迹方程是A. 22143x y +=B. 22184x y +=C. 2211615x y +=D. 221164x y += 6、直线l 与椭圆22:184x y C +=相交于A,B 两点,若直线l 的方程为210x y -+=,则线段AB 的中点坐标是 A. 11,32⎛⎫--⎪⎝⎭ B. 11,33⎛⎫- ⎪⎝⎭ C. ()1,1 D. 11,33⎛⎫- ⎪⎝⎭7、设12,F F 是椭圆2222:1(0)x y E a b a b +=>>的左右焦点, P 为直线32x a =上一点, 12PF F ∆是底角为030的等腰三角形,则E 的离心率为( ) A.12 B. 23 C. 34 D. 458、已知椭圆的两个焦点分别为,若椭圆上不存在点,使得是钝角,则椭圆离心率的取值范围是( )A. B. C. D.9、设A 、B 是椭圆C :2213x y m+=长轴的两个端点,若C 上存在点M 满足∠AMB=120°,则m 的取值范围是 A .(0,1][9,)+∞UB .(0,3][9,)+∞UC .(0,1][4,)+∞UD .(0,3][4,)+∞U10、在平面直角坐标系xOy 中,P 是椭圆+=1上的一个动点,点A (1,1),B(0,﹣1),则|PA|+|PB|的最大值为( )A .5B .4C .3D .211、中心为原点O 的椭圆焦点在x 轴上, A 为该椭圆右顶点, P 为椭圆上一点,090OPA ∠=,则该椭圆的离心率e 的取值范围是 ( )A. 1,12⎡⎫⎪⎢⎣⎭ B. 2,12⎛⎫ ⎪ ⎪⎝⎭ C. 16,23⎡⎫⎪⎢⎪⎣⎭ D. 20,2⎛⎫ ⎪ ⎪⎝⎭12、已知椭圆C : 22221x y a b +=的左焦点为F ,若点F 关于直线12y x =-的对称点P 在椭圆C 上, 则椭圆C 的离心率为A.12B. 2C. 3D. 513、若椭圆2213616x y +=上一点P 与椭圆的两个焦点1F 、2F 的连线互相垂直,则12PF F ∆的面积为( )A. 36B. 16C. 20D. 2414、设F 1、F 2是椭圆+=1的焦点,P 是椭圆上的点,则△PF 1F 2的周长是( ) A. 16 B. 18 C. 20 D. 不确定15、设是椭圆的左、右焦点,为直线上一点,是底角为的等腰三角形,则的离心率为A. B. C. D. 16、已知椭圆的两个焦点为、,且,弦过点,则的周长为( ) A. 10 B. 20 C. 2D.17、已知点P 是以F 1,F 2为焦点的椭圆上一点,若,则椭圆的离心率是( )A .B .C .D .二、填空题18、已知椭圆221102x y m m-=--,长轴在y 轴上,若焦距为4,则m 等于为________.19、点(),P x y 是椭圆222312x y +=上的一个动点,则2x y +的最大值为_______。

椭圆练习题(有答案-必会基础题!)-2讲解学习

椭圆练习题(有答案-必会基础题!)-2讲解学习

椭圆练习题(有答案-必会基础题!)-2一、选择题:1.下列方程表示椭圆的是()A.22199x y += B.2228x y --=- C.221259x y -= D.22(2)1x y -+= 2.动点P 到两个定点1F (- 4,0).2F (4,0)的距离之和为8,则P 点的轨迹为() A.椭圆 B.线段12F F C.直线12F F D .不能确定3.已知椭圆的标准方程22110y x +=,则椭圆的焦点坐标为()A.(B.(0,C.(0,3)±D.(3,0)±4.椭圆222222222222211()x y x y a b k a b a k b k+=+=>>--和的关系是 A .有相同的长.短轴B .有相同的离心率 C .有相同的准线 D .有相同的焦点5.已知椭圆22159x y +=上一点P 到椭圆的一焦点的距离为3,则P 到另一焦点的距离是()A.3B.2C.3D.66.如果22212x y a a +=+表示焦点在x 轴上的椭圆,则实数a 的取值范围为() A.(2,)-+∞ B.()()2,12,--⋃+∞ C.(,1)(2,)-∞-⋃+∞ D.任意实数R 7.“m>n>0”是“方程221mx ny +=表示焦点在y 轴上的椭圆的”()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件8.椭圆的短轴长是4,长轴长是短轴长的32倍,则椭圆的焦距是()4 C.6D.9.关于曲线的对称性的论述正确的是() A.方程220x xy y ++=的曲线关于X 轴对称B.方程330x y +=的曲线关于Y 轴对称C.方程2210x xy y -+=的曲线关于原点对称D.方程338x y -=的曲线关于原点对称第11题10.方程 22221x y ka kb +=(a >b >0,k >0且k ≠1)与方程22221x y a b+=(a >b >0)表示的椭圆( ).A.有相同的离心率;B.有共同的焦点;C.有等长的短轴.长轴;D.有相同的顶点.二、填空题:11.已知椭圆的方程为:22164100x y +=,则a=___,b=____,c=____,焦点坐标为:___ __,焦距等于______;若CD 为过左焦点F1的弦,(如图)则∆2F CD 的周长为________.12.椭圆221625400x y +=的长轴长为____,短轴长为____,焦点坐标为 四个顶点坐标分别为___ ,离心率为 ;椭圆的左准线方程为13.比较下列每组中的椭圆:(1)①229436x y += 与②2211216x y += ,哪一个更圆 (2)①221610x y +=与②22936x y +=,哪一个更扁 14.若一个椭圆长轴的长度.短轴的长度和焦距成等差数列,则该椭圆的离心率是2F CcD1F三、解答题:15.求满足下列条件的椭圆的标准方程:(1)两个焦点的坐标分别为(0,-3),(0,3),椭圆的短轴长为8;(2)两个焦点的坐标分别为(,0),并且椭圆经过点2)3(3)已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点12P P 、16.(12分)已知点M 在椭圆221259x y +=上,M 'P 垂直于椭圆焦点所在的直线,垂直为'P ,并且M 为线段P 'P 的中点,求P 点的轨迹方程17.当m 取何值时,直线l :y x m =+与椭圆22916144x y +=相切,相交,相离?参考答案1.选择题:二.填空题:11 10,8,6,(0,6±),12,40 12 10,8,(3,0±),(-5,0).(5,0).(0,-4).(0,4),35,253x =- 13 ②,② 14 35三.解答题:15.(1)解:由题意,椭圆的焦点在y 轴上,设椭圆的标准方程为22221(0)y x a b a b+=>>由焦点坐标可得3c =,短轴长为8,即28,4b b ==,所以22225a b c =+=∴椭圆的标准方程为2212516y x +=(2)由题意,椭圆的焦点在x 轴上,设椭圆的标准方程为22221(0)x y a b a b +=>> 由焦点坐标可得c=2a ==6所以2b =22a c -=9-5=4,所以椭圆的标准方程为22194x y += (3)设椭圆的方程为221mx ny +=(0,0m n >>),因为椭圆过12P P 、61321m n m n +=+=⎧∴⎨⎩解得1913m n ==⎧⎨⎩所以椭圆的标准方程为:22193x y +=16.解:设p 点的坐标为(,)p x y ,m 点的坐标为00(,)x y ,由题意可知000022y y x x x x y y ====⎧⎧⇒⎨⎨⎩⎩ ① 因为点m 在椭圆221259x y +=上,所以有 22001259x y += ② , 把①代入②得2212536x y +=,所以P 点的轨迹是焦点在y 轴上,标准方程为2212536x y +=的椭圆.17.解:{22916144y x m x y =++=…… … … ①②①代入②得22916()144x x m ++=化简得222532161440x mx m ++-=222(32)425(16144)57614400m m m ∆=-⨯-=-+当0,∆=即5m =±时,直线l 与椭圆相切; 当0∆>,即55m -<<时,直线与椭圆相交; 当0∆<,即5m <-或5m >时,直线与椭圆相离.。

(完整word版)椭圆基础训练题(含答案提示)(2),推荐文档

椭圆基础训练题1.已知椭圆长半轴与短半轴之比是5:3,焦距是8,焦点在x 轴上,则此椭圆的标准方程是( )(A )5x 2+3y 2=1(B )25x 2+9y 2=1 (C )3x 2+5y 2=1 (D )9x 2+25y 2=12.椭圆5x 2+4y 2=1的两条准线间的距离是( )(A )52 (B )10 (C )15 (D )3503.以椭圆短轴为直径的圆经过此椭圆的焦点,则椭圆的离心率是( )(A )21(B )22(C )23(D )334.椭圆25x 2+9y 2=1上有一点P ,它到右准线的距离是49,那么P 点到左准线的距离是( )。

(A )59(B )516 (C )441 (D )5415.已知椭圆x 2+2y 2=m ,则下列与m 无关的是( )(A )焦点坐标 (B )准线方程 (C )焦距 (D )离心率6.椭圆mx 2+y 2=1的离心率是23,则它的长半轴的长是( )(A )1 (B )1或2 (C )2 (D )21或17.椭圆的中心为O ,左焦点为F 1,P 是椭圆上一点,已知△PF 1O 为正三角形,则P 点到右准线的距离与长半轴的长之比是( )(A )3-1 (B )3-3 (C )3 (D )18.若椭圆my 12m 3x 22-+=1的准线平行于y 轴,则m 的取值范围是 。

9.椭圆的长半轴是短半轴的3倍,过左焦点倾斜角为30°的弦长为2则此椭圆的标准方程是 。

10. 椭圆的中心在原点,焦点在x 轴上,若椭圆的一个焦点将长轴分成的两段的比例中项等于椭圆的焦距,又已知直线2x -y -4=0被此椭圆所截得的弦长为354,求此椭圆的方程。

11.证明:椭圆上任意一点到中心的距离的平方与到两焦点距离的乘积之和为一定值。

12. 已知椭圆的对称轴是坐标轴,离心率e =32,长轴长为6,那么椭圆的方程是( )。

(A ) 36x 2+20y 2=1 (B )36x 2+20y 2=1或20x 2+36y 2=1(C ) 9x 2+5y 2=1 (D )9x 2+5y 2=1或5x 2+9y 2=113. 椭圆25x 2+16y 2=1的焦点坐标是( )。

2024届高考数学复习:精选历年真题、好题专项(椭圆)练习(附答案)

2024届高考数学复习:精选历年真题、好题专项(椭圆)练习一. 基础小题练透篇1.已知定点F 1,F 2,且|F 1F 2|=8,动点P 满足|PF 1|+|PF 2|=8,则动点P 的轨迹是( ) A .椭圆 B .圆 C .直线 D .线段2.[2023ꞏ山西省忻州市高三联考]“m >0”是“方程x 24 +y 2m =1表示椭圆”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 3.[2023ꞏ重庆市高三模拟]几何学中,把满足某些特定条件的曲线组成的集合叫做曲线族.点Q 是椭圆族T 上任意一点,如图所示,椭圆族T 的元素满足以下条件:①长轴长为4;②一个焦点为原点O ;③过定点P ()0,3 ,则||QP +||QO 的最大值是( )A .5B .7C .9D .114.[2023ꞏ四川省遂宁市模拟]已知椭圆x 2a 2 +y 2b 2 =1(a >b >0)的离心率为12 ,则( ) A .a 2=2b 2 B .3a 2=4b 2 C .a =2b D .3a =4b5.[2023ꞏ甘肃省张掖市高三检测]已知椭圆x 2+y 2b 2 =1(1>b >0)的左、右焦点分别为F 1,F 2,点M 是椭圆上一点,点A 是线段F 1F 2上一点,且∠F 1MF 2=2∠F 1MA =2π3 ,|MA |=32 ,则该椭圆的离心率为( )A .3B .12C .223D .36.在平面直角坐标系xOy 中,已知点A (0,3 ),B (0,-3 ),动点M 满足|MA |+|MB |=4,则MA → ꞏMB →的最大值为( )A .-2B .0C .1D .27.已知椭圆C 的焦点在x 轴上,过点(322 ,2)且离心率为13 ,则椭圆C 的焦距为________. 8.[2023ꞏ陕西省西安市模拟]椭圆x 29 +y 23 =1的左、右焦点分别为F 1,F 2,点P 在椭圆上,如果PF 1的中点在y 轴上,那么|PF 1|是|PF 2|的________倍.二. 能力小题提升篇1.[2023ꞏ陕西省安康市高三联考]已知F 1,F 2是椭圆C :x 2a 2 +y 215 =1(a >15 )的两个焦点,P 为C 上一点,且∠F 1PF 2=60°.||PF 1 =5||PF 2 ,则C 的方程为( )A .x 221 +y 215 =1B .x 218 +y 215 =1C .x 236 +y 215 =1 D .x 242 +y 215 =12.[2023ꞏ广西贵港市高三联考]若2<m <8,椭圆C :x 2m +y 22 =1与椭圆D :x 2m +y 28 =1的离心率分别为e 1,e 2,则( )A .e 1ꞏe 2的最小值为32B .e 1ꞏe 2的最小值为12C .e 1ꞏe 2的最大值为3D .e 1ꞏe 2的最大值为123.[2023ꞏ江西名校联盟模拟]在直角坐标系xOy 中,F 是椭圆C :x 2a 2 +y 2b 2 =1(a >b >0)的左焦点,A ,B 分别为C 的左、右顶点,过点F 作x 轴的垂线交椭圆C 于P ,Q 两点,连接PB 交y 轴于点E ,连接AE 交PQ 于点M ,若M 是线段PF 的中点,则椭圆C 的离心率为( )A.22 B .12 C .13 D .144.[2023ꞏ陕西省西安市高三检测]设椭圆C :x 2a 2 +y 2b 2 =1()a >b >0 的右焦点为F ,椭圆C 上的两点A ,B 关于原点对称,且满足F A → ꞏFB →=0,||FB ≤||F A ≤2||FB ,则椭圆C 的离心率的最大值是( )A .13B .33C .23D .535.[2023ꞏ陕西省咸阳市摸底]已知椭圆C :x 2m 2-1+y 2m 2 =1(m >0)的两个焦点分别为F 1,F 2,点P 为椭圆上一点,且△PF 1F 2面积的最大值为3 ,则椭圆C 的短轴长为________.6.[2023ꞏ福建省高三联考]抛物线C 1:y 2=4x 的焦点F ,点P ()3,2 ,以点F ,P 为焦点的椭圆与抛物线有公共点,则椭圆的离心率的最大值为________.三. 高考小题重现篇1.[2021ꞏ山东卷]已知F 1,F 2是椭圆C :x 29 +y 24 =1的两个焦点,点M 在C 上,则||MF 1 ꞏ||MF 2 的最大值为( )A .13 B. 12 C .9 D. 62.[全国卷Ⅰ]已知椭圆C :x 2a 2 +y 24 =1的一个焦点为(2,0),则C 的离心率为( )A .13B .12C .22 D .2233.[2022ꞏ全国甲卷]已知椭圆C :x 2a 2 +y 2b 2 =1(a >b >0)的离心率为13 ,A 1,A 2分别为C的左、右顶点,B 为C 的上顶点.若BA → 1ꞏBA →2=-1,则C 的方程为( )A .x 218 +y 216 =1B .x 29 +y 28 =1C .x 23 +y 22 =1 D .x 22 +y 2=14.[2022ꞏ全国甲卷]椭圆C :x 2a 2 +y 2b 2 =1(a >b >0)的左顶点为A ,点P ,Q 均在C 上,且关于y轴对称.若直线AP,AQ的斜率之积为14,则C的离心率为()A.32B.22C.12D.135.[2019ꞏ全国卷Ⅲ]设F1,F2为椭圆C:x236+y220=1的两个焦点,M为C上一点且在第一象限.若△MF1F2为等腰三角形,则M的坐标为________.6.[2021ꞏ全国甲卷]已知F1,F2为椭圆C:x216+y24=1的两个焦点,P,Q为C上关于坐标原点对称的两点,且|PQ|=|F1F2|,则四边形PF1QF2的面积为________.四. 经典大题强化篇1.已知椭圆x2a2+y2b2=1(a>b>0)的一个顶点为B(0,4),离心率e=5,直线l交椭圆于M,N两点.(1)若直线l的方程为y=x-4,求弦|MN|的长;(2)如果△BMN的重心恰好为椭圆的右焦点F,求直线l方程的一般式.2.[2022ꞏ湖北武汉调研]已知椭圆C:x2a2+y2b2=1(a>b>0)的一个顶点为A(2,0),离心率为22,直线y=k(x-1)与椭圆C交于不同的两点M,N.(1)求椭圆C的方程;(2)当△AMN的面积为103时,求k的值.参考答案一 基础小题练透篇1.答案:D答案解析:因为|PF 1|+|PF 2|=|F 1F 2|,所以动点P 的轨迹是线段F 1F 2. 2.答案:B答案解析:当m >0时方程x 24 +y 2m =1不一定表示椭圆,如m =4时方程x 24 +y 24=1,即x 2+y 2=4就表示一个圆,所以“m >0”不是“方程x 24 +y2m=1表示椭圆”的充分条件;但是当方程x 24 +y 2m =1表示椭圆时,应有m >0,所以“m >0”是“方程x 24 +y 2m=1表示椭圆”的必要条件,故选B. 3.答案:A答案解析:如图所示设点Q 所在椭圆的另一焦点为F ,则||QP +||QO =||QP +4-||QF ≤||PF +4=4-||PO +4=5. 故选A. 4.答案:B答案解析:椭圆的离心率e =c a =12,c 2=a 2-b 2,化简得3a 2=4b 2,故选B.5.答案:B答案解析:设|MF 1|=r 1,|MF 2|=r 2,则r 1+r 2=2a =2,由余弦定理得|F 1F 2|2=|MF 1|2+|MF 2|2-2|MF 1||MF 2|cos 2π3,即4c 2=r 21 +r 22 +r 1r 2=(r 1+r 2)2-r 1r 2=4-r 1r 2,所以r 1r 2=4-4c 2,因为S △F 1MF 2=S △F 1MA +S △AMF 2,所以12 r 1r 2sin 23 π=12 r 1·|MA |·sin π3 +12 r 2·|MA |·sin π3,整理得r 1r 2=(r 1+r 2)·|MA |,即4-4c 2=2×32 ,整理得c 2=14,所以c =12 ,a =1,e =c a =12.故选B. 6.答案:C答案解析:易知M 的轨迹为椭圆,其方程为y 24+x 2=1,设M (x ,y ),则x 2=1-y 24,∴MA → ·MB → =(-x ,3 -y )·(-x ,-3 -y )=x 2+y 2-3=y 2+(1-y 24)-3=3y24-2, 因为y ∈[-2,2],所以34y 2∈[0,3],即3y24 -2∈[-2,1],∴(MA → ·MB →)max =1. 7.答案:2答案解析:设椭圆方程为x 2a 2 +y 2b 2 =1,由离心率为13 可得c a =13,由a 2=b 2+c 2可得b 2a 2=89 ,又92a 2 +4b 2 =1,解得a 2=9,b 2=8,c =1,焦距为2. 8.答案:5答案解析:由题得c =6 ,由题得PF 2⊥x 轴,当x =6 时,69+y 23 =1,所以y =±1,∴|PF 2|=1,所以|PF 1|=2×3-|PF 2|=6-1=5, 所以|PF 1|是|PF 2|的5倍.二 能力小题提升篇1.答案:C答案解析:在椭圆C :x 2a 2 +y 215=1(a >15 )中,由椭圆的定义可得||PF 1 +||PF 2 =2a ,因为||PF 1 =5||PF 2 ,所以||PF 2 =a 3,||PF 1 =5a3,在△PF 1F 2中,||F 1F 2 =2c ,由余弦定理得||F 1F 2 2=||PF 1 2+||PF 2 2-2||PF 1 ||PF 2 cos ∠F 1PF 2,即4c 2=25a 29 +a29-5a 29 =21a 29 ,所以c 2a 2 =2136 ,又b 2=15.所以a 2=36,所以椭圆C 的方程为x 236 +y 215 =1. 故选C. 2.答案:D答案解析:因为2<m <8,所以e 1= 1-2m ,e 2= 1-m8,所以e 1·e 2=⎝ ⎛⎭⎪⎫1-2m ⎝ ⎛⎭⎪⎫1-m 8 =1+14-⎝ ⎛⎭⎪⎫2m +m 8 ≤54-22m ·m 8 =12, 当且仅当m =4时,等号成立,故e 1·e 2的最大值为12,e 1·e 2无最小值.故选D.3.答案:C答案解析:不妨设点P 在x 轴上方,如图,连接BQ ,则由椭圆的对称性易得∠PBF =∠QBF ,∠EAB =∠EBA ,所以∠EAB =∠QBF ,所以ME ∥BQ ,所以|PE ||EB | =|PM ||MQ | .因为OE ∥PF ,所以|OF ||OB |=|EP ||EB | ,从而有|PM ||MQ | =|OF ||OB | .又M 是线段PF 的中点,所以e =c a =|OF ||OB | =|PM ||MQ | =13 . 4.答案:D答案解析:如图所示:设椭圆的左焦点F ′,由椭圆的对称性可知,四边形AFBF ′为平行四边形,又FA → ·FB →=0,即FA ⊥FB , 所以平行四边形AFBF ′为矩形,所以||AB =||FF ′ =2c ,设||AF ′ =|BF |=n ,||AF =m, 在直角△ABF 中,m +n =2a ,m 2+n 2=4c 2,得mn =2b 2,所以m n+n m =2c 2b 2 ,令m n =t ,得t +1t =2c2b 2 ,又由||FB ≤||FA ≤2||FB ,得m n =t ∈[1,2],所以t +1t =2c 2b 2 ∈⎣⎢⎡⎦⎥⎤2,52 ,所以c 2b 2 ∈⎣⎢⎡⎦⎥⎤1,54 ,即b 2a 2 =11+c 2b2∈⎣⎢⎡⎦⎥⎤49,12 , 所以e =ca=1-b 2a 2 ∈⎣⎢⎡⎦⎥⎤22,53 ,所以离心率最大值为53 .故选D.5.答案:23答案解析:由椭圆的方程可知,椭圆的焦点F 1,F 2在y 轴上,且|F 1F 2|=2m 2-(m 2-1) =2,由题意可知,当点P 为椭圆C 左右顶点时,△PF 1F 2的面积最大,且12 |F 1F 2|m 2-1 =3 ,解得m =2,所以椭圆C 的短轴长为2m 2-1 =23 .6.答案:22答案解析:抛物线C 1:y 2=4x 的焦点F (1,0),根据题意2c =(3-1)2+(2-0)2=22 ,c =2 .设椭圆和抛物线的交点为Q ,Q 到抛物线准线x =-1的距离为d ,离心率最大,即a 最小,a =||QF +||QP 2 =d +||QP 2 ≥3-(-1)2=2, 当PQ 与准线垂直时等号成立,此时e =ca =22. 三 高考小题重现篇1.答案:C答案解析:由题,a 2=9,b 2=4,则||MF 1 +||MF 2 =2a =6,所以||MF 1 ·||MF 2 ≤⎝ ⎛⎭⎪⎫||MF 1+||MF 22 2=9(当且仅当||MF 1 =||MF 2 =3时,等号成立).2.答案:C答案解析:由题意可知c =2,b 2=4,∴a 2=b 2+c 2=4+22=8,则a =22 ,∴e =c a =222 =22 . 3.答案:B答案解析:由椭圆C 的离心率为13 ,可得e =c a =a 2-b 2a 2=13.化简,得8a 2=9b 2.易知A 1(-a ,0),A 2(a ,0),B (0,b ),所以BA 1·BA 2=(-a ,-b )·(a ,-b )=-a 2+b 2=-1.联立得方程组⎩⎪⎨⎪⎧8a 2=9b 2,-a 2+b 2=-1, 解得⎩⎪⎨⎪⎧a 2=9,b 2=8. 所以C 的方程为x 29 +y 28 =1.故选B.4.答案:A答案解析:A ()-a ,0 ,设P ()x 1,y 1 ,则Q ()-x 1,y 1 ,则k AP =y 1x 1+a ,k AQ =y 1-x 1+a, 故k AP ·k AQ =y 1x 1+a ·y 1-x 1+a =y 21 -x 21 +a 2 =14, 又x 21 a2 +y 21 b2 =1,则y 21 =b 2()a 2-x 21 a 2, 所以b 2()a 2-x 21 a 2-x 21 +a2 =14 ,即b 2a 2 =14 , 所以椭圆C 的离心率e =c a=1-b 2a 2 =32 .故选A. 5.答案:(3,15 )答案解析:不妨令F 1,F 2分别为椭圆C 的左、右焦点,根据题意可知c =36-20 =4.因为△MF 1F 2为等腰三角形,所以易知|F 1M |=2c =8,所以|F 2M |=2a -8=4.设M (x ,y ),则⎩⎪⎨⎪⎧x 236+y220=1,|F 1M |2=(x +4)2+y 2=64,x >0,y >0,得⎩⎨⎧x =3,y =15,所以M 的坐标为(3,15 ).6.答案:8答案解析:根据椭圆的对称性及|PQ |=|F 1F 2|可以得到四边形PF 1QF 2为对角线相等的平行四边形,所以四边形PF 1QF 2为矩形.设|PF 1|=m ,则|PF 2|=2a -|PF 1|=8-m ,则|PF 1|2+|PF 2|2=m 2+(8-m )2=2m 2+64-16m =|F 1F 2|2=4c 2=4(a 2-b 2)=48,得m (8-m )=8,所以四边形PF 1QF 2的面积为|PF 1|×|PF 2|=m (8-m )=8.四 经典大题强化篇1.答案解析:(1)由已知得b =4,且c a =55 ,即c 2a 2 =15,∴a 2-b 2a 2 =15,解得a 2=20,∴椭圆方程为x 220 +y 216=1. 则4x 2+5y 2=80与y =x -4联立,消去y 得9x 2-40x =0,∴x 1=0,x 2=409,∴所求弦长|MN |=1+12|x 2-x 1|=4029. (2)椭圆右焦点F 的坐标为(2,0),设线段MN 的中点为Q (x 0,y 0),由三角形重心的性质知BF → =2FQ →, 又B (0,4),∴(2,-4)=2(x 0-2,y 0), 故得x 0=3,y 0=-2, 即Q 的坐标为(3,-2). 设M (x 1,y 1),N (x 2,y 2), 则x 1+x 2=6,y 1+y 2=-4,且x 21 20 +y 21 16 =1,x 22 20 +y 2216=1, 以上两式相减得k MN =y 1-y 2x 1-x 2 =-45 ·x 1+x 2y 1+y 2 =-45 ×6-4 =65,故直线MN 的方程为y +2=65(x -3),即6x -5y -28=0.2.答案解析:(1)由题意得⎩⎪⎨⎪⎧a =2,c a =22,a 2=b 2+c 2,得b =2 ,所以椭圆C 的方程为x 24+y 22=1.(2)由⎩⎪⎨⎪⎧y =k (x -1),x 24+y22=1, 得(1+2k 2)x 2-4k 2x +2k 2-4=0.Δ=24k 2+16>0恒成立. 设点M ,N 的坐标分别为(x 1,y 1),(x 2,y 2),则y 1=k (x 1-1),y 2=k (x 2-1),x 1+x 2=4k 21+2k 2 ,x 1x 2=2k 2-41+2k 2 ,所以|MN |=(x 2-x 1)2+(y 2-y 1)2=(1+k 2)[(x 1+x 2)2-4x 1x 2]=2(1+k 2)(4+6k 2)1+2k 2. 又点A (2,0)到直线y =k (x -1)的距离d =|k |1+k2 ,所以△AMN的面积S=12|MN|·d=|k|4+6k21+2k2,由|k|4+6k21+2k2=103,得k=±1.所以当△AMN的面积为103时,k=±1.。

椭圆的测试题及详细答案

椭圆的测试题及详细答案一、单项选择题(每题 2 分,共 20 分)1. 椭圆的标准方程是以下哪个?A. \(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\)(a > b > 0)B. \(\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1\)(a > b > 0)C. \(\frac{x^2}{b^2} + \frac{y^2}{b^2} = 1\)(a > b > 0)D. \(\frac{x^2}{a^2} + \frac{y^2}{a^2} = 1\)(a > b > 0)答案:A2. 椭圆的离心率 e 的取值范围是?A. 0 ≤ e < 1B. 0 ≤ e ≤ 1C. 0 < e < 1D. -1 < e < 1答案:A3. 椭圆的焦点位于?A. 椭圆的中心B. 椭圆的长轴上C. 椭圆的短轴上D. 椭圆的任意位置答案:B4. 椭圆的长轴和短轴的长度分别是?A. 2a 和 2bB. 2b 和 2aC. a 和 bD. b 和 a答案:A5. 椭圆的焦距 c 与长轴 a 和短轴 b 的关系是?A. \(c^2 = a^2 + b^2\)B. \(c^2 = a^2 - b^2\)C. \(c^2 = b^2 - a^2\)D. \(c^2 = a^2 \cdot b^2\)答案:B6. 椭圆上任意一点到两个焦点的距离之和等于?A. 2aB. 2bC. 2cD. a + b答案:A7. 如果一个椭圆的长轴和短轴相等,那么这个椭圆是?A. 圆B. 线段C. 点D. 椭圆答案:A8. 椭圆的离心率 e 越大,椭圆越?A. 越圆B. 越扁C. 越长D. 越短答案:B9. 椭圆的顶点位于?A. 椭圆的中心B. 椭圆的长轴上C. 椭圆的短轴上D. 椭圆的任意位置答案:B10. 椭圆的准线方程是?A. \(x = \pm \frac{a}{e}\)B. \(y = \pm \frac{b}{e}\)C. \(x = \pm \frac{c}{e}\)D. \(y = \pm \frac{c}{e}\)答案:A二、多项选择题(每题 2 分,共 20 分)1. 椭圆的性质包括以下哪些?A. 对称性B. 焦点性质C. 离心率D. 顶点答案:ABCD2. 椭圆的离心率 e 可以等于以下哪些值?A. 0B. 1C. 0.5D. 2答案:AC3. 椭圆的焦点到椭圆上任意一点的距离之和等于?A. 2aB. 2bC. 2cD. a + b答案:A4. 椭圆的顶点到椭圆中心的距离是?A. aB. bC. cD. 0答案:A5. 椭圆的准线到椭圆中心的距离是?A. aB. bC. cD. \(\frac{a}{e}\)答案:D6. 椭圆的焦距 c 与长轴 a 和短轴 b 的关系是?A. \(c^2 = a^2 + b^2\)B. \(c^2 = a^2 - b^2\)C. \(c^2 = b^2 - a^2\)D. \(c^2 = a^2 \cdot b^2\)答案:B7. 椭圆的顶点位于?A. 椭圆的中心B. 椭圆的长轴上C. 椭圆的短轴上D. 椭圆的任意位置答案:B8. 椭圆的离心率 e 越大,椭圆越?A. 越圆B. 越扁C. 越长D. 越短答案:B9. 椭圆的焦点位于?A. 椭圆的中心B. 椭圆的长轴上C. 椭圆的短轴上D. 椭圆的任意位置答案:B10. 椭圆上任意一点到两个焦点的距离之和等于?A. 2aB. 2bC. 2cD. a + b答案:A三、判断题(每题 2 分,共 20 分)1. 椭圆的离心率 e 总是小于 1。

椭圆基础训练题及答案

椭圆根底练习题姓名分数_____________一、选择题2 21.方程二—+二—=1表示焦点在y轴上的椭圆,那么m的取值范围是〔〕25 -m 16+ m9 9 9A. -16<m<25B. -16<m< —C. — <m<25D. m> —2 2 22.己知椭圆二+二=1上的一点F到椭圆一个焦点的距离为3,那么F到另一焦点距离为〔〕A. 2B. 3C. 5D. 73 .椭圆x2+4y2=l的焦距是( )A.生B. 12C. y/3D. 24 .对于椭圆9x2 + 25y2 = 225 , ,以下说法正确的选项是( )A.焦点坐标是〔0,±4〕B. 25 长轴长是5C.准线方程是y = ± —4 D.离心率是一4 55.椭圆—+/= 1的焦距是〔〕2A. 1B. 2C. 3D. 46.如果方程x2 + ky2 = 2表示焦点在y轴的椭圆,那么实数k的取值范围是〔〕A. 〔0,+oo〕B. 〔0,2〕C. 〔1,+QO〕D. 〔0,1〕7.假设椭圆芝+匕=1上一点P到它的右焦点是3,那么点P到左焦点的距离是〔〕16 9A. 5B. 1C. 15D. 88.设p是椭圆= 的点.假设尤,旦是椭圆的两个焦点,那么冏| + |P句等于〔〕A. 4B. 5C. 8D. 109.己知Fi、F?是椭圆—+ —= 1的两个焦点,AB是过F?的弦,那么ZXABFi的周长等于〔〕25 9A. 100B. 50C. 20D. 10椭圆4x-+2y-=l的准线方程是1A. x=±lB. x=± —2 C. y=±li1D. y=± —2)11.己知椭圆—+ ^- = 1±一点P 到椭圆一个点的距离为3,那么P 点到另一个焦点距离为〔〕25 162214.椭圆二+二=1的两条准线方程是15 6己知焦点在x 轴上的椭圆的离心率为上,它的长轴等于圆C:x 2+ /-2x-15 = 0的半径, 2 标准方程为1B.-32°.假设椭圆m+p 】过点以灼,那么其焦距为12. A. 2B. 3C. 5D.己知椭圆的长轴长是短轴长的倍,那么椭圆的离心率等于 C. >/2D.13.椭圆土 +七=1的焦距为2,那么m 的取值是 m 6A. 7B. 5C. 5 或 7D. 1015. 16. 17.A. y = - -V21,y = — V21 77C.疔一5,广5椭圆—= 1的长轴长为4B. 2U +III =ibmA. 16假设椭圆B. D.C.x = - —V21 ,x = — V217 7x=—5,x=5D.已三等分它两准线间的距离, eg],那么其焦距为c.网D. D.那么此椭圆的离心率为〔以上均不对18.那么椭圆的X- y-.A.——+ -— = 1 4 3 x- y-.B. — + —= 1 16 12X 2 , C. —+y-=l4 D. 16 19. 假设椭圆两准线间的距离是焦距的4倍, 那么该椭圆的离心率为1 A.—2D.A.B.A. 2V5B. 2V3C. 4V5D. 4V321.假设焦点在X 轴上的椭圆—+^- = 1的离心率为上,那么血= ()2 m2椭圆的两个焦点和中央将两准线间的距离四等分,那么一焦点与短轴两端点连线的夹 角等于椭圆的一焦点与两顶点为等边三角形的三个顶点,那么椭圆的长轴长是短轴长的2227.椭圆—+ ^- = 1的焦点坐标为 (9)28. 从椭圆短轴的一个端点看两焦点的视角是120.,那么这个椭圆的离心率e=1 B.- 229.椭圆二+二=1上的一点M 到一条准线的距离与M 到相应焦点的距离之比为( )9 16A.:明(C 理(D)A544 V7*> ,30. 如果椭圆土+匕=1上一点户到它的右焦点是3,那么点户到左焦点的距离为()16 9A. 5B. 1C. 15D. 8二、填空题31. 中央在原点,焦点在坐标轴上,长轴是短轴的3倍,且过点P(3,0)的椭圆方程为.223 A.B.—222.椭圆(1—泪一"】)£= 1的长轴长是2 J1 - m - 2』一mA.--------- B. ----------------C.8 3D.2 3()c 2y[ni r>in 1-m 23.24. 71 7t B. —C.—3 22 2 \ 假设焦点在X 轴上的椭圆—+ —= 1的离心率为-,那么〃Z 等于 D.2 —n 3A. >/3 3B.- 2 8C.— 3D. 25.26. B. 2倍C. 倍D. 离心率e =—,3一条准线为户3的椭圆的标准方程是 A.马级=1 5 20 B.互+£=1 20 5 C. ,y •>三+匕=1 5 4D. 16A. (0, 5)和(0, —5)B. (5, 0)和(一5, 0) C, (0, yfl )和(0, —V?)D. (yfl , 0)和(一V? , 0)1 D.-3A.32.椭圆—+ ^- = 1±一点P到左焦点F的距离为6,那么P点到左准线的距离为___________25 162 233.设椭圆二+二_ = 1的两个焦点分别为Fi和F2,短轴的一个端点为B,那么△BF】F2的周长是—.5 434.椭圆—+ /=1的离心率是.435.椭圆9/ + 16),2 = 144的离心率为.36.椭圆的中央在原点,一个顶点为(2,0)且短轴长等于焦距那么椭圆的方程为.2 237.椭圆&+畚=1上一点B到右焦点距离等于7.4,那么B点坐标是.•) •>38.假设椭圆己—+匕=1上一点P到焦点f;的距离等于6,那么点P到另一个焦点F,的距离是100 36 -39.己知两个定点尤(-4,0),氏(4,0),且|彻;|+|协;|=10,那么点M的轨迹方程是40 .己知两个定点乌(—4,0),氏(4,0),且|协;| + L| =6,那么点M 的轨迹方程是三、解做题41.己知椭圆方程为三+乏=1,16 12(1)写出椭圆的顶点坐标和焦点坐标.(2)假设等轴双曲线C与该椭圆有相同焦点,求双曲线标准方程.2 242.己知P点在椭圆二+ ' = 1上,且P到椭圆左,右两焦点的距离之比为1:4,求P到两准线的距离.文档收集于互联网,己重新整理排版.word版本可编辑.欢送下载支持.参考答案一、选择题1. C2. D3. C4. D5. B6. D7. A8. D9. C10. C11. D12. B13. C14. D15. D16. B17. C18. A19. A20. D21. B22. B23. C24. B25. B26. A27. D28. A29. D30. A二、填空题31.—+)广=1或一+ —= 19 9 8132.10:12 1233.(—4, —) (—4, -------- )5 534.14(椭圆定义)35.不存在三、解做题36.⑴顶点(± 4,0),(0,±2^3),焦点(±2,0)文档收集于互联网,己重新整理排版.word版本可编辑.欢送下我支持.X'~237.P到两准线的距离为10/3和40/3.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

椭圆基础训练题
1.已知椭圆长半轴与短半轴之比是5:3,焦距是8,焦点在x 轴上,则此椭圆的标准方程是( )
(A )5x 2+3y 2=1(B )25x 2+9y 2=1 (C )3x 2+5y 2=1 (D )9
x 2+
25y 2
=1
答案:B
2.以椭圆短轴为直径的圆经过此椭圆的焦点,则椭圆的离心率是( )
(A )21(B )22(C )23(D )3
3
答案:B
3.椭圆mx 2+y 2=1的离心率是
2
3
,则它的长半轴的长是( ) (A )1 (B )1或2 (C )2 (D )2
1
或1
答案:B
4. 已知椭圆的对称轴是坐标轴,离心率e =3
2
,长轴长为6,那么椭圆的方程是( )。

(A ) 36x 2+20y 2=1 (B )36x 2+20y 2=1或20x 2+36y 2
=1
(C ) 9x 2+5y 2=1 (D )9x 2+5y 2=1或5x 2+9
y 2
=1
答案:D
5. 椭圆25x 2+16y 2=1的焦点坐标是( )。

(A )(±3, 0) (B )(±31
, 0) (C )(±203, 0) (D )(0, ±20
3) 答案:D
6. 椭圆22a
x +22
b y =1 (a >b >0)上任意一点到两个焦点的距离分别为d 1,d 2,焦距
为2c ,若d 1, 2c , d 2,成等差数列则椭圆的离心率为( )。

(A )12 (B )22 (C )3
2
(D )34
答案:A
提示:4c =d 1+d 2=2a , ∴e =2
1
7. P (x , y )是椭圆16x 2+9
y 2
=1上的动点,过P 作椭圆长轴的垂线PD ,D 是垂
足,M 是PD 的中点,则M 的轨迹方程是( )。

(A )4x 2+9y 2=1 (B )64x 2+9y 2=1 (C )16x 2+9y 42=1 (D )16x 2+36
y 2
=1
答案:C
提示:设M (x , y )为轨迹上一点,则P (x , 2y ),代入到16x 2+9y 2
=1得方程16
x 2+
9
y 42
=1
8. 椭圆4x 2+16y 2=1的长轴长为 ,短轴长为 ,离心率为 ,焦点坐标是 。

答案:1;2
1;
23;(±4
3, 0);
9. 已知两点A (-3, 0)与B (3, 0),若|P A |+|PB |=10,那么P 点的轨迹方程是 。

答案:
116
y 25x 2
2=+
10. 已知椭圆2
x 2
+y 2=1的两焦点为F 1, F 2,上顶点为B ,那么△F 1BF 2的外接
圆方程为 。

答案:x 2+y 2=1
提示:焦点的坐标为F 1(-1, 0), F 2(1, 0), B 点坐标为(0, 1), ∴外接圆的方程是x 2+y 2=1
11. 椭圆的长、短轴都在坐标轴上,和椭圆14
y 9x 2
2=+共焦点,并经过点P (3, -2),则椭圆的方程为 。

答案:
110
y 15x 2
2=+ 提示:焦点坐标是F 1(-5, 0), F 2(5, 0), 设椭圆方程是14
a y a x 2
222
=-+, 将P (3, -2)代入得,a =3, ∴椭圆的方程是
110
y 15x 2
2=+
12. 椭圆的长、短轴都在坐标轴上,经过A (0, 2)与B (2
1,
3)则椭圆的方程
为 。

答案:x 2
+4
y 2
=1
13. 椭圆的长、短轴都在坐标轴上,焦点间的距离等于长轴和短轴两端点间的距离,且经过点
P (
2
3,
2
3), 则椭圆的方程
为 。

答案:16y 52x 22=+或12
y 6x 52
2=+ 提示:∵焦点间的距离等于长轴和短轴两端点间的距离,∴4c 2=a 2+b 2, ∴
3a 2
=5b 2
, 设椭圆方程为1a
3y 5a x 22
22=+,把P (23,23)代入,解得a 2=2, 得椭圆
方程为16y 52x 22=+,同样设长轴在y 轴上,得12
y 6x 52
2=+
14. 椭圆32x 2+16
y 2
=1的焦距等于( )。

(A )4 (B )8 (C )16 (D )123 答案:B
15. F 是椭圆的一个焦点,BB ′是椭圆的短轴,若△BFB ′是等边三角形,则椭圆的离心率e 等于( )。

(A )41
(B )21 (C )22 (D )2
3 答案:C
16. 椭圆22m x +2
2
)
1m (y +=1的焦点在y 轴上,则m 的取值范围是( )。

(A )全体实数 (B )m <-21且m ≠-1 (C )m >-2
1
且m ≠0 (D )
m >0
答案:C
17. 与椭圆2x 2+5
y 2
=1共焦点,且经过点P (23, 1)的椭圆方程是( )。

(A )x 2+4y 2=1 (B )2x 2+8y 52=1 (C )4x 2+y 2
=1 (D )4x 2+7
y 2=1
答案:A
18. 到定点(7, 0)和定直线x =77
16
的距离之比为47的动点轨迹方程是( )。

(A )9x 2+16y 2=1 (B )16x 2+9y 2=1 (C )8x 2+y 2=1 (D )x 2
+8
y 2=1
答案:B
19. 直线y =kx +2和椭圆4
x 2
+y 2=1有且仅有一个公共点,则k 等于( )。

(A )32 (B )±3
2
(C )34 (D )±34
答案:B
20. 方程4x 2+my 2=1表示焦点在y 轴上的椭圆,且离心率e =2
3
, 则m = 。

答案:1
21. 已知直线y =x +m 与椭圆16x 2+9
y 2
=1有两个不同的交点,则m 的取值范
围是 。

答案:-5<m <5
22. 椭圆8k x 2++9y 2=1的离心率e =2
1
, 则k 的值是 。

答案:4或-4
5
提示:当k +8>9时, 8k 1k +-=4
1
, ∴k =4, 当9>k +8时, 419k 1=-, k =-45
23. 如果椭圆的对称轴为坐标轴,短轴的一个端点与两焦点组成一正三角形,焦点在x 轴上,且a -c =3, 那么椭圆的方程是 。

答案:12x 2
+9
y 2=1
24. 短轴长为5,离心率为3
2的椭圆的两个焦点分别为F 1,F 2,过F 1作直线交椭圆于A ,B 两点,则△ABF 2的周长为( )。

(A )24 (B )12 (C )6 (D )3 答案:C
提示:b =5, e =3
2, ∴c =1, a =2
3, △ABF 2的周长=|AB |+|AF 2|+|BF 2|=4a =6。

相关文档
最新文档