Matlab学习系列23. 模糊聚类分析原理及实现

合集下载

模糊聚类分析

模糊聚类分析

模糊聚类分析模糊聚类分析,也被称为模糊聚类或者软聚类,是一种数据分析的方法。

与传统的硬聚类不同,模糊聚类可以将每个观测对象划分到不同的聚类中心,从而更好地反映对象与聚类中心之间的相似性。

模糊聚类的思想源于模糊集理论,该理论引入了概率的概念,使得划定边界变得模糊化。

在传统的硬聚类方法中,每个对象只能属于一个聚类,而在模糊聚类中,每个对象的隶属度被划分为一个实数,表示对象属于每个聚类的程度。

模糊聚类的基本原理是通过最小化目标函数来优化聚类结果。

常见的目标函数包括模糊熵和模糊轮廓系数。

模糊熵用于衡量聚类的混乱程度,值越小表示聚类更好。

模糊轮廓系数则用于评价每个对象的聚类紧密度和分离度,系数范围为[-1, 1],越接近1表示聚类结果越好。

模糊聚类的算法有多种,其中最常用的是模糊C均值(FCM)算法。

FCM算法首先随机初始化聚类中心,然后迭代更新对象的隶属度和聚类中心,直到满足终止条件。

在更新过程中,对象的隶属度和聚类中心根据距离度量进行调整。

模糊聚类在各个应用领域都有广泛的应用。

例如,在市场细分中,模糊聚类可以根据消费者的购买偏好将其划分为不同的细分市场,有助于制定更准确的营销策略。

在医学影像分析中,模糊聚类可以帮助医生根据患者的病情将其归类为不同的疾病类型,有助于做出更准确的诊断。

当然,模糊聚类也存在一些问题和挑战。

首先,模糊聚类的计算复杂度高,特别是在处理大规模数据时。

其次,模糊聚类对初始参数的敏感性较高,不同的初始化可能导致不同的聚类结果。

此外,模糊聚类的结果通常难以解释和理解,需要结合领域知识进行进一步分析。

为了克服这些问题,研究者们一直在不断改进模糊聚类算法。

例如,一些研究探索了基于深度学习的模糊聚类方法,利用神经网络来提高聚类的准确性和效率。

此外,还有一些研究致力于开发新的目标函数和距离度量方法,以更好地满足实际问题的需求。

综上所述,模糊聚类是一种基于模糊集理论的数据分析方法,可以更好地刻画对象之间的相似性。

模糊聚类方法

模糊聚类方法

模糊聚类方法1. 引言模糊聚类是一种将相似的数据点分组的无监督学习技术。

与传统的硬聚类方法相比,模糊聚类通过为每个数据点分配属于不同簇的隶属度来提供更灵活的聚类结果。

本文将介绍模糊聚类方法的基本原理、常用算法以及在实际应用中的一些注意事项。

2. 模糊聚类的基本原理模糊聚类方法的核心思想是将每个数据点划分为多个簇的一部分,而不是将其硬性地分配到某个具体的簇中。

每个数据点属于不同簇的隶属度之和为1,隶属度越大表示该数据点属于该簇的可能性越高。

通过使用模糊聚类方法,我们可以更好地处理数据的不确定性和噪音,同时提供更丰富的聚类结果。

相比硬聚类方法,模糊聚类能够提供更多的信息,适用于更广泛的应用。

3. 常用的模糊聚类算法3.1 模糊C均值聚类算法(FCM)模糊C均值聚类算法是最常用的模糊聚类算法之一。

它在每次迭代中通过计算数据点到簇中心的欧氏距离来更新隶属度,并通过最小化目标函数来调整簇中心的位置。

FCM算法的优点在于对于噪音和离群值的处理能力较强,且具有较好的收敛性。

然而,它对于初始聚类中心的选择较为敏感,且对于大数据集的计算效率较低。

3.2 模糊子空间聚类算法(FSCM)模糊子空间聚类算法是一种基于子空间的模糊聚类方法。

它在模糊聚类的基础上考虑了数据的高维性和局部结构,通过将数据点投影到子空间中进行聚类。

FSCM算法的特点在于能够处理高维数据和具有相关性的特征,且对于离群值具有较好的鲁棒性。

然而,由于需要对每个子空间进行聚类,计算复杂度较高。

3.3 模糊谱聚类算法(FSPC)模糊谱聚类算法是一种基于图论的模糊聚类方法。

它通过构建数据点之间的相似度图,并通过计算图的拉普拉斯矩阵的特征向量来进行聚类分析。

FSPC算法的优点在于能够处理非凸数据分布和非线性数据结构,且对于图的建模和谱分解具有较好的效果。

然而,算法的计算复杂度较高,且对于参数的选择较为敏感。

4. 模糊聚类的实际应用模糊聚类方法在多个领域中都有广泛的应用。

matlab聚类分析

matlab聚类分析

matlab聚类分析聚类分析是一种常用的数据分析方法,它可以将数据集中的对象按照某种相似度指标划分为若干个互不相交的子集,使得同一个子集中的对象之间的相似度较高,而不同子集的对象之间的相似度较低。

在实际应用中,聚类分析被广泛用于数据挖掘、图像处理、生物信息学等领域。

要进行聚类分析,首先需要选择合适的相似度度量方法和聚类算法。

常用的相似度度量方法包括欧氏距离、余弦相似度等;聚类算法则有K-means、层次聚类等。

这些方法和算法各有优缺点,适用于不同类型和规模的数据集。

聚类分析的基本思想是将对象分成若干个簇,使得同一簇内的对象尽量相似,而不同簇的对象尽量不相似。

为了实现这个目标,聚类算法通常采用迭代的方式,通过调整簇的划分,使得簇内的相似度最大化,簇间的相似度最小化。

具体而言,聚类算法的一般步骤如下:1. 初始化聚类中心:根据预先设定的聚类数目,随机选择几个对象作为初始的聚类中心。

2. 对象分配:计算所有对象与每个聚类中心之间的相似度,根据相似度大小将每个对象分配到距离最近的聚类中心所对应的簇中。

3. 更新聚类中心:对每个簇重新计算聚类中心,通常是将簇内所有对象的特征向量求均值作为新的聚类中心。

4. 判断终止条件:检查聚类中心的变化是否满足预设的终止条件,如果满足则停止迭代,否则返回步骤2。

在实际应用中,聚类分析可以帮助我们发现数据集中存在的潜在结构和规律。

例如,对于一个销售数据集,我们可以利用聚类分析将客户分成几个群体,从而更好地了解不同群体的购买习惯和偏好,为市场营销活动提供有针对性的方案。

此外,聚类分析还可以用于图像处理领域。

通过将图像中的像素点进行聚类,可以将相似的像素点归为一类,从而实现图像的分割和压缩。

这在图像识别和图像压缩等应用中具有重要意义。

总之,聚类分析是一种重要的数据分析方法,它能够将数据集中的对象划分为若干个互不相交的子集。

通过聚类分析,我们可以发现数据集中的内在结构和规律,为后续的研究和决策提供有价值的信息。

Matlab中的模糊图像处理和图像模糊恢复技术

Matlab中的模糊图像处理和图像模糊恢复技术

Matlab中的模糊图像处理和图像模糊恢复技术随着数字图像的广泛应用和发展,图像模糊成为一个重要的问题。

由于摄像器材或传输媒介等方面的限制,图像的清晰度可能受到一定程度的影响,导致图像模糊。

在实际应用中,图像的模糊问题会给图像解析、目标跟踪、计算机视觉等许多领域带来困扰。

为了改善模糊图像的质量,并解决图像模糊问题,Matlab提供了一系列的模糊图像处理和图像模糊恢复技术。

一、图像模糊的产生原因图像模糊一般是由光学系统的缺陷、运动物体、相机抖动等因素引起的。

光学系统的缺陷包括镜头的失真、散射、衍射等;运动物体指的是图像中的物体在拍摄过程中出现运动造成模糊;相机抖动是由于相机本身的不稳定性或者手持摄影造成的。

二、模糊图像处理的方法1.滤波方法滤波方法是最基本也是最常用的图像模糊处理方法。

在Matlab中,可以使用各种滤波器对图像进行处理,例如平滑滤波、高斯滤波、中值滤波等。

这些滤波器可以消除图像中的高频噪声,同时也会导致图像的模糊。

2.图像退化模型图像退化模型是描述图像模糊过程的数学模型。

常见的图像退化模型有运动模糊模型、模糊核模型等。

通过了解图像退化模型的特性,可以更准确地恢复图像的清晰度。

在Matlab中,可以根据图像退化模型进行图像恢复的研究和实现。

3.频域方法频域方法是一种基于图像频谱的模糊图像处理方法。

通过对图像进行傅里叶变换,可以将图像从空间域转换到频率域,然后在频率域进行处理,最后再进行逆傅里叶变换得到恢复后的图像。

在Matlab中,可以利用fft2函数进行傅里叶变换和逆傅里叶变换,实现频域方法对图像的处理。

三、图像模糊恢复技术1.盲去卷积算法盲去卷积算法是一种不需要知道图像退化模型的图像恢复方法。

通过对模糊图像进行去卷积处理,可以尽可能地恢复图像的清晰度。

在Matlab中,可以使用盲去卷积相关的函数和工具箱实现图像模糊恢复。

2.基于深度学习的图像超分辨率重建技术深度学习技术如今在计算机视觉领域取得了巨大的成功。

模糊聚类方法

模糊聚类方法

模糊聚类方法模糊聚类是一种基于模糊集合理论的聚类算法,它在数据分析和模式识别中得到广泛应用。

与传统的硬聚类方法相比,模糊聚类能够更好地处理数据中的不确定性和模糊性,能够给出每个数据点属于不同聚类的概率,从而更全面地描述数据的特征。

一、模糊聚类的基本原理模糊聚类的基本原理是根据数据点之间的相似性将它们分成不同的聚类。

与传统的硬聚类方法不同,模糊聚类允许数据点属于多个聚类,且给出每个数据点属于不同聚类的权重。

通过引入隶属度函数,模糊聚类能够更好地处理数据的模糊性,给出更丰富的聚类结果。

二、模糊聚类的算法步骤模糊聚类的算法步骤一般包括以下几个方面:1. 初始化隶属度矩阵:隶属度矩阵用于描述每个数据点属于每个聚类的概率,一般通过随机初始化或者根据先验信息进行初始化。

2. 计算聚类中心:根据隶属度矩阵计算每个聚类的中心点,一般采用加权平均的方式计算。

3. 更新隶属度矩阵:根据当前的聚类中心,更新隶属度矩阵,使得每个数据点更准确地属于不同聚类。

4. 判断停止条件:根据一定的准则(如隶属度矩阵的变化程度或者目标函数的收敛性)判断是否达到停止条件,如果未达到,则返回第2步继续迭代。

5. 输出聚类结果:根据最终的隶属度矩阵,确定每个数据点最可能属于的聚类,输出聚类结果。

三、模糊聚类的优势相比传统的硬聚类方法,模糊聚类具有以下优势:1. 能够更好地处理数据的模糊性和不确定性。

在现实世界的数据中,往往存在一些边界模糊或者属于多个类别的情况,传统的硬聚类无法很好地处理这种情况,而模糊聚类能够给出每个数据点属于不同聚类的概率。

2. 能够更全面地描述数据的特征。

传统的硬聚类方法只能将数据点划分为一个聚类,而模糊聚类能够给出每个数据点属于不同聚类的权重,从而更全面地描述数据的特征。

3. 能够适应不同的聚类形状和大小。

传统的硬聚类方法通常假设聚类的形状是凸的,并且假设聚类的大小相等,但在实际应用中,聚类的形状和大小往往是不确定的,而模糊聚类能够更好地适应不同的聚类形状和大小。

Matlab中的时间序列分类和聚类分析技术

Matlab中的时间序列分类和聚类分析技术

Matlab中的时间序列分类和聚类分析技术时间序列分析是一种用于处理以时间为基准的数据的统计学方法。

通过对时间序列数据进行分类和聚类分析,可以帮助我们发现数据之间的模式、趋势和关联,从而提供对未来趋势的预测和决策支持。

在Matlab中,我们可以利用丰富的时间序列分析工具包来进行这些分析,如金融时间序列分析、信号处理、天气预测等。

一、时间序列分类分析时间序列分类分析是将时间序列数据按照一定的规则分类到不同的类别中。

这可以帮助我们识别不同时间序列之间的差异和相似性,进而在分类、预测和决策等应用中发挥作用。

1. 特征提取在进行时间序列分类之前,首先需要从原始数据中提取出一些有意义的特征。

常用的特征提取方法包括傅里叶变换、小波变换、自回归模型参数等。

在Matlab 中,我们可以使用fft函数进行傅里叶变换,cwt函数进行连续小波变换,arima函数进行自回归模型估计等。

提取出的特征可以用来表征时间序列的统计性质、频谱信息以及自相关性等。

2. 数据预处理在进行时间序列分类之前,通常需要对数据进行预处理,以消除噪声、缺失值和异常值等对分类结果的影响。

这可以通过平滑、插值、滤波等方法实现。

在Matlab中,我们可以使用smooth函数进行平滑处理,interp1函数进行插值处理,filter函数进行滤波处理等。

3. 分类模型建立在特征提取和数据预处理之后,我们可以利用已有的分类算法或建立自己的分类模型来进行时间序列分类。

常用的分类算法包括支持向量机、最近邻、决策树等。

在Matlab中,我们可以使用fitcsvm函数进行支持向量机分类,fitcknn函数进行最近邻分类,fitctree函数进行决策树分类等。

二、时间序列聚类分析时间序列聚类分析是将时间序列数据按照相似度进行分组。

不同于分类分析,聚类分析不需要提前指定类别,而是根据数据的相似性自动进行分组。

1. 相似度度量在时间序列聚类分析中,选择合适的相似度度量方法对数据进行比较是非常重要的。

基于MatLab的文本模糊聚类分析及应用


于模糊聚类的文本聚类 。 目前 , 国内外学者 己经把模糊 聚类分析用 于文本模糊聚类 的研究 。该文也通过 尝试性 的实验研究来探索
文 本 模 糊 聚类 。
1知识 准备
在实际进行实验之前我们有必要清楚进行文本模糊 聚类 的关键步骤 , 以及聚类 所采用 的编程工具。
11文本模糊聚类的关键步骤 .
C mp tr n we g n e h oo y电脑 知 识 与技术 o ue o ld e dT c n l K a g
Vo . ,No2 ,S p e 1 8 .5 e t mb r 2 2 e 01 .
基于 Ma L b的文 本模 糊 聚 类分 析及 应 用 ta
常 艳王 芬 李 ,雪
( 南京大学金陵学院 信息科学与工程学 院, 江苏 南京 2 0 8 ) 10 9
摘要: 典型的 文本 聚类无 法解决文本 的不确 定类别属性 的 1题 , 以有必要将模 糊聚类分析 引入文本 聚类。 文章 采用 9 所 tbY具对从 中国知 网中获取 的 2 篇文献进行文本模糊 聚类 , l . a - O 以期通过 尝试 性的 实验研 究来探 索文本模糊聚 类, 了解
( p. fnoma o c n e n n ier gJnn ol eo Naj g iesy Naj g 10 9 C ia Deto Ifr t nSi c d g e n ,il gC lg f ni v rt, ni 0 8 , hn ) i e a E n i i e n Un i n2
文本模糊聚类分析过程主要包含 以下几个方面 : 文本特征建 立与抽取 、 标定 、 聚类。
11 .. 本 特 征建 立与 抽 取 1文
文本信 息源的非结构化特性使得现有 的数据 发现技术 无法 直接应用于其上 。因此 , 我们 必须对文本进行预处理 , 取代 表其 抽

matlab聚类分析

说明:如果是要用matlab做kmeans聚类分析,直接使用函数kmeans即可。

使用方法:kmeans(输入矩阵,分类个数k)。

转载一:MATLAB提供了两种方法进行聚类分析:1、利用clusterdata 函数对数据样本进行一次聚类,这个方法简洁方便,其特点是使用范围较窄,不能由用户根据自身需要来设定参数,更改距离计算方法;2、分步聚类:(1)用pdist函数计算变量之间的距离,找到数据集合中两辆变量之间的相似性和非相似性;(2)用linkage函数定义变量之间的连接;(3)用cophenetic函数评价聚类信息;(4)用cluster函数进行聚类。

下边详细介绍两种方法:1、一次聚类Clusterdata函数可以视为pdist、linkage与cluster的综合,一般比较简单。

【clusterdata函数:调用格式:T=clusterdata(X,cutoff)等价于Y=pdist(X,’euclid’); Z=linkage(Y,’single’); T=cluster(Z,cutoff) 】2、分步聚类(1)求出变量之间的相似性用pdist函数计算出相似矩阵,有多种方法可以求距离,若此前数据还未无量纲化,则可用zscore函数对其标准化【pdist函数:调用格式:Y=pdist(X,’metric’)说明:X是M*N矩阵,为由M个样本组成,每个样本有N个字段的数据集metirc取值为:’euclidean’:欧氏距离(默认)‘seuclidean’:标准化欧氏距离; ‘mahalanobis’:马氏距离…】pdist生成一个M*(M-1)/2个元素的行向量,分别表示M个样本两两间的距离。

这样可以缩小保存空间,不过,对于读者来说却是不好操作,因此,若想简单直观的表示,可以用squareform函数将其转化为方阵,其中x(i,j)表示第i个样本与第j个样本之的距离,对角线均为0.(2)用linkage函数来产生聚类树【linkage函数:调用格式:Z=linkage(Y,’method’)说明:Y为pdist函数返回的M*(M-1)/2个元素的行向量,method可取值:‘single’:最短距离法(默认);’complete’:最长距离法;‘average’:未加权平均距离法;’weighted’:加权平均法‘centroid’:质心距离法;‘median’:加权质心距离法;‘ward’:内平方距离法(最小方差算法)】返回的Z为一个(M-1)*3的矩阵,其中前两列为索引标识,表示哪两个序号的样本可以聚为同一类,第三列为这两个样本之间的距离。

模糊聚类的实现和应用

模糊聚类的实现和应用随着数据量的不断增加和数据种类的不断增多,如何从数据中获取有用信息变得越来越重要。

在这个背景下,聚类是一种非常有用的数据挖掘技术。

特别地,模糊聚类(fuzzy clustering)可以用来处理一些复杂且不确定的数据集,如音频信号、文本和图像。

本文将讨论模糊聚类的实现和应用。

一、什么是模糊聚类?在传统聚类方法中,每个数据点只能属于一个簇。

然而,在实际情况中,有些数据点可能存在于多个簇中。

为了解决这个问题,模糊聚类被提出来。

模糊聚类允许每个数据点有一定的隶属度(membership degree),即属于每个簇的可能性是多少。

模糊聚类最初由福田洋教授于1973年提出,可以看作是K-means算法(一种典型的聚类算法)的一个改进。

二、模糊聚类的实现模糊聚类的实现很简单,只需要给定聚类的数量和数据集即可。

具体的方法如下:1. 初始化聚类中心。

2. 计算每个数据点和每个聚类中心之间的距离。

3. 计算每个数据点属于不同聚类的隶属度。

4. 根据每个数据点的隶属度更新聚类中心。

5. 重复2-4直到聚类中心没有改变或达到预设的迭代次数。

这是一个基础的模糊聚类算法,也是比较高效的。

除了这个算法,还有一些其它的模糊聚类算法,例如模糊C均值(FCM)、模糊自组织映射(FOSOM)和模糊最佳联合聚类(FOBIC)。

三、模糊聚类的应用模糊聚类已经被广泛地应用于各个领域,以下是一些例子:1. 图像分割模糊聚类可以用于对图像进行分割。

图像分割是将图像分为若干部分的过程,是图像处理中的重要技术。

模糊聚类可以根据像素的灰度值以及周围像素的值,将像素聚成几个簇。

这个方法能够用于识别图像中的不同物体。

2. 音频处理在音频处理领域,模糊聚类可以用于音乐分类和语音信号分析。

比如说,一些研究人员使用模糊聚类对音频文件进行分类。

他们首先提取音频文件的一些特征,然后使用模糊聚类算法将这些特征聚类。

这样做可以非常有效地将音乐文件分类到不同的流派和风格。

使用MATLAB进行模糊控制设计

使用MATLAB进行模糊控制设计导言:模糊控制是一种基于模糊逻辑的自适应控制方法,它使用模糊规则来处理难以准确建模的系统。

MATLAB作为一款功能强大的数学计算软件,在模糊控制设计中发挥着重要的作用。

本文将介绍使用MATLAB进行模糊控制设计的基本原理、步骤以及一些实际的应用案例。

一、模糊控制基本原理1.1 模糊逻辑模糊逻辑是基于模糊集的一种数学逻辑推理方法。

与传统的布尔逻辑不同,模糊逻辑考虑了中间状态的存在,可以用模糊集的隶属度来描述事物之间的模糊关系。

模糊逻辑的基本运算包括模糊与、模糊或、模糊非等。

1.2 模糊控制器的基本结构模糊控制系统由模糊化、模糊推理和去模糊化三个主要部分组成。

模糊化将输入转换为模糊集,模糊推理基于预定义的模糊规则进行逻辑推理,得到输出的模糊集,然后通过去模糊化将模糊结果转换为实际的控制信号。

二、使用MATLAB进行模糊控制设计的步骤2.1 建立模糊逻辑系统在MATLAB中,可以使用fuzzy工具箱来建立模糊逻辑系统。

首先,需要定义输入和输出的模糊集,可以选择三角形、梯形或高斯函数等形状。

然后,定义模糊规则,设置每个输入和输出之间的关系。

最后,确定输入和输出的范围,以便后续模糊控制器的设计和仿真。

2.2 设计模糊控制器在MATLAB中,可以使用fuzzy工具箱中的fuzzy控制器对象来设计模糊控制器。

首先,需要将前一步中建立的模糊逻辑系统与fuzzy控制器对象相关联。

然后,设置输入的变化范围和输出的变化范围。

接下来,可以选择使用模糊控制器设计方法来优化模糊规则和模糊集的参数。

最后,可以进行控制系统的仿真和性能评估。

2.3 优化模糊控制器优化模糊控制器是为了使模糊控制系统能够更好地适应实际环境变化和控制要求。

在MATLAB中,可以使用模糊控制器的仿真结果进行性能评估和参数调整。

可以通过修改模糊规则、模糊集的参数或输入输出的变化范围等方式来优化模糊控制器。

三、模糊控制设计的实际应用案例3.1 模糊温度控制模糊温度控制是一个常见的实际应用案例。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

23. 模糊聚类分析原理及实现 聚类分析,就是用数学方法研究和处理所给定对象,按照事物间的相似性进行区分和分类的过程。 传统的聚类分析是一种硬划分,它把每个待识别的对象严格地划分到某个类中,具有非此即彼的性质,这种分类的类别界限是分明的。 随着模糊理论的建立,人们开始用模糊的方法来处理聚类问题,称为模糊聚类分析。由于模糊聚类得到了样本数与各个类别的不确定性程度,表达了样本类属的中介性,即建立起了样本对于类别的不确定性的描述,能更客观地反映现实世界。 本篇先介绍传统的两种(适合数据量较小情形,及理解模糊聚类原理):基于择近原则、模糊等价关系的模糊聚类方法。

(一)预备知识 一、模糊等价矩阵 定义1 设R=(rij)n×n为模糊矩阵,I为n阶单位矩阵,若R满足 i) 自反性:I≤R (等价于rii =1); ii) 对称性:RT=R; 则称R为模糊相似矩阵,若再满足 iii) 传递性:R2≤R(等价于1()nikkjijkrrr)

则称R为模糊等价矩阵。 定理1 设R为n阶模糊相似矩阵,则存在一个最小的自然数k(kRl=Rk. Rk称为R的传递闭包矩阵,记为t(R).

二、模糊矩阵的λ-截矩阵 定义2 设A=(aij)n×m为模糊矩阵,对任意的λ∈[0,1], 作矩阵 ()

ijnmAa

其中, ()1, 0, ijijijaaa





称为模糊矩阵A的λ-截矩阵。显然,Aλ为布尔矩阵,且其等价性与

与A一致。 意义:将模糊等价矩阵转化为等价的布尔矩阵,可以得到有限论域上的普通等价关系,而等价关系是可以分类的。因此,当λ在[0,1]上变动时,由Aλ得到不同的分类。 若λ1<λ2, 则Aλ1≥Aλ2, 从而由Aλ2确定的分类是由Aλ1确定的分类的加细。当λ从1递减变化到0时,Aλ的分类由细变粗,逐渐归并,形成一个分级聚类树。 例1 设U={u1, u2, u3, u4, u5}, 对给定的U上的模糊等价关系

让λ从1到0变化,观察分类过程。 (1) 当λ=1时, 11000001000001000001000001

R



分类结果为5类:(每行代表一类,1代表对应元素在该类) {u1}, {u2}, {u3}, {u4}, {u5} (2) 当λ=0.8时,

0.81010001000101000001000001

R



分类结果为4类:{u1, u3}, {u2}, {u4}, {u5}

(3) 当λ=0.6时,

0.61010001000101000001100011

R



分类结果为3类:{u1, u3}, {u2}, {u4, u5}

(4) 当λ=0.5时,

0.51011101000101111011110111

R



分类结果为2类:{u1, u3, u4, u5}, {u2} (4) 当λ=0.4(R中的最小值)时, 0.41111111111111111111111111

R



分类结果为1类:{u1, u2, u3, u4, u5}

整个动态分类过程如下:

(二)基于择近原则的模糊聚类 择近原则就是利用贴近度来实现分类操作,贴近度用来衡量两个模糊集A和B的接近程度,用N(A,B)表示。贴近度越大,表明二者越接近。 设论域有限或者在一定区间,即U={u1, u2, …, un}或U=[a,b], 常

用的贴近度有以下三种: (1) 海明贴近度

11(,)1|()()|niiiNABAuBun 1(,)1|()()|dbiiaNABAuBuuba



(2) 欧氏贴近度 122

11(,)1[()()]niiiNABAuBun





122

1

(,)1[()()]dbiiaNABAuBuuba



(3) 格贴近度 (,)()()ccNABABAB

其中,1()()niiiABAuBu. Matlab实现:格贴近度的实现函数fuz_closing.m function y=fuz_closing(A,B,type) %要求A与B列数相同的行向量 [m,n]=size(A); switch type

case 1 %海明贴近度 y=1-sum(abs(A-B))/n; case 2 %欧氏贴近度 y=1-(sum(A-B).^2)^(1/2)/sqrt(n); case 3 %格贴近度 y1=max(min(ones(m,n)-A,ones(m,n)-B)); %ones(m,n)-A等于A^c y2=max(min(A,B)); y=min(y1,y2); end

例2 设某产品的质量等级分为5级,其中一级有5种评判因素u1, u2,

u3, u4, u5. 每一等级的模糊集为 B1={0.5 0.5 0.6 0.4 0.3} B2={0.3 0.3 0.4 0.2 0.2} B3={0.2 0.2 0.3 0.1 0.1} B4={0.1 0.1 0.2 0.1 0} B5={0.1 0.1 0.1 0.1 0} 假设某产品各评判因素的值为A={0.4 0.3 0.2 0.1 0.2}, 问该产品属于哪个等级? 代码: A=[0.4 0.3 0.2 0.1 0.2]; B=[0.5 0.5 0.6 0.4 0.3; 0.3 0.3 0.4 0.2 0.2; 0.2 0.2 0.3 0.1 0.1; 0.1 0.1 0.2 0.1 0; 0.1 0.1 0.1 0.1 0]; for i=1:5 haiming(i)=fuz_closing(A,B(i,:),1); oushi(i)=fuz_closing(A,B(i,:),2); ge(i)=fuz_closing(A,B(i,:),3); end haiming oushi ge

运行结果:

haiming = 0.7800 0.9200 0.9000 0.8600 0.8400 oushi = 0.5081 0.9106 0.8658 0.6870 0.6422 ge = 0.4000 0.3000 0.2000 0.2000 0.1000 可见样本A与各等级的格贴近度分别为0.4, 0.3, 0.2, 0.2, 0.1, 故可认为该产品属于B1等级。若按令两种贴近度判断,该产品属于B2

等级。 (三)基于模糊等价关系的模糊聚类 一、算法步骤 1. 样本数据归一化 设X={x1, x2, …, xn}为要分类的n个样本,每个样本有m个指标,

即 xi={ xi1, xi2, …, xim}, i=1,2,..,n 得到原始数据矩阵X=( xij)n×m.

由于不同指标的数据量纲不同,为了使数据能够比较,要先对X做归一化处理。 2. 建立模糊相似矩阵R 先建立样本xi与xj相似程度rij, 进而构造模糊相似矩阵R=(rij)n×n

建立rij常用的方法有:

(1) 相似系数法

①夹角余弦法: 12211mikjkkijmmikjkkkxxrxx





②相关系数法: 12211||||()()mikijkjkijmmikijkjkkxxxxrxxxx



 (2) 距离法 一般取 rij=1-c(d(xi,xj))α, 其中c和α为适当选取的参数,使得 0≤rij≤1. 常用的距离有: ①海明距离:1(,)||mijikjkkdxxxx ②欧氏距离:21(,)()mijikjkkdxxxx ③切比雪夫距离:1(,)max||ijikjkkmdxxxx (3) 贴近度法

①最大最小法:11()()mikjkkijmikjkkxxrxx



②算术平均最小法:11()1()2mikjkkijmikjkkxxrxx



③几何平均最小法:11()mikjkkijmikjkkxxrxx



 3. 求出R的传递闭包t(R) 即改造相似关系为等价关系:令2RRR, 再令422RRR, …, 直到满足2lllRRR与Rl相等,即为t(R), 仍记为R. 4. 选取合适的λ, 利用λ-截矩阵Rλ进行分类(参考例1)。

二、Matlab实现 求模糊相似矩阵R的函数:fuz_distance.m function R=fuz_distance(x,type) %x为归一化的数据矩阵, type选择计算相似程度的方法

%返回模糊相似矩阵R

相关文档
最新文档