粗糙集理论ppt

合集下载

2粗糙集(上课)

2粗糙集(上课)

头疼 是 是 是
肌肉疼 是 是 是
体温 正常 高 很高
流感 否 是 是

否 否

否 是
正常
高 很高

否 是
头疼
是 是
体温
正常 高
流感
否 是

否 否 否 否 否
很高
Байду номын сангаас正常 高 很高 高 很高

否 否 是 是 否
必然规则有哪些?可能规则有哪些?
RS理论概论
粗糙集(Rougn Set,RS)理论是由波兰学者 Pawlak Z在1982年提出的。粗糙集(Rougn Set, RS)理论是一种刻划不完整性和不确定性 的数学工具,能有效地分析和处理不精确、不 一致、不完整等各种不完备信息,并从中发现 隐含的知识,揭示潜在的规律。 该理论近年日益受到国际学术届的重视,已经 在模式识别、机器学习、决策支持、过程控制、 预测建模等许多科学与工程领域得到成功的应 用。
集合X关于R的上逼近(upper approximation) 定义为:
R*(X)是由所有与X相交非空的等效类[a]R 的并集,是那些可能属于X的对象组成的最 小集合.显然,R*(X)+NEG(X)=论域U
集合X的边界区(boundary region)定义为:
BN(X)为集合X的上逼近与下逼近之差. 如果BN(X)是空集,则称X关于R是清晰 的(crisp);反之如果BN(X)不是空集,则 称集合X为关于R的粗糙集(rough set).
给定一个有限的非空集合U称为论域,R 为U上的一族等效关系.R将U划分为互不 相交的基本等效类,二元对K=(U,R)构 成一个近似空间(approximation space). 设X为U的一个子集,a为U中的一个对象, [a]R表示所有与a不可分辨的对象所组 成的集合,即由a决定的等效类.当集合X 能表示成基本等效类组成的并集时,则 称集合X是可以精确定义的;否则,集合 X只能通过逼近的方式来刻划。

《粗糙集理论介绍》

《粗糙集理论介绍》

Then,there are:
I*(x)={x2,x4} 回 I*(x)={x1,x3,x7,x2,x4} 回
回24
近似的示意图
假定有一个信息系统, 有两个属性. 属性一有5个值, 属性二有6个值. 现在有一个要近似的集合(X), 在图
中用红色的圆表示.
仅使用第一个属性进行划分的情形. 正区域为空. 蓝色区域为负区域.
● 基本集:由论域中相互间不可区分的对象组成的 集合,是组成论域知识的颗粒。
返回
例1 一玩具积木的集合如下表描述(表1)
R1(颜色) R2(形状) R3(体积)
X1

圆形

X2

方形

X3

三角形

X4

三角形

X5

圆形

X6

方形

X7

三角形

X8

三角形

取不同的属性组合,可得不同的等价关系(粒度)为: IND(R1)={{x1,x3,x7}, {x2,x4}, {x5,x6,x8}} IND(R1,R2)={{x1}, {x2}, {x3,x7}, {x4}, {x5}, {x6}, {x8}}
Step2. 针对各个属性下的初等集合寻找下近似和上近似。
以“头疼+肌肉痛+体温”为例,设集合X为患流感的 人的集合,I为3个属性构成的一个等效关系: {p1},{p2,p5},{p3},{p4},{p6}, 则
X={P1,P2,P3,P6} I={{p1},{p2,p5},{p3},{p4},{p6}}
知识判断肯定属于X的对象所组成的最大集合,有时也称为X的正 区(positive region),记做POS(X)

经典粗糙集理论

经典粗糙集理论
粗糙集理论能够处理不确定性和模糊性,而神经网络则能够通过学习过 程找到数据中的模式。将粗糙集与神经网络结合,可以利用粗糙集对数 据的不确定性进行建模,并通过神经网络进行分类或预测。
粗糙集可以用于提取数据中的决策规则,这些规则可以作为神经网络的 训练样本。通过训练,神经网络可以学习到决策规则,并用于分类或预 测。
边界区域
近似集合中的不确定性区 域,即既不属于正域也不 属于负域的元素集合。
粗糙集的度量
精确度
描述了集合中元素被近似集合 包含的程度,即属于近似集合
的元素比例。
覆盖度
描述了近似集合能够覆盖的元 素数量,即近似集合的大小。
粗糙度
描述了集合被近似程度,是精 确度和覆盖度的综合反映。
知识的不确定性
描述了知识表达系统中属性值 的不确定性程度,与粗糙度相
经典粗糙集理论
目录
• 粗糙集理论概述 • 粗糙集的基本概念 • 粗糙集的运算与性质 • 粗糙集的决策分析 • 粗糙集与其他方法的结合 • 经典粗糙集理论案例研究
01 粗糙集理论概述
定义与特点
定义
粗糙集理论是一种处理不确定性和模 糊性的数学工具,通过集合近似的方 式描述知识的不完全性和不确定性。
粗糙集理论中的属性约简可以用于简化神经网络的输入特征,降低输入 维度,提高分类或预测的准确率。
粗糙集与遗传算法
01
遗传算法是一种全局优化算法,能够通过模拟自然界的进化过程来寻找最优解 。将粗糙集与遗传算法结合,可以利用粗糙集对数据的分类能力,结合遗传算 法的全局搜索能力,寻找最优的分类规则或决策规则。
02
粗糙集可以用于生成初始的分类规则或决策规则,然后利用遗传算法对这些规 则进行优化,通过选择、交叉、变异等操作,寻找最优的规则组合。

第9章 粗糙集理论

第9章 粗糙集理论
1992年,在波兰召开了第一届国际粗糙集理论研讨会, 有15篇论文发表在1993年第18卷的 《Foundation of computingand decision sciences》上。 1995年,Z.Pawlak等人在《ACM Communications》上 发表“Rough sets”,极大地扩大了该理论的国际影响。 1996~1999年,分别在日本、美国、美国、日本召开了 第4~7届粗糙集理论国际研讨会。
由R=R1·R2,可求出: U/R=U/{R1,R2}={{1,2},{3,4},{5},{6,7,8}} 因为X无法用U/R的等价类并集精确表示,所以X关于R是U上的 一个粗糙集。 X的下近似集为: R_(X)={6,7,8} X的上近似集为: R-(X)={1,2}∪{3,4}∪{6,7,8}={1,2,3,4,6,7,8} X的边界域: BNR(X)= R-(X)-R_(X)={1,2,3,4} X的负区域: NEGR(X)=U-R-(X)={5}
定义9.13 设K=(U,R)是一个知识库,对于U中的两 个集合X和Y,当R_(X)= R_(Y)时,称集合X、Y为R下相等; 当R-(X)= R-(Y)时,称集合X、Y为R上相等。 粗相等关系拓展了传统的相等关系,描述了任何不可分
定义9.12 设K=(U,R)是一个知识库,对于一个集合 XU,则:
集合X的R下近似(集)定义为:R_(X)=∪{yiU/R | yiX} 集合X的R上近似(集)定义为:R-(X)=∪{yiU/R | yi∩X≠Φ} 集合X的R边界域:BNR(X)= R-(X)-R_(X) 集合X的R正域:POSR(X)=R_(X) 集合X的R负域:NEGR(X)=U-R-(X) 集合X是R精确的,当且仅当R-(X)=R_(X)。集合X是R粗 糙的,当且仅当R-(X)≠R_(X)。

粗糙集理论

粗糙集理论

BX { x1 , x 3 , x 4 , x 5 , x 8 , x 9 }
; }=
BN B ( X )
=
BX BX
x1 , x 3 , x 4 , x 5 , x 8 , x 9
}-{
x1 , x 3 , x 4 , x 9
{ x 5 , x 8 }。因为 BX 义的。
BX
,即 BN
4
5
从表 4 可见,当去掉属性 a2 或 a3 时,基本集个数减少, 而去掉属性 a1 时,基本集数目不变。说明属性 a1 是冗 余的,而属性 a 2 和 a3 则是独立的。所以,仅仅使用属 性 a 2 和 a3 ,便可以区分出 5 个基本集,可获得于原始 信息系统相同的信息系统。
2012-5-29
a 1 2 2 1 1
2
a
3
3 1 3 4 2
9
2012-5-29
例 3 : 如果仅考虑表 1 所示信息系统的属性子集
B { a 1 , a 2 }, 则
B 所对应的不可辨识关系 Ind ( B ) 导
出的等价类 U / Ind ( B ) 如表 3 所示。其中的每一行是一 个 B 的基本集。
表 3:关于属性子集 B { a 1 , a 2 } 的基本集 U B a
1
a2
{ { { {
x1 , x 3 , x 9 }
x 2 , x 7 , x 10 }
x4 }
2 3 2 1
1 2 2 1
x5 , x6 , x8
}
2012-5-29
10
下近似和上近似
上、下近似(Low er and U pper approxi ati m ons)是用 粗糙集理论进行数据分析的两个关键概念。设信息系统

智能信息处理导论PPT第5章 粗集信息处理

智能信息处理导论PPT第5章 粗集信息处理
等价类的概念有助于从已经构造了的集合构造集合。 在 X 中的给定等价关系 ~ 的所有等价类的集合表示为 X / ~ 并叫做 X 除以 ~ 的商集。
5.1.3 知识的约简
在信息系统中,存在有大量的冗余知识,这些冗余知 识影响了人们对于信息的约简问题。知识的简化讨论 的问题是,在保持知识库中知识不失真的前提下消除 知识库中冗余的属性。
5.8.2 参数属性分析
从灰色关联分析中可以看到,待检模式向量中的各特 征参数均未被区别对待。实际上,对于某种故障,可 能只是其中的一部分参数值能反映出诊断对象的状态, 而其它的参数则没有明显的变化。因此,在关联度计 算时应根据在不同故障诊断时作用的大小对各参数区 别对待,从而达到准确的模式识别及决策。
众所周知,计算器中数字∀一6显示单元可由Β段显示管构成,如图5-4所示:
5.6.3 基于粗集理论方法的文字识别
5.7 图像中值滤波的粗集方法
5.7பைடு நூலகம்1 基本依据
5.7.2 粗集中值滤波
5.7.3 试验结论和讨论
5.7.1 基本依据
在图像处理中,一个非常重要的问题就是过滤出混杂 在图像中的噪声。由于在图像中含有大量边缘,而边 缘往往包含有许多重要信息,因此希望在滤出噪声的 同时能使边缘得到有效的保护。图像的中值滤波是常 用的图像非线性滤波方法,它在一给定的以某像元为 中心的处理窗中,以处理窗中所有像元灰度值代替该 像元的灰度值。该方法简单易于实现。且具有较好的 滤除噪声效果,但在滤噪的同时将使图像细节模糊, 边缘清晰。杨平时等人根据噪声和边缘的特征以粗集 方法划分噪声和边缘,并分别予以不同的处理,得到 粗集中值滤波器。
② a∈B′,K(B′,C)≠K(B′- {a},C),即B′是最小的,任何进一步的属性删除

粗糙集理论资料

粗糙集理论资料

粗糙集理论的提出(续3)

粗糙集理论中的一些基本观点

“概念”就是对象的集合 “知识”就是将对象进行分类的能力(“各从其类”) “知识” 是关于对象的属性、特征或描述的刻划 不可区分关系表明两个对象具有相同的信息 提出上近似集、下近似集、分类质量等概念 ……
1.2.2 粗糙集理论的发展历程
1.2
粗糙集理论概述
1.2.1 粗糙集理论的提出
自然界中大部分事物所呈现的信息都是:
◆ ◆
不完整的、不确定的、模糊的和含糊的 经典逻辑无法准确、圆满地描述和解决
粗糙集理论主要是为了描述并处理“含糊”信息。
粗糙集理论的提出(续1)

“含糊”(Vague) 1904年谓词逻辑创始人G. Frege (弗雷格)首次提出 将含糊性归结到 “边界线区域”(Boundary region) 在全域上存在一些个体,它既不能被分类到某一个 子集上,也不能被分类到该子集的补集上 …… “模糊集”(Fuzzy Sets) 1965年美国数学家L. A. Zadeh首次提出 无法解决G. Frege提出的“含糊”问题 未给出计算含糊元素数目的数学公式 ……
1.1 Rough sets的快速入门方法

认真研读Rough Sets Theory的创始人、波兰数学家Z. Pawlak于1982年发表的第一篇论文“Rough Sets”。
【注】:最好直接阅读英文论文原文。



研读王珏等人1996年在《模式识别与人工智能》上发 表的关于Rough Sets理论及其应用的综述性文章。 参考李德毅的《不确定性人工智能》、杨善林的《智 能决策方法与智能决策支持系统》 参考史忠植编著的《高级人工智能》、《知识发现》 等教材中讨论粗糙集的有关章节。

2经典粗糙集理论

2经典粗糙集理论

d
N N N P P P P
上一页
下一页
返回本章首页
粗糙集的基础理论和方法
2.8
求约简算例
a1
1 1 2 1 2 1 2
U/D={YN,YP} U n1 以属性集{a1,a2}对论域进行划分, 我们求分类质量: n2 YN={n1, n2,n3},YP={n4, n5,n6, n7} n 3 X1={n1, n2,n4,n6},X2={n3, n5,n7}, n 4 n5 因此分类质量为: n6 分类质量=0/7=0 显然属性集{a1,a2}不是约简。 n 7
上一页 下一页 返回本章首页
粗糙集的基础理论和方法
2.8
求约简算例
由属性a1 , a2对论域进行划分,可得如下等价类 U/C={X1, X2, X3, X4, X5, X6} 其中:X1={n1},X2={n2},X3={n3, n8}, X4={n4,n5,n6,n9},X5={n7} YL={n2,n3,n4,n5,n6, n8},YH={n1, n7, n9} 分类质量=5/9=0.56,与整个属性集的分类质量相同 因此,属性子集{a1,a2}是约简。
上一页 下一页 返回本章首页 X1={n1},X2={n2},X3={n3},X4={n4,n5,n6,n9}, X5={n7},X6={n8}
粗糙集的基础理论和方法
2. 5 属性约简与核
上一页
下一页
返回本章首页
粗糙集的基础理论和方法
2.6 决策规则
上一页
下一页
返回本章首页
粗糙集的基础理论和方法
上一页 下一页 返回本章首页
粗糙集的基础理论和方法
2.8
求约简算例
由属性a1 , a3对论域进行划分,可得如下等价类 U/C={X1, X2, X3, X4, X5, X6} 其中:X1={n1},X2={n2},X3={n3}, X4={n4,n5,n6,n9},X5={n7},X6={n8} YL={n2,n3,n4,n5,n6, n8},YH={n1, n7, n9} 分类质量=5/9=0.56,与整个属性集的分类质量相同 因此,属性子集{a1,a3}也是约简,同理可求得属性子集 {a2,a3} 也为约简。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档