多边形与平行四边形

合集下载

初二数学多边形与平行四边形知识点大全

初二数学多边形与平行四边形知识点大全

第5关 多边形与平行四边形(讲义部分)知识点1 多边形的概念和性质多边形:在平面内,若干条不在同一条直线上的线段首尾顺次相接组成的封闭的图形叫做多边形. 正多边形:多边形中,如果各条边都相等,各个内角都相等,这样的多边形叫做正多边形. 定理1:n 边形的内角和等于2180n -⋅()(n 为不小于3的整数).外角和等于360(n 为不小于3的整数).题型1 多边形内角和【例1】一个多边形截去一个角后,形成另一个多边形的内角和为720︒,那么原多边形的边数为( ) A .5B .5或6C .5或7D .5或6或7【解答】解:如图,剪切的三种情况:①不经过顶点剪,则比原来边数多1, ②只过一个顶点剪,则和原来边数相等, ③按照顶点连线剪,则比原来的边数少1,设内角和为720︒的多边形的边数是n ,则(2)180720n -=,解得:6n =.则原多边形的边数为5或6或7. 故选:D .【点评】本题考查了多边形的内角和定理,理解分三种情况是关键.【例2】一个多边形的内角和比它的外角和的3倍少180︒,求这个多边形的边数和内角和. 【解答】解:设这个多边形的边数为n ,根据题意,得(2)1803360180n -⨯︒=⨯︒-︒,解得7n =.所以这个多边形的内角和为:(72)180900-︒=︒.【点评】本题考查多边形的内角和与外角和定理,任意多边形的外角和都是360︒,与边数无关.【例3】已知一个正多边形相邻的内角比外角大140︒. (1)求这个正多边形的内角与外角的度数; (2)直接写出这个正多边形的边数. 【解答】解:(1)设正多边形的外角为x ︒,则内角为(180)x -︒,由题意,得180140x x --=.解得20x =.∴正多边形的内角为160︒,外角为20︒.(2)这个正多边形的边数为:3602018︒÷︒=.【点评】本题考查多边形的内角和,解题的关键是熟练运用多边形的内角和公式,本题属于基础 题型.【例4】多边形的内角和与某一个外角的度数总和为1350︒. (1)求多边形的边数;(2)此多边形必有一个内角为多少度?【解答】解:设这个外角度数为x ,根据题意,得(2)1801350n x -⨯︒+︒=︒,解得:13501803601710180x n n ︒=︒-︒+︒=︒-︒, 由于0180x <︒<︒,即01710180180n <︒-︒<︒, 解得8.59.5n <<, 所以9n =.可得1350(92)18090x ︒=︒--⨯︒=︒该多边形必有一内角度数1809090︒-︒=︒.【点评】主要考查了多边形的内角和定理.解题的关键是熟记n 边形的内角和为:180(2)n ︒-.【例5】(1)如图,在图1中,互不重叠的三角形共有3个,在图2中,互不重叠的三角形共有5个,在图3中,互不重叠的三角形共有7个,⋯,则在第n 个图形中,互不重叠的三角形共有 个.(用含n 的代数式表示)(2)若在如图4所示的n 边形中,P 是1n A A 边上的点,分别连接2PA 、3PA 、41n PA PA -⋯,得到1n -个互不重叠的三角形.你能否根据这样的划分方法写出n 边形的内角和公式并说明你的理由;(3)反之,若在四边形内部有n 个不同的点,按照(1)中的方法可得k 个互不重叠的三角形,试探究n 与k 的关系. 【解答】解:(1)()21n +个.(2)设n 边形的内角和为k ,则:(1)180180k n =-⨯︒-︒(2)180n =-︒.(3)又设在四边形内部有n 个不同的点,且按(1)中的方法可得k 个互不重叠的三角形,而:四边形的内角和为360︒, 360360180n k ∴+︒=⨯︒, 则:22n k +=.【点评】本题主要考查了多边形的内角与外角,正确读懂题目,理解例题的基本思路是解决本题 的关键. 知识点2 平行四边形1.平行四边形的性质概念:两组对边分别平行的四边形叫做平行四边形。

中考总复习:多边形与平行四边形--知识讲解(基础)

中考总复习:多边形与平行四边形--知识讲解(基础)

中考总复习:多边形与平行四边形--知识讲解(基础)【考纲要求】【高清课堂:多边形与平行四边形考纲要求】1. 多边形A:了解多边形及正多边形的概念;了解多边形的内角和与外角和公式;知道用任意一个正三角形、正方形或正六边形可以镶嵌平面;了解四边形的不稳定性;了解特殊四边形之间的关系.B:会用多边形的内角和与外角和公式解决计算问题;能用正三角形、正方形、正六边形进行简单的镶嵌设计;能依据条件分解与拼接简单图形.(2)平行四边形A:会识别平行四边形.B:掌握平行四边形的概念、判定和性质,会用平行四边形的性质和判定解决简单问题.C:会运用平行四边形的知识解决有关问题.【知识网络】【考点梳理】考点一、多边形1.多边形:在平面内,由若干条不在同一条直线上的线段首尾顺次相接所组成的封闭图形叫做多边形.多边形的对角线是连接多边形不相邻的两个顶点的线段.2.多边形的对角线:从n边形的一个顶点出发可以引出(n-3)条对角线,共有n(n-3)/2条对角线,把多边形分成了(n -2)个三角形.3.多边形的角:n边形的内角和是(n-2)·180°,外角和是360°.【要点诠释】(1)多边形包括三角形、四边形、五边形……,等边三角形是边数最少的正多边形.(2)多边形中最多有3个内角是锐角(如锐角三角形),也可以没有锐角(如矩形).(3)解决n边形的有关问题时,往往连接其对角线转化成三角形的相关知识,研究n边形的外角问题时,也往往转化为n边形的内角问题.考点二、平面图形的镶嵌1.镶嵌的定义用形状,大小完全相同的一种或几种平面图形进行拼接,彼此之间不留空隙、不重叠地铺成一片,这就是平面图形的镶嵌.2.平面图形的镶嵌(1)一个多边形镶嵌的图形有:三角形,四边形和正六边形;(2)两个多边形镶嵌的图形有:正三角形和正方形,正三角形和正六边形,正方形和正八边形,正三角形和正十二边形;(3)三个多边形镶嵌的图形一般有:正三角形、正方形和正六边形,正方形、正六边形和正十二边形,正三角形、正方形和正十二边形.【要点诠释】能镶嵌的图形在一个拼接点处的特点:几个图形的内角拼接在一起时,其和等于360°,并使相等的边互相重合.考点三、三角形中位线定理1.连接三角形两边中点的线段叫做三角形的中位线.2.定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半.考点四、平行四边形的定义、性质与判定1.定义:两组对边分别平行的四边形是平行四边形.2.性质:(1)平行四边形的对边平行且相等;(2)平行四边形的对角相等,邻角互补;(3)平行四边形的对角线互相平分;(4)平行四边形是中心对称图形,对角线的交点是它的对称中心.3.判定:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)两组对角分别相等的四边形是平行四边形;(5)对角线互相平分的四边形是平行四边形.4.两条平行线间的距离:定义:夹在两条平行线间最短的线段的长度叫做两条平行线间的距离.性质:夹在两条平行线间的平行线段相等.【要点诠释】1.平行四边形的面积=底×高;2.同底(等底)同高(等高)的平行四边形面积相等.【典型例题】类型一、多边形与平面图形的镶嵌1.(2015•葫芦岛)如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP、CP分别平分∠EDC、∠BCD,则∠P的度数是()A.60° B.65° C.55° D.50°【思路点拨】根据五边形的内角和等于540°,由∠A+∠B+∠E=300°,可求∠BCD+∠CDE的度数,再根据角平分线的定义可得∠PDC与∠PCD的角度和,进一步求得∠P的度数.【答案】A【解析】解:∵五边形的内角和等于540°,∠A+∠B+∠E=300°,∴∠BCD+∠CDE=540°﹣300°=240°,∵∠BCD、∠CDE的平分线在五边形内相交于点O,∴∠PDC+∠PCD=(∠BCD+∠CDE)=120°,∴∠P=180°﹣120°=60°.故选:A.【总结升华】本题主要考查了多边形的内角和公式,角平分线的定义,熟记公式是解题的关键.注意整体思想的运用.举一反三:【变式】如图,小林从P点向西直走12米后,向左转,转动的角度为α,再走12米,如此重复,小林共走了108米回到点P,则α=_________.【答案】40°.2.(2011·十堰)现有边长相同的正三角形、正方形和正六边形纸片若干张,下列拼法中不能镶嵌成一个平面图案的是( )A.正方形和正六边形 B.正三角形和正方形C.正三角形和正六边形 D.正三角形、正方形和正六边形【思路点拨】注意各正多边形的内角度数.【答案】A.【解析】正方形和正六边形的每个内角分别为90°和120°,要镶嵌则需要满足90°m+120°n=360°,但是m、n没有正整数解,故选A.【总结升华】能镶嵌的图形在一个拼接点处的特点:几个图形的内角拼接在一起时,其和等于360°,并使相等的边互相重合.举一反三:【变式】现有四种地面砖,它们的形状分别是:正三角形、正方形、正六边形、正八边形,且它们的边长都相等.同时选择其中两种地面砖密铺地面,选择的方式有( )A.2种 B.3种 C.4种 D.5种【答案】B.类型二:平行四边形及其他知识的综合运用3.(2014春•章丘市校级月考)如图,已知在▭ABCD中,对角线AC、BD相交于点O,AE⊥BD,BM⊥AC、DN⊥AC,CF⊥BD垂足分别是E、M、N、F,求证:EN∥MF.【思路点拨】连接ME,FN,由四边形ABCD为平行四边形,得到对角线互相平分,利用AAS得到三角形AOE与三角形COF全等,利用全等三角形对应边相等得到OE=OF,同理得到三角形BOM与三角形DON全等,得到OM=ON,进而确定出四边形MEFN为平行四边形,利用平行四边形的对边平行即可得证.【答案与解析】证明:连接ME,FN,∵四边形ABCD为平行四边形,∴OA=OC,OB=OD,∵AE⊥BD,CF⊥BD,在△AOE和△COF中,,∴△AOE≌△COF(AAS),∴OE=OF,同理△BOM≌△DON,得到OM=ON,∴四边形EMFN为平行四边形,∴EN∥MF.【总结升华】此题考查了平行四边形的判定与性质,熟练掌握平行四边形的判定与性质是解本题的关键.4.如图所示,△ABC中,∠BAC=90°,延长BA到D,使,点E、F分别为边BC、AC 的中点.(1)求证:DF=BE;(2)过点A作AG∥BC,交DF于G,求证:AG=DG.【思路点拨】(1)E、F分别为BC、AC中点,则EF为△ABC的中位线,所以EF∥AB,.而.则EF=AD.从而易证△DAF≌△EFC, 则DF=CE=BE.(2) AG与DG在同一个三角形中,只需证∠D=∠DAG即可.【答案与解析】(1)∵点E、F分别为BC、AC的中点,∴ EF是△ABC的中位线.∴ EF∥AB,.又∵,∴ EF=AD.∵ EF∥AB,∴∠EFC=∠BAC=90°,∵∠BAC=90°,∴∠DAF=90.又∵ F是AC的中点,∴AF=CF,∴△DAF≌△EFC.∴DF=EC=BE.(2)由(1)知∵△DAF≌△EFC,∴∠D=∠FEC.又∵ EF∥AB,∴∠B=∠FEC.又∵ AG∥BC,∴∠DAG=∠B,∴∠ DAG=∠FEC∴∠D=∠DAG.∴AG=DG.【总结升华】三角形中位线定理的作用:位置关系——可以证明两条直线平行;数量关系——可以证明线段的相等或倍分.此外应注意三角形共有三条中位线,并且它们又重新构成一个新的三角形.举一反三:【变式】如图,已知P、R分别是长方形ABCD的边BC、CD上的点,E、F分别是PA、PR的中点,点P在BC上从B向C移动,点R不动,那么下列结论成立的是()A.线段EF的长逐渐增大B.线段EF的长逐渐变小C.线段EF的长不变D.无法确定【答案】C.5.如图:六边形ABCDEF中,AB平行且等于ED,AF平行且等于CD,BC平行且等于FE,对角线FD ⊥BD.已知FD=4cm,BD=3cm.则六边形ABCDEF的面积是_________cm2.【思路点拨】连接AC交BD于G,AE交DF于H.根据一组对边平行且相等的四边形是平行四边形,得平行四边形AEDB和AFDC.易得AC=FD,EH=BG.计算该六边形的面积可以分成3部分计算,即平行四边形AFDC的面积+三角形ABC的面积+三角形EFD的面积.【答案与解析】连接AC交BD于G,AE交DF于H.∵AB平行且等于ED,AF平行且等于CD,∴四边形AEDB是平行四边形,四边形AFDC是平行四边形,∴AE=BD,AC=FD,∵FD⊥BD,∴∠GDH=90°,∴四边形AHDG是矩形,∴AH=DG∵EH=AE-AH,BG=BD-DG∴EH=BG.∴六边形ABCDEF的面积=平行四边形AFDC的面积+三角形ABC的面积+三角形EFD的面积=FD•BD=3×4=12cm2.故答案为:12.【总结升华】注意求不规则图形的面积可以分割成规则图形,根据面积公式进行计算.6 .(2012•厦门)已知平行四边形ABCD,对角线AC和BD相交于点O,点P在边AD上,过点P 作PE⊥AC,PF⊥BD,垂足分别为E、F,PE=PF.(1)如图,若PE=3,EO=1,求∠EPF的度数;(2)若点P是AD的中点,点F是DO的中点,BF=BC+32-4,求BC的长.【思路点拨】(1)连接PO,利用解直角三角形求出∠EPO=30°,再利用“HL”证明△PEO和△PFO全等,根据全等三角形对应角相等可得∠FPO=∠EPO,从而得解;(2)根据三角形中位线定理可得PF∥AO,且PF=12AO,然后根据两直线平行,同位角相等可得∠AOD=∠PFD=90°,再根据同位角相等,两直线平行可得PE∥OD,所以PE也是△AOD的中位线,然后证明四边形ABCD是正方形,根据正方形的对角线与边长的关系列式计算即可得解.【答案与解析】(1)如图,连接PO,∵PE⊥AC,PE=3,EO=1,∴tan∠EPO=33 EOPE=,∴∠EPO=30°,∵PE⊥AC,PF⊥BD,∴∠PEO=∠PFO=90°,在Rt△PEO和Rt△PFO中,PO PO PE PF=⎧⎨=⎩,∴Rt△PEO≌Rt△PFO(HL),∴∠FPO=∠EPO=30°,∴∠EPF=∠FPO+∠EPO=30°+30°=60°;(2)如图,∵点P是AD的中点,点F是DO的中点,∴PF∥AO,且PF=12 AO,∵PF⊥BD,∴∠PFD=90°,∴∠AOD=∠PFD=90°,又∵PE⊥AC,∴∠AEP=90°,∴∠AOD=∠AEP,∴PE∥OD,∵点P是AD的中点,∴PE是△AOD的中位线,∴PE=12 OD,∵PE=PF,∴AO=OD,且AO⊥OD,∴平行四边形ABCD是正方形,设BC=x,则BF=22x+12×22x=324x,∵BF=BC+32-4=x+32 -4,∴x+32-4=324x,解得x=4,即BC=4.【总结升华】本题考查了平行四边形的性质,三角形的中位线定理,正方形的判定与性质,(2)中判定出平行四边形ABCD是正方形是解题的关键.举一反三:【变式】如图1,已知正比例函数和反比例函数的图象都经过点M(-2,-1),且P(-1,-2)是双曲线上的一点,Q为坐标平面上的一动点,PA⊥x轴,QB⊥y轴,垂足分别为A、B.(1)写出正比例函数和反比例函数的关系式;(2)当点Q在直线MO上运动时,是否可以使△OBQ与△OAP面积相等?(3)如图2,点Q在第一象限中的双曲线上运动时,作以OP、OQ为邻边的平行四边形OPCQ,求平行四边形OPCQ周长的最小值.图1 图2【答案】(1)正比例函数解析式为,反比例函数解析式为.(2)当点Q在直线MO上运动时,设点Q的坐标为,,解得.所以点Q的坐标为和.(3)因为P(,),由勾股定理得OP=,平行四边形OPCQ周长=.因为点Q在第一象限中的双曲线上,所以可设点Q的坐标为,由勾股定理可得,通过图形分析可得:OQ有最小值2,即当Q为第一象限中的双曲线与直线的交点时,线段OQ的长度最小.所以平行四边形OPCQ周长的最小值:.。

中考数学 精讲篇 考点系统复习 第五章 四边形 第一节 多边形与平行四边形

中考数学 精讲篇 考点系统复习 第五章 四边形 第一节 多边形与平行四边形

(1)AE=CF.
(2)证明:∵AE⊥BD,CF⊥BD, ∴AE∥CF, ∵AE=CF, ∴四边形 AECF 为平行四边形.
8.(2021·怀化第 20 题 10 分)已知:如图,四边形 ABCD 为平行四边形, 点 E,A,C,F 在同一直线上,AE=CF.求证: (1)△ADE≌△CBF; (2)ED∥BF.
命题点 1:多边形(2021 年考查 4 次,2020 年考查 4 次,2019 年考查 2
次)
1.(2021·怀化第 3 题 4 分)以下说法中错误的是
( A)
A.多边形的内角大于任何一个外角
B.图形
D.圆内接四边形的对角互补
2.(2021 ·常德第 3 题 3 分)一个多边形的内角和为 1 800°,则这个多
6.(2020·衡阳第 7 题 3 分)如图,在四边形 ABCD 中,对角线 AC 和 BD 相交于点 O,下列条件不能判断四边形 ABCD 是平行四边形的是( C ) A.AB∥DC,AD∥BC B.AB=DC,AD=BC C.AB∥DC,AD=BC D.OA=OC,OB=OD
7.(2021·岳阳第 18 题 6 分)如图,在四边形 ABCD 中,AE⊥BD, CF⊥BD, 垂足分别为点 E, F. (1)请你只添加一个条件(不另加辅助线),使得四边形 AECF 为平行四边 形,你添加的条件是________; (2)添加了条件后,证明四边形 AECF 为平行四边形.
【易错提醒】易误用平行四边形的判定方法 1.一组对边平行,而另一组对边相等的四边形不一定是平行四边形. 2.一组对边相等且一组对角相等的四边形不一定是平行四边形. 3.一组对角相等且这组对角的顶点所连对角线被另一条对角线平分的四 边形不一定是平行四边形. 4.一组对角相等且一条对角线平分另一条对角线的四边形不一定是平行 四边形.

多边形及平行四边形的性质

多边形及平行四边形的性质

专题08 多边形及平行四边形的性质知识网络重难突破知识点一多边形的有关概念1.在同一平面内,由不在同一条直线上的若干条线段(线段的条数不小于3)首尾顺次相接形成的图形叫做多边形。

组成多边形的各条线段叫做多边形的边。

边数为n的多边形叫n边形(n为正整数,且n≥3)。

2.多边形相邻两边组成的角叫做多边形的内角,多边形一边的延长线与相邻的另一边所组成的角叫做多边形的外角。

多边形每一个内角的顶点叫做多边形的顶点,连结多边形不相邻两个顶点的线段叫做多变形的对角线。

3.四边形的内角和等于360o。

n边形的内角和为(n-2)×180o(n≥3)。

任何多边形的外角和为360o。

【典例1】(2020春•鹿城区校级期中)若n边形的内角和等于外角和的3倍,则边数n为()A.6B.7C.8D.9【变式训练】1.(2019秋•温岭市期末)多边形每一个内角都等于150°,则从该多边形一个顶点出发,可引出对角线的条数为()A.6条B.8条C.9条D.12条2.(2020•浙江自主招生)若一个正多边形的每一个内角为156°,则这个正多边形的边数是()A.14B.15C.16D.173.(2019春•西湖区校级月考)若一个多边形减去一个角后,内角和为720°,则原多边形不可能是几边形()A.四边形B.五边形C.六边形D.七边形4.(2020•如皋市校级模拟)已知一个多边形的内角和为540°,则这个多边形是边形.知识点二平行四边形及其性质1.两组对边分别平行的四边形叫做平行四边形。

2.平行四边形的性质:(1)平行四边形的对角相等(2)平行四边形的对边相等(3)平行四边形的对角线互相平分。

3.夹在两条平行线间的平行线段相等,夹在两条平行线间的垂线段相等。

4.两条平行线中,一条直线上所有的点到另一条直线的距离都相等,叫做这两条平行线之间的距离。

【典例2】(2020春•丽水期中)如图,已知E,F分别是平行四边形ABCD的边CD,AB上的点,且DE=BF.求证:AE∥CF.【变式训练】1.(2019春•嘉兴期中)如图,在平行四边形ABCD中,对角线AC,BD交于点O,已知AD=8,BD=14,AC=6,则△OBC的周长为.2.(2019春•天台县期末)如图,E是平行四边形ABCD边BC上一点,连结AE,并延长AE 与DC的延长线交于点F,若AB=AE,∠F=50°,则∠D=°.3.(2019春•温州期末)如图,在平行四边形ABCD中,∠A=45°,BC=2,则AB与CD之间的距离为.4.(2018秋•吴兴区校级月考)如图,在平行四边形ABCD中,AC是对角线.BE⊥AC,DF⊥AC,垂足分别是点E,F.(1)求证:AE=CF.(2)连接BF,若∠ACB=45°,AE=1,BE=3,求BF的长.5.(2019•黄石模拟)在平行四边形ABCD中,E是BC边上一点,F是DE上一点,若∠B=∠AFE,AB=AF.求证:(1)△ADF≌△DEC.(2)BE=EF.知识点三中心对称1.如果一个图形绕着一个点旋转180o后,所得到的图形能够和原来的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做对称中心。

2015年中考数学一轮复习系列专题17_多边形与平行四边形

2015年中考数学一轮复习系列专题17_多边形与平行四边形

基础知识知识点一:四边形 1、四边形 内角和:360° 外角和:360° 2、多边形内角和公式:() 1802⨯-n 外角和等于360°知识点二:平面图形的密铺:1、定义:用 形状、 大小 完全相同的一种或几种平面图形进行拼接,彼此之间 不留空隙 、不重叠 地铺成一起,这就是平面图形的密铺,又称作平面图形的 镶嵌 。

2、密铺的方法:⑴用同一种正多边形密铺,可以用正三角形、正四边形或正六边形。

⑵用两种正多边形密铺,组合方式有: 正三角形 和正四边形 、正三角形 和正六边形、 正四边形 和 正八边形 等几种。

知识点三:平行四边形定义:两组对边分别平行的四边形称为平行四边形 1、平行四边形的性质2、平行四边形的判定重点例题分析例1:七边形外角和为()A.180°B.360°C.900°D.1260°例2:一个多边形的内角和是900°,这个多边形的边数是()A.4B.5C.6D.7例3:四边形ABCD中,对角线AC与BD交于点O,下列条件不能判定这个四边形是平行四边形的是()A.OA=OC,OB=ODB.AD∥BC,AB∥DCC.AB=DC,AD=BCD.AB∥DC,AD=BC∴四边形ABCD是平行四边形.故能能判定这个四边形是平行四边形;D、AB∥DC,AD=BC,∴四边形ABCD是平行四边形或等腰梯形.故不能能判定这个四边形是平行四边形.故选D.例4:如图19-1,一个多边形纸片按图示的剪法剪去一个内角后,得到一个内角和为2340°的新多边形,则原多边形的边数为()A.13B.14C.15D.16例5:在连接A地与B地的线段上有四个不同的点D、G、K、Q,下列四幅图中的实线分别表示某人从A地到B地的不同行进路线(箭头表示行进的方向),则路程最长的行进路线图是()答案:D同理可证得AI+IK+KM+MB<AS2+BS2<AN+NQ+QP+PB,又∵AS+BS<AS2+BS2,故选D.例6:如图19-2,四边形ABCD是平行四边形,E、F是对角线BD上的点,∠1=∠2.(1)求证:BE=DF;(2)求证:AF∥CE.答案:证明:(1)∵四边形ABCD是平行四边形,例7:如图19-3,在平面直角坐标系中,点A,B的坐标分别为(﹣3,0),(0,6).动点P 从点O出发,沿x轴正方向以每秒1个单位的速度运动,同时动点C从B出发,沿射线BO 方向以每秒2个单位的速度运动,以CP,CO为邻边构造▱PCOD,在线段OP延长线上取点E,使PE=AO,设点P运动的时间为t秒.(1)当点C运动到线段OB的中点时,求t的值及点E的坐标.(2)当点C在线段OB上时,求证:四边形ADEC为平行四边形.(3)在线段PE上取点F,使PF=1,过点F作MN⊥PE,截取FM=2,FN=1,且点M,N 分别在一,四象限,在运动过程中▱PCOD的面积为S.①当点M,N中有一点落在四边形ADEC的边上时,求出所有满足条件的t的值;②若点M,N中恰好只有一个点落在四边形ADEC的内部(不包括边界)时,直接写出S 的取值范围.∵MF∥PD,∴EMF∽△EDP,巩固练习1.下列说法中,正确的是()A.同位角相等B.对角线相等的四边形是平行四边形C.四条边相等的四边形是菱形D.矩形的对角线一定互相垂直2.如图19-4,四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A.AB//DC,AD//BCB.AB=DC,AD=BCC.AO=CO,BO=DOD.AB//DC,AD=BC3.如图19-5,在平行四边形ABCD中,下列结论中错误的是(),A.∠1=∠2B.∠BAD=∠BCDC.AB=CDD.AC⊥BD4.如图19-6,在▱ABCD中,E是AD边上的中点,连接BE,并延长BE交CD延长线于点F,则△EDF与△BCF的周长之比是()A.1:2B.1:3C.1:4D.1:55.若一个多边形外角和与内角和相等,则这个多边形是边形.6.已知一个多边形的内角和是1080°,这个多边形的边数是.7.已知如图19-7,菱形ABCD的两条对角线分别为6和8,M、N分别是边BC、CD的中点,P是对角线BD上一点,则PM+PN的最小值为.8.如图19-8,已知BE∥DF,∠ADF=∠CBE,AF=CE,求证:四边形DEBF是平行四边形.9.如图19-9,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B(1)求证:△ADF∽△DEC;(2)若AB=8,AD=6,AF=4,求AE的长.图19-810.如图19-10,P为正方形ABCD的边AD上的一个动点,AE⊥BP,CF⊥BP,垂足分别为点E、F,已知AD=4.(1)试说明AE2+CF2的值是一个常数;(2)过点P作PM∥FC交CD于点M,点P在何位置时线段DM最长,并求出此时DM的值.中考预测1.用下列一种多边形不能铺满地面的是()A.正方形B.正十边形C.正六边形D.等边三角形2.已知▱ABCD中,∠A+∠C=200°,则∠B的度数是()A.100°B.160°C.80°D.60°3.一个多边形截去一个角后,形成另一个多边形的内角和为720°,那么原多边形的边数为()A.5 B.5或6 C.5或7 D.5或6或74.将一个n边形变成n+1边形,内角和将()A.减少180°B.增加90°C.增加180°D.增加360°5.四边形ABCD中,对角线AC、BD相交于点O,给出下列四个条件:①AD∥BC;②AD=BC;③OA=OC;④OB=OD;从中任选两个条件,能使四边形ABCD 为平行四边形的选法有()A.3种B.4种C.5种D.6种6.如图19-11,平行四边形ABCD中,AB:BC=3:2,∠DAB=60°,E在AB上,且AE:EB=1:2,F是BC的中点,过D分别作DP⊥AF于P,DQ⊥CE于Q,则DP:DQ等于()A.3:4 B C D.7.正十二边形每个内角的度数为.8.如图,▱ABCD中,对角线AC与BD相交于点E,∠AEB=45°,BD=2,将△ABC沿AC 所在直线翻折180°到其原来所在的同一平面内,若点B的落点记为B′,则DB′的长为.9.如图19-12,在Rt△ABC中,∠C=90°,以AC为一边向外作等边三角形ACD,点E为AB的中点,连结DE.(1)证明DE∥CB;(2)探索AC与AB满足怎样的数量关系时,四边形DCBE是平行四边形.10.如图19-13,已知四边形ABDE是平行四边形,C为边BD延长线上一点,连结AC、CE,使AB=AC.(1)求证:△BAD≌△AEC;(2)若∠B=30°,∠ADC=45°,BD=10,求平行四边形ABDE的面积.11.如图19-14,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC. 设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1) 求证:OE=OF(2)若CE=12,CF=5,求OC的长;(3) 当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.12.如图19-15,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?答案:巩固练习1.C2.D3.D4.A7.58.证明:∵BE∥DF,(2)设AP=x,则PD=4﹣x,中考预测6.D7.150°。

平行四边形和多边形知识点

平行四边形和多边形知识点

平行四边形和多边形知识点一、平行四边形知识点。

1. 平行四边形的定义。

- 两组对边分别平行的四边形叫做平行四边形。

用符号“▱”表示,如平行四边形ABCD记作“▱ABCD”。

2. 平行四边形的性质。

- 边的性质。

- 平行四边形的对边平行且相等。

即AB = CD,AD = BC;AB∥CD,AD∥BC。

- 角的性质。

- 平行四边形的对角相等,邻角互补。

即∠A = ∠C,∠B = ∠D;∠A+∠B = 180°,∠B + ∠C=180°等。

- 对角线的性质。

- 平行四边形的对角线互相平分。

即AO = CO,BO = DO(设AC、BD相交于点O)。

3. 平行四边形的判定。

- 边的判定。

- 两组对边分别平行的四边形是平行四边形(定义判定)。

- 两组对边分别相等的四边形是平行四边形。

- 一组对边平行且相等的四边形是平行四边形。

- 角的判定。

- 两组对角分别相等的四边形是平行四边形。

- 对角线的判定。

- 对角线互相平分的四边形是平行四边形。

4. 平行四边形的面积。

- 平行四边形的面积 = 底×高,即S = ah(a为底,h为这条底边上的高)。

二、多边形知识点。

1. 多边形的定义。

- 在平面内,由一些线段首尾顺次相接组成的封闭图形叫做多边形。

- 如果一个多边形由n条线段组成,那么这个多边形叫做n边形。

2. 多边形的内角和。

- n边形的内角和公式为(n - 2)×180^∘(n≥3且n为整数)。

- 例如三角形(n = 3)内角和为(3 - 2)×180^∘=180^∘;四边形(n = 4)内角和为(4 - 2)×180^∘=360^∘。

3. 多边形的外角和。

- 多边形的外角和等于360°,与边数无关。

4. 正多边形。

- 定义:各个角都相等,各条边都相等的多边形叫做正多边形。

- 正n边形的每个内角为frac{(n - 2)×180^∘}{n},每个外角为frac{360^∘}{n}。

1多边形与平行四边形)


二、填空题(每小题 4 分,共 20 分)
13.(2010· 桂林)正五边形的内角和等于________度.
14. 苏州)如图, (2010· 在平行四边形 ABCD 中, 是 AD 边上的中点, E 若∠ABE=∠EBC, AB=2,则平行四边形 ABCD 的周长是________.
15.(2010· 潍坊)如图,在△ABC 中,AB=BC,AB=12 cm,F 是 AB 边上一点,过点 F 作FE∥BC交 AC于点E, 过点E作ED∥AB交 BC于点D, 则四边形BDEF的周长是________.
把ABE逆时针旋转90
5.若一个正多边形的每一个外角都是 30°,则这个正多边形的内角和等于 1800°度.
6.如图,在▱ABCD 中,已知点 E 在 AB 上,点 F 在 CD 上且 AE=CF. (1)求证:DE=BF; (2)连结 DEBF 是平行四边形 ,得 明四边形 BD,并写出图中所有的全等三角形.(不要求证明) DE = BF
B
)
12.(2011 中考预测题)如图,在▱ABCD 中,对角线 AC、BD 相交于点 O,E、F 是对角线 AC 上的两不同点,当 E、F 两点满足下列哪个条件时,四边形 DEBF 不一定是平行四边 ... 形.( B ) A.AE=CF B.DE=BF C.∠ADE=∠CBF D.∠AED=∠CFB
3.(2009中考变式题)若一个多边形的对角线的条数恰好为边数的 3倍,则这个多边形的 边数为( D ) A.6 B.7 C.8 D.9
4.(2010· 湖州)如图,则▱ABCD 的周长等于 ( A) A.10 cm B.6 cm C.5 cm D.4 cm
三、解答题(共 44 分)
18.(10 分)(2010· 衢州)已知:如图,E、F 分别是▱ABCD 的边 AD、BC 的中点. 求证:AF=CE.

第19讲 多边形与平行四边形

第五章四边形第19讲多边形与平行四边形1.(2022河北)如图所示,将三角形纸片剪掉一角得四边形,设△ABC 与四边形BCDE的外角和的度数分别为α,β,则正确的是( A )A.α-β=0B.α-β<0C.α-β>0D.无法比较α与β的大小第1题图2.(2021恩施)如图所示,在平行四边形ABCD中,AB=13,AD=5,AC⊥BC,则平行四边形ABCD的面积为( B )A.30B.60C.65D.652第2题图3.(2022南充)如图所示,在正五边形ABCDE中,以AB为边向内作正三角形ABF,则下列结论错误的是( C )A.AE=AFB.∠EAF=∠CBFC.∠F=∠EAFD.∠C=∠E第3题图4.(2021扬州)如图所示,点A,B,C,D,E在同一平面内,连接AB,BC, CD,DE,EA,若∠BCD=100°,则∠A+∠B+∠D+∠E等于( D )A.220°B.240°C.260°D.280°第4题图5.(2022嘉兴)如图所示,在△ABC中,AB=AC=8,点E,F,G分别在边AB,BC,AC上,EF∥AC,GF∥AB,则四边形AEFG的周长是( B )A.8B.16C.24D.32第5题图6.(2021常州)如图所示,在平面直角坐标系xOy中,四边形OABC是平行四边形,其中点A在x轴正半轴上.若BC=3,则点A的坐标是(3,0) .第6题图7.如图所示,在平行四边形ABCD中,AC=4 cm.若△ACD的周长是12 cm,则平行四边形ABCD的周长是16 cm.第7题图8.(2021衢州)如图所示,在正五边形ABCDE中,连接AC,BD交于点F,则∠AFB的度数为72°.第8题图9.(2022长春)跳棋是一项传统的智力游戏.如图所示是一副跳棋棋盘的示意图,它可以看作是由全等的等边三角形ABC和等边三角形DEF 组合而成,它们重叠部分的图形为正六边形.若AB=27 cm,则这个正六边形的周长为54 cm.10.(2022新疆)如图所示,在△ABC中,点D,F分别为边AC,AB的中点.延长DF到点E,使EF=DF,连接BE.求证:(1)△ADF≌△BEF;(2)四边形BCDE是平行四边形.证明:(1)∵F 是AB 的中点,∴AF=BF. 在△ADF 和△BEF 中,{AF =BF ,∠AFD =∠BFE ,DF =EF ,∴△ADF ≌△BEF(SAS).(2)∵点D,F 分别为边AC,AB 的中点, ∴DF ∥BC,DF=12BC.∵EF=DF, ∴DF+EF=DE=BC,∴四边形BCDE 是平行四边形.11.(2022乐山)如图所示,在平行四边形ABCD 中,过点D 作DE ⊥AB,垂足为E,过点B 作BF ⊥AC,垂足为F.若AB=6,AC=8,DE=4,则BF 的长为( B )A.4B.3C.52 D.2第11题图12.(2021东营胜利一中模拟)如图所示,有一张一个角为30°,最小边长为2的直角三角形纸片,沿图中所示的中位线剪开后,将两部分拼成一个四边形,所得四边形的周长是( D )第12题图A.8或2√3B.10或4+2√3C.10或2√3D.8或4+2√313.(2021伊春)如图所示,平行四边形ABFC的对角线AF,BC相交于点E,点O为AC的中点,连接BO并延长,交FC的延长线于点D,交AF于点G,连接AD,OE,若平行四边形ABFC的面积为48,则△EOG的面积为( C )A.4B.5C.2D.3第13题图14.(2021邢台一模)如图所示,在平行四边形ABCD中,∠B=60°,AE平分∠BAD交BC于点E,若∠AED=80°,则∠EAC的度数是( C )A.10°B.15°C.20°D.25°第14题图15.用4个全等的正八边形进行拼接,使相邻的两个正八边形有一条公共边,围成一圈后中间形成一个正方形,如图①所示;用n个全等的正六边形按这种方式进行拼接,如图②所示,若围成一圈后中间形成一个正多边形,则n的值为 6 .①②16.如图所示,已知▱ABCD的对角线相交于点O,且AD>CD,过点O作OM ⊥AC,交AD于点M,连接CM.(1)若▱ABCD的周长为12,求△CDM的周长;(2)若∠ACM=36°,CA=CB,求∠ADC的度数.解:(1)∵四边形ABCD是平行四边形,∴AD=BC,AB=CD,OA=OC.∵▱ABCD的周长为12,∴AD+CD=6.∵OA=OC,OM⊥AC,∴AM=CM,∴△CDM的周长=CM+MD+CD=AM+MD+CD=AD+CD=6.(2)∵AM=CM,∴∠MAC=∠ACM=36°.∵CA=CB,∴∠CAB=∠ABC.在▱ABCD中,AD∥BC,∴∠ABC+∠DAB=180°,∴2∠ABC+36°=180°,解得∠ABC=72°,∴∠ADC=∠ABC=72°.17.如图所示,在▱ABCD 中,对角线AC 与BD 相交于点O,E,F 分别为OB, OD 的中点,延长AE 至点G,使EG=AE,连接CG.(1)求证:四边形EGCF 是平行四边形.(2)当AB 与AC 满足什么关系时,EG ∶EF=1∶2?请说明理由. (1)证明:∵四边形ABCD 是平行四边形, ∴AB=CD,OB=OD,OA=OC. ∵E,F 分别为OB,OD 的中点, ∴OE=12OB,OF=12OD,∴OE=OF.在△AOE 和△COF 中,{OE =OF ,∠AOE =∠COF ,OA =OC ,∴△AOE ≌△COF(SAS), ∴AE=CF,∠AEO=∠CFO, ∴AG ∥CF. 又∵EG=AE, ∴EG=CF,∴四边形EGCF 是平行四边形. (2)解:AC ⊥AB. 理由如下:由(1)可知EF=2OE,OE=BE.∵EF=2GE,∴OE=GE=BE=AE,∴∠AOE=∠OAE,∠ABE=∠BAE, ∴∠BAO=∠OAE+∠BAE=90°, 即AC⊥AB.。

多边形与特殊的平行四边形复习教案

多边形与平面图形的镶嵌【课前热身】1. 四边形的内角和等于__________.2.一幅图案.在某个顶点处由三个边长相等的正多边形镶嵌而成.其中的两个分别是正方形和正六边形,则第三个正多边形的边数是.3. 内角和为1440°的多边形是.4. 一个正多边形的每一个外角都等于72°,则这个多边形的边数是_________.5.只用下列图形不能镶嵌的是()A.三角形 B.四边形 C.正五边形 D.正六边形6. 若n边形每个内角都等于150°,那么这个n边形是()A.九边形 B.十边形 C.十一边形 D.十二边形7. 一个多边形内角和是1080,则这个多边形是()A.六边形 B.七边形C.八边形D.九边形【考点链接】1. 四边形有关知识⑴ n边形的内角和为.外角和为.⑵如果一个多边形的边数增加一条,那么这个多边形的内角和增加,外角和增加.⑶ n边形过每一个顶点的对角线有条,n边形的对角线有条.2. 平面图形的镶嵌⑴当围绕一点拼在一起的几个多边形的内角加在一起恰好组成一个____________时,就拼成一个平面图形.⑵只用一种正多边形铺满地面,请你写出这样的一种正多边形____________.3.易错知识辨析多边形的内角和随边数的增加而增加,但多边形的外角和随边数的增加没有变化,外角和恒为360 º.【典例精析】例1 已知多边形的内角和为其外角和的5倍,求这个多边形的边数.例2 在凸多边形中,四边形有2条对角线,五边形有5条对角线,经过观察、探索、归纳,你认为凸八边形的对角线条数应该是多少条?简单扼要地写出你的思考过程.﹡例3 请你用正三角形、正方形、正六边形三种图形设计一个能铺满整个地面的美丽图案.【中考演练】1.若一个多边形的内角和等于720,则这个多边形的边数是()A.5 B.6 C.7 D.82. 某商店出售下列四种形状的地砖:①正三角形;②正方形;③正五边形;④正六边形.若只选购其中一种地砖镶嵌地面,可供选择的地砖共有()A.4种 B.3种 C.2种 D.1种3. 如图,在正五边形ABCDE中,连结AC,AD,则∠CAD的度数是°.4. 下面各角能成为某多边形的内角的和的是()A.430° B.4343° C.4320° D.4360°5.一个多边形的内角和与它的一个外角的和为570,那么这个多边形的边数为()A.5 B.6 C.7 D.8 6.一个多边形少一个内角的度数和为2300°.(1)求它的边数;(2)求少的那个内角的度数.C DAB E7. 求下图中x 的值.平行四边形【课前热身】1.平行四边形ABCD 中,若∠A +∠C =130 o ,则∠D 的度数是 .2.ABCD 中,∠B =30°,AB =4 cm ,BC =8 cm ,则四边形ABCD 的面积是_____. 3.平行四边形ABCD 的周长是18,三角形ABC 的周长是14,则对角线AC 的长是 . 4.如图,在平行四边形ABCD 中,DB =DC , ∠C=70°,AE ⊥BD 于E ,则∠DAE = 度. (第4题)5.平行四边形ABCD 中,∠A :∠B :∠C :∠D 的值可以是( )A .1:2:3:4 B. 3:4:4:3 C. 3:3:4:4 D. 3:4:3:46.在平行四边形ABCD 中,60B ∠=,那么下列各式中,不能..成立的是( ) A .60D ∠= B .120A ∠=C .180CD ∠+∠= D .180C A ∠+∠=【考点链接】1.平行四边形的性质(1)平行四边形对边______,对角______;角平分线______;邻角______.(2)平行四边形两个邻角的平分线互相______,两个对角的平分线互相______.(填“平行”或“垂直”)(3)平行四边形的面积公式____________________. 2.平行四边形的判定AB CD E(1)定义法:________________________.(2)边:________________________或_______________________. (3)角:________________________. (4)对角线:________________________.【典例精析】例1 如图,在ABCD 中,E ,F 为BC 上两点,且BE =CF ,AF =DE .求证:△ABF ≌△DCE ;例2 如图,小明用一根36m 长的绳子围成了一个平行四边形的场地,其中一条边AB 长为8m ,其他三条边各长多少?例3 如图,在□ABCD 中,E ,F 分别是CD ,AB 上的点,且DE =BF.求证:AE =CFAB DCE F CABDFE DC B A 【中考演练】1.下列条件中,能判定四边形是平行四边形的是( )A. 一组对边相等B. 对角线互相平分C. 一组对角相等D. 对角线互相垂直 2.如图,在平行四边形ABCD 中,E 是AB 延长线上的一点,若60A ∠=,则1∠的度数为( ) A.120B .60C .45D .303. □ABCD 中,∠A 比∠B 大20°,则∠C 的度数为___ .4.□ABCD 中, AB:BC =1:2,周长为24cm, 则AB =_____cm, AD =_____cm .5. 如图,在□ABCD 中,点E 、F 在对角线AC 上,且AE=CF, 请你以F 为一个端点,和图中已标有字母的某一点连成一条新线段, 猜想并证明它和图中已有的某一线段相等.(只需证明一组线段相等即可) (1) 连结_________,(2) 猜想______=________. (3) 证明:﹡6. 如图,已知:ABCD 中,BCD ∠的平分线CE 交边AD 于E ,ABC ∠ 的平分线BG 交CE于F ,交AD 于G .求证:AE DG =..矩形、菱形、正方形【课前热身】1. 矩形的两条对角线的一个交角为60 o ,两条对角线的长度的和为8cm ,则这个矩形的一条较短边为 cm.2.边长为5cm 的菱形,一条对角线长是6cm ,则另一条对角线的长是 .3. 若正方形的一条对角线的长为2cm ,则这个正方形的面积为 .4.下列命题中,真命题是 ( )ABECD1 ABCDE FGA .两条对角线垂直的四边形是菱形B .对角线垂直且相等的四边形是正方形C .两条对角线相等的四边形是矩形D .两条对角线相等的平行四边形是矩形5. 平行四边形ABCD 中,AC ,BD 是两条对角线,如果添加一个条件,即可推出平行四边形ABCD 是矩形,那么这个条件是( )A .AB =BC B.AC =BD C.AC ⊥BD D.AB ⊥BD 【考点链接】1. 特殊的平行四边形的之间的关系2. 特殊的平行四边形的判别条件要使 ABCD 成为矩形,需增加的条件是_______ _____ ; 要使 ABCD 成为菱形,需增加的条件是_______ _____ ; 要使矩形ABCD 成为正方形,需增加的条件是______ ____ ; 要使菱形ABCD 成为正方形,需增加的条件是______ ____ .3. 特殊的平行四边形的性质边 角 对角线 矩形 菱形 正方形【典例精析】例1 如图,菱形的对角线BD ,AC 的长分别是6和8,求菱形的周长积.例2 如图,在四边形ABCD 中,点E 是线段AD 上的任意一点(E 与A D ,不重合),G F H ,,分别是BE BC CE ,,的中点.(1)证明四边形EGFH 是平行四边形;平行四边形矩形菱形正方形四边形平行四边形矩形菱形梯形一角为90°一组邻边相等正方形两组对边平行只有一组对边平行一角为直角且一组邻边相等邻边相等一角为90°等腰梯形两腰相等 A B C D O(2)在(1)的条件下,若EF BC ⊥,且12EF BC =,证明平行四边形EGFH 是正方形.【中考演练】1.已知菱形的两对角线长分别为6cm 和8cm ,则菱形的面积为 cm 2.2.如图,把矩形ABCD 沿EF 对折后使两部分重合,若150∠=, 则AEF ∠=( ) A .110° B .115° C .120° D .130°3.如图,沿虚线EF 将ABCD 剪开, 则得到的四边形ABFE 是( )A .梯形B .平行四边形C .矩形D .菱形 4.如图,菱形ABCD 中,BE ⊥AD ,BF ⊥CD ,E 、F 为垂足,AE=ED ,求∠EBF 的度数.5.如图,四边形ABCD 是矩形,E 是AB 上一点,且DE =AB ,过C 作CF ⊥DE ,垂足为F .(1)猜想:AD 与CF 的大小关系; (2)请证明上面的结论.6. 已知:如图,D 是⊿ABC 的边BC 的中点,DE ⊥AC 、DF ⊥AB ,垂足分别是E 、F ,且BF=CE ,求证:(1)⊿ABC 是等腰三角形(2)当∠A=90°时,判断四边形AFDE 是怎样的四边形,证明你的判断结论.EFA D CFBA EB G A E FH D C BA C DE F﹡7. 如图,在△ABC 中,点O 是AC 边上的一个动点,过点O 作直线MN ∥BC ,设MN 交∠BCA 的角平分线于点E ,交∠BCA 的外角平分线于点F . (1)求证:EO =FO ; (2)当点O 运动到何处时,四边形AECF 是矩形?并证明你的结论.A BCEF M N O。

2021中考数学真题分类专题18 多边形与平行四边形(共33题含解析)

专题17多边形与平行四边形(共33题)一、单选题1.(2021·湖南岳阳市·中考真题)下列命题是真命题的是( )A .五边形的内角和是720︒B .三角形的任意两边之和大于第三边C .内错角相等D .三角形的重心是这个三角形的三条角平分线的交点 2.(2021·四川眉山市·中考真题)正八边形中,每个内角与每个外角的度数之比为( )A .1:3B .1:2C .2:1D .3:13.(2021·湖南衡阳市·中考真题)下列命题是真命题的是( ).A .正六边形的外角和大于正五边形的外角和B .正六边形的每一个内角为120︒C .有一个角是60︒的三角形是等边三角形D .对角线相等的四边形是矩形4.(2021·四川自贡市·中考真题)如图,AC 是正五边形ABCDE 的对角线,ACD ∠的度数是( )A .72°B .36°C .74°D .88°5.(2021·江苏扬州市·中考真题)如图,点A 、B 、C 、D 、E 在同一平面内,连接AB 、BC 、CD 、DE 、EA ,若100BCD ∠=︒,则A B D E ∠+∠+∠+∠=( )A .220︒B .240︒C .260︒D .280︒6.(2021·四川资阳市·中考真题)下列命题正确的是( )A .每个内角都相等的多边形是正多边形B .对角线互相平分的四边形是平行四边形C .过线段中点的直线是线段的垂直平分线D .三角形的中位线将三角形的面积分成1∶2两部分7.(2021·安徽中考真题)在ABC 中,90ACB ∠=︒,分别过点B ,C 作BAC ∠平分线的垂线,垂足分别为点D ,E ,BC 的中点是M ,连接CD ,MD ,ME .则下列结论错误的是( )A .2CD ME =B .//ME ABC .BD CD = D .ME MD =8.(2021·四川遂宁市·中考真题)如图,在∶ABC 中,点D 、E 分别是AB 、AC 的中点,若∶ADE 的面积是3cm 2,则四边形BDEC 的面积为( )A .12cm 2B .9cm 2C .6cm 2D .3cm 29.(2021·天津中考真题)如图,ABCD 的顶点A ,B ,C 的坐标分别是()()()2,0,1,2,2,2---,则顶点D 的坐标是( )A .()4,1-B .()4,2-C .()4,1D .()2,110.(2021·四川泸州市·中考真题)如图,在平行四边形ABCD 中,AE 平分∶BAD 且交BC 于点E ,∶D =58°,则∶AEC 的大小是( )A .61°B .109°C .119°D .122°11.(2021·四川南充市·中考真题)如图,点O 是ABCD 对角线的交点,EF 过点O 分別交AD ,BC 于点E ,F .下列结论成立的是( )A .OE OF =B .AE BF =C .DOC OCD ∠=∠ D .CFE DEF ∠=∠12.(2021·浙江宁波市·中考真题)如图是一个由5张纸片拼成的ABCD ,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为1S ,另两张直角三角形纸片的面积都为2S ,中间一张矩形纸片EFGH 的面积为3S ,FH 与GE 相交于点O .当,,,AEO BFO CGO DHO 的面积相等时,下列结论一定成立的是( )A .12S SB .13S S =C .AB AD = D .EH GH =二、填空题13.(2021·浙江丽水市·中考真题)一个多边形过顶点剪去一个角后,所得多边形的内角和为720︒,则原多边形的边数是__________.14.(2021·湖北黄冈市·中考真题)正五边形的一个内角是_____度.15.(2021·陕西中考真题)正九边形一个内角的度数为______.16.(2021·湖南中考真题)一个多边形的每个外角的度数都是60°,则这个多边形的内角和为______. 17.(2021·四川广安市·中考真题)若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是______. 18.(2021·浙江中考真题)为庆祝中国共产党建党100周年,某校用红色灯带制作了一个如图所示的正五角星(,,,,A B C D E 是正五边形的五个顶点),则图中A ∠的度数是_______度.19.(2021·江苏扬州市·中考真题)如图,在ABCD 中,点E 在AD 上,且EC 平分BED ∠,若30EBC ∠=︒,10BE =,则ABCD 的面积为________.20.(2021·云南中考真题)如图,在ABC 中,点D ,E 分别是,BC AC 的中点,AD 与BE 相交于点F ,若6BF =,则BE 的长是______.21.(2021·重庆中考真题)如图,ABC 中,点D 为边BC 的中点,连接AD ,将ADC 沿直线AD 翻折至ABC 所在平面内,得ADC ',连接CC ',分别与边AB 交于点E ,与AD 交于点O .若AE BE =,2BC '=,则AD 的长为__________.22.(2021·湖南邵阳市·中考真题)如图,点D 、E 、F 分别是∶ABC 各边的中点,连接DE 、EF 、DF ,若∶ABC 的周长为10,则∶DEF 的周长为_______________.23.(2021·浙江嘉兴市·中考真题)如图,在ABCD 中,对角线AC ,BD 交于点O ,AB AC ⊥,AH BD ⊥于点H ,若AB =2,23BC =,则AH 的长为__________________.24.(2021·山东临沂市·中考真题)在平面直角坐标系中,ABCD 的对称中心是坐标原点,顶点A 、B 的坐标分别是(1,1)-、(2,1),将ABCD 沿x 轴向右平移3个单位长度,则顶点C 的对应点1C 的坐标是___.25.(2021·浙江丽水市·中考真题)小丽在“红色研学”活动中深受革命先烈事迹的鼓舞,用正方形纸片制作成图1的七巧板,设计拼成图2的“奔跑者”形象来激励自己.已知图1正方形纸片的边长为4,图2中2FM EM =,则“奔跑者”两脚之间的跨度,即,AB CD 之间的距离是__________.26.(2021·浙江金华市·中考真题)如图,在平面直角坐标系中,有一只用七巧板拼成的“猫”,三角形∶的边BC 及四边形∶的边CD 都在x 轴上,“猫”耳尖E 在y 轴上.若“猫”尾巴尖A 的横坐标是1,则“猫”爪尖F 的坐标是___________.三、解答题27.(2021·四川广安市·中考真题)下图是由边长为1的小等边三角形构成的网格,每个小等边三角形的顶点为格点,线段AB 的端点都在格点上.要求以AB 为边画一个平行四边形,且另外两个顶点在格点上.请在下面的网格图中画出4种不同的设计图形.28.(2021·重庆中考真题)如图,四边形ABCD 为平行四边形,连接AC ,且2AC AB =.请用尺规完成基本作图:作出BAC ∠的角平分线与BC 交于点E .连接BD 交AE 于点F ,交AC 于点O ,猜想线段BF 和线段DF 的数量关系,并证明你的猜想.(尺规作图保留作图痕迹,不写作法)29.(2021·浙江丽水市·中考真题)如图,在55⨯的方格纸中,线段AB 的端点均在格点上,请按要求画图.(1)如图1,画出一条线段AC ,使,AC AB C =在格点上;(2)如图2,画出一条线段EF ,使,EF AB 互相平分,,E F 均在格点上;(3)如图3,以,A B 为顶点画出一个四边形,使其是中心对称图形,且顶点均在格点上.30.(2021·重庆中考真题)如图,在ABCD 中,AB >AD .(1)用尺规完成以下基本作图:在AB 上截取AE ,使得AE =AD ;作∶BCD 的平分线交AB 于点F .(保留作图痕迹,不写作法)(2)在(1)所作的图形中,连接DE 交CF 于点P ,猜想∶CDP 按角分类的类型,并证明你的结论. 31.(2021·四川成都市·中考真题)在Rt ABC 中,90,5,3ACB AB BC ∠=︒==,将ABC 绕点B 顺时针旋转得到A BC ''△,其中点A ,C 的对应点分别为点A ',C '.(1)如图1,当点A '落在AC 的延长线上时,求AA '的长;(2)如图2,当点C '落在AB 的延长线上时,连接CC ',交A B '于点M ,求BM 的长;(3)如图3,连接,AA CC '',直线CC '交AA '于点D ,点E 为AC 的中点,连接DE .在旋转过程中,DE 是否存在最小值?若存在,求出DE 的最小值;若不存在,请说明理由.32.(2021·四川遂宁市·中考真题)如图,在平行四边形ABCD 中,对角线AC 与BD 相交于点O ,过点O 的直线EF 与BA 、DC 的延长线分别交于点E 、F .(1)求证:AE =CF ;(2)请再添加一个条件,使四边形BFDE 是菱形,并说明理由.33.(2021·浙江绍兴市·中考真题)问题:如图,在ABCD 中,8AB =,5AD =,DAB ∠,ABC ∠的平分线AE ,BF 分别与直线CD 交于点E ,F ,求EF 的长.答案:2EF =.探究:(1)把“问题”中的条件“8AB =”去掉,其余条件不变.∶当点E 与点F 重合时,求AB 的长;∶当点E 与点C 重合时,求EF 的长.(2)把“问题”中的条件“8AB =,5AD =”去掉,其余条件不变,当点C ,D ,E ,F 相邻两点间的距离相等时,求AD AB的值.2021年中考数学真题分项汇编【全国通用】专题17多边形与平行四边形(共33题)一、单选题1.(2021·湖南岳阳市·中考真题)下列命题是真命题的是()A.五边形的内角和是720︒B.三角形的任意两边之和大于第三边C.内错角相等D.三角形的重心是这个三角形的三条角平分线的交点【答案】B【分析】根据相关概念逐项分析即可.【详解】A、五边形的内角和是540︒,故原命题为假命题,不符合题意;B、三角形的任意两边之和大于第三边,原命题是真命题,符合题意;C、两直线平行,内错角相等,故原命题为假命题,不符合题意;D、三角形的重心是这个三角形的三条中线的交点,故原命题为假命题,不符合题意;故选:B.【点睛】本题考查命题判断,涉及多边形的内角和,三角形的三边关系,平行线的性质,以及三角形的重心等,熟记基本性质和定理是解题关键.2.(2021·四川眉山市·中考真题)正八边形中,每个内角与每个外角的度数之比为()A.1:3B.1:2C.2:1D.3:1【答案】D【分析】根据正八边形的外角和等于360°,求出每个外角的度数,再求出每个内角的度数,进而即可求解.【详解】解:正八边形中,每个外角=360°÷8=45°,每个内角=180°-45°=135°,∶每个内角与每个外角的度数之比=135°:45°=3:1,故选D.【点睛】本题主要考查正多边形的内角和外角,熟练掌握正多边形的外角和等于360°,是解题的关键. 3.(2021·湖南衡阳市·中考真题)下列命题是真命题的是( ).A .正六边形的外角和大于正五边形的外角和B .正六边形的每一个内角为120︒C .有一个角是60︒的三角形是等边三角形D .对角线相等的四边形是矩形【答案】B【分析】根据多边形外角和、正多边形内角和、等边三角形、矩形的性质,对各个选项逐个分析,即可得到答案.【详解】正六边形的外角和,和正五边形的外角和相等,均为360︒∶选项A 不符合题意;正六边形的内角和为:()62180720-⨯︒=︒∶每一个内角为7201206︒=︒,即选项B 正确; 三个角均为60︒的三角形是等边三角形∶选项C 不符合题意;对角线相等的平行四边形是矩形∶选项D 不正确;故选:B .【点睛】本题考查了多边形外角和、正多边形内角和、等边三角形、矩形的知识;解题的关键是熟练掌握多边形外角和、正多边形内角和、等边三角形、矩形的性质,从而完成求解.4.(2021·四川自贡市·中考真题)如图,AC 是正五边形ABCDE 的对角线,ACD ∠的度数是( )A .72°B .36°C .74°D .88°【答案】A【分析】 根据正五边形的性质可得108B BCD ∠=∠=︒,AB BC =,根据等腰三角形的性质可得36BCA BAC ∠=∠=︒,利用角的和差即可求解.【详解】解:∶ABCDE 是正五边形,∶108B BCD ∠=∠=︒,AB BC =,∶36BCA BAC ∠=∠=︒,∶1083672ACD ∠=︒-︒=︒,故选:A .【点睛】本题考查正五边形的性质,求出正五边形内角的度数是解题的关键.5.(2021·江苏扬州市·中考真题)如图,点A 、B 、C 、D 、E 在同一平面内,连接AB 、BC 、CD 、DE 、EA ,若100BCD ∠=︒,则A B D E ∠+∠+∠+∠=( )A .220︒B .240︒C .260︒D .280︒【答案】D【分析】 连接BD ,根据三角形内角和求出∶CBD +∶CDB ,再利用四边形内角和减去∶CBD 和∶CDB 的和,即可得到结果.【详解】解:连接BD ,∶∶BCD =100°,∶∶CBD +∶CDB =180°-100°=80°,∶∶A +∶ABC +∶E +∶CDE =360°-∶CBD -∶CDB =360°-80°=280°,故选D .【点睛】本题考查了三角形内角和,四边形内角和,解题的关键是添加辅助线,构造三角形和四边形.6.(2021·四川资阳市·中考真题)下列命题正确的是( )A .每个内角都相等的多边形是正多边形B .对角线互相平分的四边形是平行四边形C .过线段中点的直线是线段的垂直平分线D .三角形的中位线将三角形的面积分成1∶2两部分【答案】B【分析】分别根据正多边形的判定、平行四边形的判定、线段垂直平分线的判定以及三角形中线的性质逐项进行判断即可得到结论.【详解】解:A .每个内角都相等,各边都相等的多边形是正多边形,故选项A 的说法错误,不符合题意;B . 对角线互相平分的四边形是平行四边形,说法正确,故选项B 符合题意;C . 过线段中点且垂直这条线段的直线是线段的垂直平分线,故选项C 的说法错误,不符合题意;D . 三角形的中位线将三角形的面积分成1∶3两部分,故选项D 的说法错误,不符合题意.故选:B .【点睛】此题主要考查了对正多边形、平行四边形、线段垂直平分线的判断以及三角形中线性质的认识,熟练掌握正多边形、平行四边形、线段垂直平分线的判断是解答此题的关键.7.(2021·安徽中考真题)在ABC 中,90ACB ∠=︒,分别过点B ,C 作BAC ∠平分线的垂线,垂足分别为点D ,E ,BC 的中点是M ,连接CD ,MD ,ME .则下列结论错误的是( )A .2CD ME =B .//ME ABC .BD CD = D .ME MD =【答案】A【分析】设AD 、BC 交于点H ,作HF AB ⊥于点F ,连接EF .延长AC 与BD 并交于点G .由题意易证()CAE FAE SAS ≅,从而证明ME 为CBF 中位线,即//ME AB ,故判断B 正确;又易证()AGD ABD ASA ≅,从而证明D 为BG 中点.即利用直角三角形斜边中线等于斜边一半即可求出CD BD =,故判断C 正确;由90HDM DHM ∠+∠=︒、90HCE CHE ∠+∠=︒和DHM CHE ∠=∠可证明HDM HCE ∠=∠.再由90HEM EHF ∠+∠=︒、EHC EHF ∠=∠和90EHC HCE ∠+∠=︒可推出 HCE HEM ∠=∠,即推出HDM HEM ∠=∠,即MD ME =,故判断D 正确;假设2CD ME =,可推出2CD MD =,即可推出30DCM ∠=︒.由于无法确定DCM ∠的大小,故2CD ME =不一定成立,故可判断A 错误.【详解】如图,设AD 、BC 交于点H ,作HF AB ⊥于点F ,连接EF .延长AC 与BD 并交于点G .∶AD 是BAC ∠的平分线,HFAB ⊥,HC AC ⊥,∶HC =HF ,∶AF =AC . ∶在CAE 和FAE 中,AF AC CAE FAE AE AE =⎧⎪∠=∠⎨⎪=⎩,∶()CAE FAE SAS ≅,∶CE FE =,∶AEC =∶AEF =90°,∶C 、E 、F 三点共线,∶点E 为CF 中点.∶M 为BC 中点,∶ME 为CBF 中位线,∶//ME AB ,故B 正确,不符合题意;∶在AGD △和ABD △中,90GAD BAD AD AD ADG ADB ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,∶()AGD ABD ASA ≅, ∶12GD BD BG ==,即D 为BG 中点. ∶在BCG 中,90BCG ∠=︒, ∶12CD BG =, ∶CD BD =,故C 正确,不符合题意;∶90HDM DHM ∠+∠=︒,90HCE CHE ∠+∠=︒,DHM CHE ∠=∠,∶HDM HCE ∠=∠.∶HF AB ⊥,//ME AB ,∶HF ME ⊥,∶90HEM EHF ∠+∠=︒.∶AD 是BAC ∠的平分线,∶EHC EHF ∠=∠.∶90EHC HCE ∠+∠=︒,∶HCE HEM ∠=∠,∶HDM HEM ∠=∠,∶MD ME =,故D 正确,不符合题意;∶假设2CD ME =,∶2CD MD =,∶在Rt CDM 中,30DCM ∠=︒.∶无法确定DCM ∠的大小,故原假设不一定成立,故A 错误,符合题意.故选A .【点睛】本题考查角平分线的性质,三角形全等的判定和性质,直角三角形的性质,三角形中位线的判定和性质以及含30角的直角三角形的性质等知识,较难.正确的作出辅助线是解答本题的关键.8.(2021·四川遂宁市·中考真题)如图,在∶ABC 中,点D 、E 分别是AB 、AC 的中点,若∶ADE 的面积是3cm 2,则四边形BDEC 的面积为( )A .12cm 2B .9cm 2C .6cm 2D .3cm 2【答案】B【分析】 由三角形的中位线定理可得DE =12BC ,DE ∶BC ,可证∶ADE ∶∶ABC ,利用相似三角形的性质,即可求解. 【详解】 解:∶点D ,E 分别是边AB ,AC 的中点,∶DE =12BC ,DE ∶BC , ∶∶ADE ∶∶ABC , ∶21()4ADE ABC S DE S BC ∆∆==, ∶S ∶ADE =3,∶S ∶ABC =12,∶四边形BDEC 的面积=12-3=9(cm 2),故选:B .【点睛】本题考查了相似三角形的判定和性质,三角形中位线定理,掌握相似三角形的性质是解题的关键. 9.(2021·天津中考真题)如图,ABCD 的顶点A ,B ,C 的坐标分别是()()()2,0,1,2,2,2---,则顶点D 的坐标是( )A .()4,1-B .()4,2-C .()4,1D .()2,1【答案】C【分析】 根据平行四边形性质以及点的平移性质计算即可.【详解】解:∶四边形ABCD 是平行四边形,点B 的坐标为(-2,-2),点C 的坐标为(2,-2),∶点B 到点C 为水平向右移动4个单位长度,∶A 到D 也应向右移动4个单位长度,∶点A 的坐标为(0,1),则点D 的坐标为(4,1),故选:C .【点睛】本题主要考查平行四边形的性质,以及平移的相关知识点,熟知点的平移特点是解决本题的关键.10.(2021·四川泸州市·中考真题)如图,在平行四边形ABCD 中,AE 平分∶BAD 且交BC 于点E ,∶D =58°,则∶AEC 的大小是( )A .61°B .109°C .119°D .122°【答案】C【分析】根据四边形ABCD 是平行四边形,得到对边平行,再利用平行的性质求出180122BAD D ∠=︒-∠=︒,根据角平分线的性质得:AE 平分∶BAD 求DAE ∠,再根据平行线的性质得AEC ∠,即可得到答案.【详解】解:∶四边形ABCD 是平行四边形∶//AB CD ,//AD BC∶180********BAD D ∠=︒-∠=︒-︒=︒∶AE 平分∶BAD ∶111226122DAE BAD ∠=∠=⨯︒=︒ ∶//AD BC∶180********AEC DAE ∠=︒-∠=︒-︒=︒故选C .【点睛】本题考查了平行四边形的性质,角平分线的性质,能利用平行四边形的性质找到角与角的关系,是解答此题的关键.11.(2021·四川南充市·中考真题)如图,点O 是ABCD 对角线的交点,EF 过点O 分別交AD ,BC 于点E ,F .下列结论成立的是( )A .OE OF =B .AE BF =C .DOC OCD ∠=∠D .CFE DEF ∠=∠【答案】A【分析】 首先可根据平行四边形的性质推出∶AEO ∶∶CFO ,从而进行分析即可.【详解】∶点O 是ABCD 对角线的交点,∶OA =OC ,∶EAO =∶CFO ,∶∶AOE =∶COF ,∶∶AEO ∶∶CFO (ASA ),∶OE =OF ,A 选项成立;∶AE =CF ,但不一定得出BF =CF ,则AE 不一定等于BF ,B 选项不一定成立;若DOC OCD ∠=∠,则DO =DC ,由题意无法明确推出此结论,C 选项不一定成立;由∶AEO ∶∶CFO 得∶CFE =∶AEF ,但不一定得出∶AEF =∶DEF ,则∶CFE 不一定等于∶DEF ,D 选项不一定成立;故选:A .【点睛】本题考查平行四边形的性质,理解基本性质,利用全等三角形的判定与性质是解题关键.12.(2021·浙江宁波市·中考真题)如图是一个由5张纸片拼成的ABCD ,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为1S ,另两张直角三角形纸片的面积都为2S ,中间一张矩形纸片EFGH 的面积为3S ,FH 与GE 相交于点O .当,,,AEO BFO CGO DHO 的面积相等时,下列结论一定成立的是( )A .12S SB .13S S =C .AB AD = D .EH GH =【答案】A【分析】根据∶AED 和∶BCG 是等腰直角三角形,四边形ABCD 是平行四边形,四边形HEFG 是矩形可得出AE =DE =BG =CG =a , HE =GF ,GH =EF ,点O 是矩形HEFG 的中心,设AE =DE =BG =CG =a , HE =GF = b ,GH =EF = c ,过点O 作OP ∶EF 于点P ,OQ ∶GF 于点Q ,可得出OP ,OQ 分别是∶FHE 和∶EGF 的中位线,从而可表示OP ,OQ 的长,再分别计算出1S ,2S ,3S 进行判断即可【详解】解:由题意得,∶AED 和∶BCG 是等腰直角三角形,∶45ADE DAE BCG GBC ∠=∠=∠=∠=︒∶四边形ABCD 是平行四边形,∶AD =BC ,CD =AB ,∶ADC =∶ABC ,∶BAD =∶DCB∶∶HDC =∶FBA ,∶DCH =∶BAF ,∶∶AED ∶∶CGB ,∶CDH ∶ABF∶AE =DE =BG =CG∶四边形HEFG 是矩形∶GH =EF ,HE =GF设AE =DE =BG =CG =a , HE =GF = b ,GH =EF = c过点O 作OP ∶EF 于点P ,OQ ∶GF 于点Q ,∶OP //HE ,OQ //EF∶点O 是矩形HEFG 的对角线交点,即HF 和E G 的中点,∶OP ,OQ 分别是∶FHE 和∶EGF 的中位线, ∶1122OP HE b ==,1122OQ EF c == ∶1111()()2224BOF S BF OQ a b c a b c ∆==-⨯=- 11112224AOE S AE OP a b ab ∆==⨯= ∶BOF AOE S S ∆∆=∶11()44a b c ab -=,即ac bc ab -= 而211122AED S S AE DE a ∆===,222211111()()()()22222AFB S S AF BF a c a b a ab ac bc a ab ab a ∆===+-=-+-=-+= 所以,12S S ,故选项A 符合题意,2223=()()S HE EF a b a c a bc ab ac a ab ab a =-+=--+=+-=∶13S S ≠,故选项B 不符合题意,而AB AD =于EH GH =都不一定成立,故,C D 都不符合题意,故选:A【点睛】本题考查平行四边形的性质、直角三角形的面积等知识,解题的关键是求出S 1,S 2,S 3之间的关系.第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题13.(2021·浙江丽水市·中考真题)一个多边形过顶点剪去一个角后,所得多边形的内角和为720︒,则原多边形的边数是__________.【答案】6或7【分析】求出新的多边形为6边形,则可推断原来的多边形可以是6边形,可以是7边形.【详解】解:由多边形内角和,可得(n -2)×180°=720°,∶n =6,∶新的多边形为6边形,∶过顶点剪去一个角,∶原来的多边形可以是6边形,也可以是7边形,故答案为6或7.【点睛】本题考查多边形的内角和;熟练掌握多边形的内角和与多边形的边数之间的关系是解题的关键. 14.(2021·湖北黄冈市·中考真题)正五边形的一个内角是_____度.【答案】108【分析】根据正多边形的定义、多边形的内角和公式即可得.【详解】解:正五边形的一个内角度数为180(52)1085︒⨯-=︒,故答案为:108.【点睛】本题考查了正多边形的内角,熟练掌握多边形的内角和公式是解题关键.15.(2021·陕西中考真题)正九边形一个内角的度数为______.【答案】140°【分析】正多边形的每个内角相等,每个外角也相等,而每个内角等于180︒减去一个外角,求出外角即可求解.【详解】正多边形的每个外角360=n︒(n为边数),所以正九边形的一个外角360==409︒︒∴正九边形一个内角的度数为18040140︒-︒=︒故答案为:140°.【点睛】本题考查的是多边形的内角和,多边形的外角和为360︒,正多边形的每个内角相等,通过计算1个外角的度数来求得1个内角度数是解题关键.16.(2021·湖南中考真题)一个多边形的每个外角的度数都是60°,则这个多边形的内角和为______.【答案】720°【分析】多边形的外角和计算公式为:边数×外角的度数=360°,根据公式即可得出多边形的边数,然后再根据多边形的内角和公式求出它的内角和,n边形内角和等于(n-2) ×180°.【详解】解:∶任何多边形的外角和是360°,此正多边形每一个外角都为60°,边数×外角的度数=360°,∶n=360°÷60°=6,∶此正多边形的边数为6,则这个多边形的内角和为(n -2) ×180°,(6-2)×180°=720°,故答案为720°.【点睛】本题主要考查了多边形内角和及外角和定理,熟知“任何多边形的外角和是360°,n 边形内角和等于(n -2) ×180°”是解题的关键.17.(2021·四川广安市·中考真题)若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是______.【答案】8【详解】解:设边数为n ,由题意得,180(n -2)=360⨯3解得n=8.所以这个多边形的边数是8.18.(2021·浙江中考真题)为庆祝中国共产党建党100周年,某校用红色灯带制作了一个如图所示的正五角星(,,,,A B C D E 是正五边形的五个顶点),则图中A ∠的度数是_______度.【答案】36【分析】根据题意,得五边形(,,,,F G H J K 是正五边形的五个顶点)为正五边形,且AF AK =;根据多边形内角和性质,得正五边形FGHJK 内角和,从而得4∠;再根据补角、等腰三角形、三角形内角和性质计算,即可得到答案.【详解】∶正五角星(,,,,A B C D E 是正五边形的五个顶点)∶五边形(,,,,F G H J K 是正五边形的五个顶点)为正五边形,且AF AK =∶正五边形FGHJK 内角和为:()52180540-⨯︒=︒ ∶54041085︒∠==︒ ∶3180472∠=︒-∠=︒∶AF AK =∶2372∠=∠=︒∶11802336∠=︒-∠-∠=︒故答案为:36.【点睛】本题考查了正多边形、多边形内角和、补角、等腰三角形、三角形内角和的知识;解题的关键是熟练掌握正多边形、多边形内角和、等腰三角形、三角形内角和的性质,从而完成求解.19.(2021·江苏扬州市·中考真题)如图,在ABCD 中,点E 在AD 上,且EC 平分BED ∠,若30EBC ∠=︒,10BE =,则ABCD 的面积为________.【答案】50【分析】过点E 作EF ∶BC ,垂足为F ,利用直角三角形的性质求出EF ,再根据平行线的性质和角平分线的定义得到∶BCE=∶BEC,可得BE=BC=10,最后利用平行四边形的面积公式计算即可.【详解】解:过点E作EF∶BC,垂足为F,∶∶EBC=30°,BE=10,∶EF=12BE=5,∶四边形ABCD是平行四边形,∶AD∶BC,∶∶DEC=∶BCE,又EC平分∶BED,即∶BEC=∶DEC,∶∶BCE=∶BEC,∶BE=BC=10,∶四边形ABCD的面积=BC EF⨯=105⨯=50,故答案为:50.【点睛】本题考查了平行四边形的性质,30度的直角三角形的性质,角平分线的定义,等角对等边,知识点较多,但难度不大,图形特征比较明显,作出辅助线构造直角三角形求出EF的长是解题的关键.20.(2021·云南中考真题)如图,在ABC中,点D,E分别是,BC AC的中点,AD与BE相交于点F,若6BF=,则BE的长是______.【答案】9【分析】根据中位线定理得到DE =12AB ,DE ∶AB ,从而证明∶DEF ∶∶ABF ,得到12DE EF AB BF ==,求出EF ,可得BE .【详解】解:∶点D ,E 分别为BC 和AC 中点,∶DE =12AB ,DE ∶AB , ∶∶DEF ∶∶ABF ,∶12DE EF AB BF ==, ∶BF =6,∶EF =3,∶BE =6+3=9,故答案为:9.【点睛】本题考查了三角形中位线定理,相似三角形的判定和性质,解题的关键是根据中位线的性质证明∶DEF ∶∶ABF .21.(2021·重庆中考真题)如图,ABC 中,点D 为边BC 的中点,连接AD ,将ADC 沿直线AD 翻折至ABC 所在平面内,得ADC ',连接CC ',分别与边AB 交于点E ,与AD 交于点O .若AE BE =,2BC '=,则AD 的长为__________.【答案】3【分析】利用翻折的性质可得,OC OC '=推出OD 是CC B '的中位线,得出1OD =,再利用OD BC '//得出AO 的长度,即可求出AD 的长度.【详解】由翻折可知,OC OC '=∶O 是CC '的中点,∶点D 为边BC 的中点,O 是CC '的中点,∶OD 是CC B '的中位线, ∶11,2OD BC OD BC ''==// , ∶AO AE BC BE =', ∶AE BE =,∶1AE BE=, ∶1AO BC =', ∶2AO BC '==,∶213AD AO OD =+=+=.故答案为:3.【点睛】本题考查了翻折的性质,三角形的中位线的判定和性质,以及平行线分线段成比例的性质,掌握三角形的中位线的判定和性质,以及平行线分线段成比例的性质是解题的关键.22.(2021·湖南邵阳市·中考真题)如图,点D 、E 、F 分别是∶ABC 各边的中点,连接DE 、EF 、DF ,若∶ABC 的周长为10,则∶DEF 的周长为_______________.【答案】5【详解】解:根据三角形的中位线定理可得DE=12AC ,EF=12AB ,DF=12BC 所以∶DEF 的周长为∶ABC 的周长的一半,即∶DEF 的周长为5故答案为:5.【点睛】本题考查三角形的中位线定理.23.(2021·浙江嘉兴市·中考真题)如图,在ABCD 中,对角线AC ,BD 交于点O ,AB AC ⊥,AH BD⊥于点H ,若AB =2,23BC =,则AH 的长为__________________.23 【分析】根据勾股定理求得AC 的长,结合平行四边形的性质求得AO 的长,然后利用相似三角形的判定和性质求解.【详解】 解:∶AB AC ⊥,23BC =AB =2∶在Rt ∶ABC 中,AC 2222BC AB -=∶在ABCD 中,AO =122AC = 在Rt ∶ABO 中,BO 226AO AB +=∶AB AC ⊥,AH BD ⊥∶90AHB OAB ∠=∠=︒又∶ABO HBA ∠=∠∶ABO HBA △∽△∶AH AB AO BO=26= 解得:AH 23. 【点睛】 本题考查相似三角形的判定和性质以及勾股定理解直角三角形,掌握相关性质定理正确推理计算是解题关键.24.(2021·山东临沂市·中考真题)在平面直角坐标系中,ABCD 的对称中心是坐标原点,顶点A 、B 的坐标分别是(1,1)-、(2,1),将ABCD 沿x 轴向右平移3个单位长度,则顶点C 的对应点1C 的坐标是___.【答案】(4,-1)【分析】根据平行四边形的性质得到点C 坐标,再根据平移的性质得到C 1坐标.【详解】解:在平行四边形ABCD 中,∶对称中心是坐标原点,A (-1,1),B (2,1),∶C (1,-1),将平行四边形ABCD 沿x 轴向右平移3个单位长度,∶C 1(4,-1),故答案为:(4,-1).【点睛】本题考查了坐标与图形变化-平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.25.(2021·浙江丽水市·中考真题)小丽在“红色研学”活动中深受革命先烈事迹的鼓舞,用正方形纸片制作成图1的七巧板,设计拼成图2的“奔跑者”形象来激励自己.已知图1正方形纸片的边长为4,图2中2FM EM =,则“奔跑者”两脚之间的跨度,即,AB CD 之间的距离是__________.【答案】133【分析】先根据图1求EQ 与CD 之间的距离,再求出BQ ,即可得到,AB CD之间的距离= EQ 与CD 之间的距离+BQ .【详解】解:过点E 作EQ ∶BM ,则//EQ CD根据图1图形EQ 与CD 之间的距离=1114+4=3222⨯⨯⨯ 由勾股定理得:2224EF =,解得:22EF =221242AM ⎛⎫=⨯⨯ ⎪⎝⎭,解得:22AM =∶2FM EM =∶11==33EM FM AM∶EQ ∶BM ,90B ∠=︒∶//EQ AB∶2242=333BQ BM ==⨯ ∶,AB CD 之间的距离= EQ 与CD 之间的距离+BQ 413=3+=33故答案为133. 【点睛】本题考查了平行线间的距离、勾股定理、平行线所分得线段对应成比例相关知识点,能利用数形结合法找到需要的数据是解答此题的关键.26.(2021·浙江金华市·中考真题)如图,在平面直角坐标系中,有一只用七巧板拼成的“猫”,三角形∶的边BC 及四边形∶的边CD 都在x 轴上,“猫”耳尖E 在y 轴上.若“猫”尾巴尖A 的横坐标是1,则“猫”爪尖F 的坐标是___________.【答案】1222,44⎛+- ⎝⎭【分析】设大正方形的边长为2a 2a ,中等腰直角三角形的腰长为a ,小等腰直角三角形的腰长为2a 2,小正方形的边长为2a 2,平行四边形的长边为a ,短边为2a 2,用含有a 的代数式表示点A 的横坐标,表示点F 的坐标,确定a 值即可.【详解】设大正方形的边长为2a 2a ,中等腰直角三角形的腰长为a ,小等腰直角三角形的腰长为2a 2,小正方形的边长为2a 2,平行四边形的长边为a ,短边为2a 2,如图,过点F 作FG ∶x 轴,垂足为G , 点F 作FH ∶y 轴,垂足为H , 过点A 作AQ ∶x 轴,垂足为Q ,延长大等腰直角三角形的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

多边形与平行四边形、菱形基础知识回顾:一、多边形1定义:在平面内,由不在同一直线上的若干条线段___相连组成的___图形叫多边形。

各边相等且___也相等的多边形叫正多边形。

2.多边形的内角和、外角和N边形的内角和是_________,外角和是___;正n边形的每个内角为______,每个外角为______。

3.多边形的对角线是连接多边形的___顶点的线段。

从n边形的一个顶点出发有___条对角线,将多边形分割为___个三角形,n边形共有___条对角线4. ___是边数最少的多边形,所有的正n边形都是___对称图形,共有___对称轴,边数为___的正n边形也是中心对称图形。

二、平行四边形1.定义:两组对边分别___的四边形叫平行四边形。

平行四边形ABCD可写成________。

2.平行四边形的性质(1)平行四边形的两组对边分别_______。

如图:用数学语言表示为∵___________∴______________(2)平行四边形的两组对角分别______,如图;数学语言表示为:∵______________∴____________。

(3)平行四边形两条对角线______如图:数学语言表示为:∵______________∴____________。

(4)平行四边形是__对称图形,对称中心是________,过对角线交点的任一直线被一组对边的线段____,该直线将平行四边形分成两个全等的两个部分。

3.平行四边形的判定(1)用定义判定____________________________用数学语言表示为:∵____________。

-____________。

(2)定理:两组对边分别___的四边形是平行四边形。

用数学语言表示为:∵____________。

∴___________。

(3)定理:一组对边_______的四边形是平行四边形。

数学语言表示为: ∵ ____________。

∴___________。

(4)定理:______的四边形是平行四边形。

数学语言表示为: ∵ ____________。

∴___________。

(5)定理:两条对角线_______的四边形是平行四边形。

数学语言表示为:∵ ____________。

∴___________。

4.平行四边形的面积=___________,周长=__________5.夹在平行线间的平行线段_____,平行线间的距离处处_____。

二、菱形1. 定义:_____________四边形是菱形。

数学语言:∵ ____________。

∴___________。

2. 性质:(1)菱形是特殊的_______,它具有_______的所有性质。

(2)特殊性质:菱形的_____相等。

菱形的对角线________________________。

数学符号语言:∵ ____________。

∴_____________________。

(3)菱形既是______图形,又是________图形,它有_条对称轴,分别是________________________。

菱形的对角线把它分成四个全等的_______三角形,和两个全等的_________三角形。

3. 菱形的周长=_______,面积=_____或_____4. 菱形的判定:(1) 用定义________________用符号语言表示为:∵ ____________。

∴_____________________。

(2)定理:-------------的平行四边形是菱形;用符号语言表示为:∵ ____________。

∴_____________________。

(3)定理___________四边形是菱形。

用符号语言表示为:∵ ____________。

∴_____________________。

巩固练习 一、多边形1.若一凸多边形的内角和等于它的外角和,则它的边数是______.CBD A2.五边形的内角和等于______度.3.十边形的对角线有_____条.4.正十五边形的每一个内角等于_______度.5.内角和是1620°的多边形的边数是________.6.用正n边形拼地板,则n的值可能是__7.一个多边形的内角和是720°,则这个多边形是________.8.一个多边形的内角和比它的外角和的3倍少180°,这个多边形的边数是________.9.若正n边形的一个外角为60°,则n的值是________.10.若一个多边形的内角和与外角和之和是1800°,则此多边形是________.11.用下列两种正多边形能拼地板的是( )A.正三角形和正八边形B.正方形和正八边形C.正六边形和正八边形D.正十边形和正八边形12.已知四边形ABCD中,∠A:∠B=7:5,∠A-∠C=∠B,∠C=∠D-40°, 求各内角的度数.13.一个多边形的每一个外角都等于45°,求这个多边形的内角和.14.已知一个多边形的内角和是1440°,求这个多边形的对角线的条数.15.一个多边形,除一个内角外,其余各内角之和等于1000°,求这个内角及多边形的边数.16.1个多边形除了一个内角等于α,其余角的和等于2750°,求这个多边形的边数及α.二、平行四边形、菱形1.图所示,▱AECF的对角线相交于点O,DB经过点O,分别与AE,CF交于B,D.求证:四边形ABCD是平行四边形.2.图,在四边形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分别为E,F.(1)求证:△ABE≌△CDF;(2)若AC与BD交于点O,求证:AO=CO.3在▱ABCD中,分别以AD、BC为边向内作等边△ADE和等边△BCF,连接BE、DF.求证:四边形BEDF是平行四边形..4如图所示,DB∥AC,且DB=AC,E是AC的中点,求证:BC=DE.5已知平行四边形ABCD的周长为36cm,过D作AB,BC边上的高DE、DF,且cm,,求平行四边形ABCD 的面积.6图8,在ABCD 中,E F ,分别为边AB CD ,的中点,连接DE BF BD ,,. (1)求证:ADE CBF △≌△.(2)若AD BD ⊥,则四边形BFDE 是什么特殊四边形?请证明你的结论.7.已知如图,四边形ABCD 是菱形,过AB 的中点E 作AC 的垂线EF ,交AD 于点M ,交CD 的延长线于点F . (1)求证:AM =DM ;(2)若DF =2,求菱形ABCD 的周长.8.如图四边形ABCD 中,AB CD ∥,AC 平分BAD ∠,CE AD ∥交AB 于E .A BCD EF BA CDFM第7题图E(1)求证:四边形AECD 是菱形;(2)若点E 是AB 的中点,试判断ABC △的形状,并说明理由.9.如图△ABC 中,AC 的垂直平分线MN 交AB 于点D ,交AC 于点O ,CE ∥AB 交MN 于E ,连结AE 、CD .(1)求证:AD =CE ; (2)填空:四边形ADCE 的形状是 .10.如图,在△ABC 中,AB =AC ,D 是BC 的中点,连结AD ,在AD 的延长线上取一点E ,连结BE ,CE .(1)求证:△ABE ≌△ACE(2)当AE 与AD 满足什么数量关系时,四边形ABEC 是菱形?并说明理由.11.如图在△ABC 和△DCB 中,AB = DC ,AC = DB ,AC 与DB 交于点M . (1)求证:△ABC ≌△DCB ;DBA ENMO(2)过点C 作CN ∥BD ,过点B 作BN ∥AC ,CN 与BN 交于点N ,试判断线段BN 与CN 的数量关系,并证明你的结论.12.已知:如图,在梯形ABCD 中,AD ∥BC ,AD=24cm ,BC=30cm ,点P 自点A 向D 以1cm/s 的速度运动,到D 点即停止.点Q 自点C 向B 以2cm/s 的速度运动,到B 点即停止,直线PQ 截梯形为两个四边形.问当P ,Q 同时出发,几秒后其中一个四边形为平行四边形?13、如图,已知四边形ABCD 中,点E ,F ,G ,H 分别是AB 、CD 、AC 、BD 的中点,并且点E 、F 、G 、H 不在同一直线上求求证EF 与GH 互相平分。

14. 如图,平行四边形ABCD 中,AB AC ⊥,1AB =,BC =.对角线AC BD ,相交于点O ,将直线AC 绕点O 顺时针旋转,分别交BC AD ,于点E F ,.BCA DM(1)证明:当旋转角为90时,四边形ABEF 是平行四边形;(2)试说明在旋转过程中,线段AF 与EC 总保持相等;(3)在旋转过程中,四边形BEDF 可能是菱形吗?如果不能,请说明理由;如果能,说明理由并求出此时AC 绕点O 顺时针旋转的度数.15如图1,P 为Rt △ABC 所在平面内任意一点(不在直线AC 上),∠ACB=90°,M 为AB 边中点.操作:以PA 、PC 为邻边作平行四边形PADC ,连续PM 并延长到点E ,使ME=PM ,连接DE . 探究:(1)请猜想与线段DE 有关的三个结论;(2)请你利用图2,图3选择不同位置的点P 按上述方法操作;(3)经历(2)之后,如果你认为你写的结论是正确的,请加以证明; 如果你认为你写的结论是错误的,请用图2或图3加以说明; (注意:错误的结论,只要你用反例给予说明也得分)(4)若将“Rt △ABC ”改为“任意△ABC ”,其他条件不变,利用图4操作,并写出与线段DE 有关的结论(直接写答案).ABCO F E。

相关文档
最新文档