第六章平面直角坐标系
方法技巧篇6 第六章 平面直角坐标系

方法技巧篇六第六章 平面直角坐标系A .考点精析、重点突破、学法点拨一、点的坐标“四大特征”1.各象限内点的坐标特征例l ),(b a P 在第四象限,则),(a b Q -在第____象限.2.坐标轴上的点的坐标特征坐标轴上的点不属于任何象限.①x 轴上的点的纵坐标为O ,所以x 轴上的点的坐标可表示为(x ,O);若点在轴的正半轴上,则x>0;若点在x 轴的负半轴上,则x<0.②y 轴上的点的横坐标为O ,所以y 轴上的点的坐标可表示为(O ,y);若点在y 的正半轴上,则y>0;若点在y 轴的负半轴上,则y<0.③坐标原点的坐标为(O ,0).例2 已知平面直角坐标系中,横轴(x 轴)上的点A 到纵轴(y 轴)的距离为2,则点A 的坐标为________.3.平行于坐标轴的直线上点的坐标特征平行于x 轴的直线上的点的纵坐标相同,横坐标不同,记为直线y=b ;平行于轴y 的直线上的点的横坐标相同,纵坐标不同,记为直线x=a .例3 已知线段AB 平行于x 轴,若点A 的坐标为(-2,3),线段AB 的长为5,求点B 的坐标.4.象限角的平分线上的点的坐标特征第一、三象限角的平分线上的点的横坐标与纵坐标相等;第二、四象限角的平分线上的点的横坐标与纵坐标互为相反数.例4 已知点)310,52(a a P -+位于两坐标轴所成角的平分线上,则点P 坐标为________.二、口诀帮你巧求对称点一般地,点P 与点P l 关于x 轴(横轴)对称⎩⎨⎧⇔.__________,__________纵坐标横坐标 点P 与点P 2关于y 轴(纵轴)对称⎩⎨⎧⇔.__________,__________纵坐标横坐标 点P 与点P 3关于原点对称⎩⎨⎧⇔.__________,__________纵坐标横坐标 可用口诀记忆:关于谁轴对称谁不变,关于原点对称都要变.B .中考常考题型与解题方法技巧一、求点的坐标1、根据坐标的定义例1 如图所示,在平面直角坐标系中,点E的坐标是________.例2 如图是益阳市行政区域图,益阳市区所在地用坐标表示为(1,O),安化县城所在地用坐标表示为(-3,-1),那么南县县城所在地用坐标表示为________.例3 如图,若E 点坐标为(-2,1),点F 坐标为(1,-1),则点G 的坐标为______.2、根据各象限内点的坐标特征例4 点A 在第二象限,且到x 轴的距离为2,到y 轴的距离为3,则其坐标为( )A .(2,-3)B .(-3,2)C .(-2,3) D.(3,2)例5 第三象限内的点P(x ,y)满足9,5||2==y x ,则点P 的坐标是______.3、根据对称点的坐标特征例6 在平面直角坐标系中,点A(2,5)与点B 关于y 轴对称,则点B 的坐标是( )A .(-5,-2)B .(-2,-5)C .(-2,5)D .(2,-5)例7 点P(l ,2)关于x 轴的对称点P l 的坐标为______.4、根据平移前后点的坐标特征例8 在平面直角坐标系中,以点A(4,3),B(O ,O),C(8,O)为顶点的三角形向上平移3个单位,得到△A 1B 1C 1(点A 1,B 1,C l 分别为点A ,B ,C 的对应点),然后以点C l 为中心将△A 1B 1C 1顺时针旋转90°,得到△A 2B 2C 2(点A 2,B 2分别是点A 1,B 1的对应点),则点A 2的坐标是________. 5、从特殊到一般寻找点的坐标特征例9 如图在直角坐标系中,第一次将△OAB 变换成△OA 1B 1,第二次将△OA 1B 1变换成△OA 2B 2,第三次将△OA 2B 2变换成△OA 3B 3,已知A(1,3),A 1(2,3),A 2(4,3),A 3(8,3), B(2,0),B l (4,0), B 2(8,O),B 3(16,O).(1)观察每次变换前后的三角形有何变化,找出规律,按此变换规律将△OA 3B 3变换成△OA 4B 4,则A 4的坐标是______,B 4的坐标是______;(2)若按(1)题中找到的规律,将△OAB 进行了n 次变换,得到△OA n B n ,推测A n 的坐标是______,B n 的坐标是______.二、确定点的位置1、根据坐标的定义例10 在平面直角坐标系中,点P 的坐标为(6,-3),则点P 在( )A .第一象限B .第二象限C .第三象限D .第四象限2、根据各象限内点的坐标特征例11 对任意实数x ,点)2,(2x x x P -一定不在( )A .第一象限B .第二象限C .第三象限D .第四象限例12 已知点P(x ,y )在函数x xy -+=21的图象上,那么点P 应在平面直角坐标系中的( )A.第一象限 B .第二象限 C .第三象限 D .第四象限3、根据坐标轴上点的坐标特征例13 若点A(-2,n)在x 轴上,则点B(n-l ,n+l)在( )A .第一象限B .第二象限C .第三象限D .第四象限4、根据平移前后点的坐标特征例14 在平面直角坐标系中,已知点A(2,3),若将点A 先向左平移3个单位,再向下平移4个单位,则此时点A 的对应点A ' 在平面直角坐标系中的位置是在( )A 第一象限B .第二象限C .第三象限D .第四象限例15 将点P 向左平移2个单位,再向上平移1个单位得到点P ' (-l ,3),则点P 的坐标是( )A .(1,2)B .(2,1)C .(-1,2)D .(1,-2)三、与点的坐标相关的其它问题1、求字母的值例16 如果点P(m ,1-2m )在第四象限,那么m 的取值范围是( )A .210<<mB .021<<-m C .0<m D .21>m 例17 若点A(-3,a )与点B(b ,5)关于x 轴对称,则a +b =____.2、判断位置关系例18 将三角形ABC 的三个顶点的纵坐标都乘-1,横坐标保持不变,则所得的图形与原图形的关系是( )A .关于x 轴对称B .关于y 轴对称C .由原图形沿y 轴向上平移1个单位所得D .由原图形沿y 轴向下平移1个单位所得四、解答题举例例19 如图,在平面直角坐标系中,△ABC 的三个顶点的坐标分别为A(O ,1),B(-l ,1),C (1,3).(1)画出△ABC 关于x 轴对称的△A 1B 1C 1,并写出点C l 的坐标;(2)画出△ABC 绕原点0顺时针方向旋转90°后得到的△A 2B 2C 2,并写出点C 2的坐标;(3)将△A 2B 2 C 2平移得到△A 3B 3C 3,使点A 2的对应点是A 3,点B 2的对应点是B 3,点C 2的对应点是C 3(4,-1),在坐标系中画出△A 3B 3C 3,并写出点A 3,B 3的坐标.例20 如图,已知△ABC 的三个顶点A ,B ,C 的坐标分别为(-2,3),(-6,0),(-1,0).(1)请直接写出点A 关于y 轴对称的点的坐标;(2)将△ABC 绕坐标原点0逆时针旋转90°,画出图形,直接写出点B 的对应点的坐标;(3)请直接写出以A ,B ,C 为顶点的平行四边形的第四个顶点D 的坐标.。
第六章平面直角坐标系整章讲学稿

第六章 平面直角坐标系课题:6.1.1 有序数对【学习目标】理解有序数对的意义,了解平面上确定点的常用方法. 【学习过程】 一、学前准备在建国60周年的庆典活动中,天安门广场上出现了壮丽的背景图案,你知道它是怎样组成的吗?如果知道就与同学们分享一下吧.二、探索思考 探究:请同学们仔细阅读课本P39~40页,假设我们约定“列数在前,排数在后”,请你在图中标出下列座位的同学:(1,5),(2,4),(4,2),(3,3),(5,6). 通过观察,你有什么发现?结合课本请归纳出“有序数对”的概念.有序数对:用含有 的词表示一个确定的位置,其中各个数表示 的含义,我们把这种有 的 个数a 与b 组成的数对,叫做有序数对,记作 。
利用有序数对,可以很准确地表示出一个位置。
练习:1.如图1所示,一方队正沿箭头所指的方向前进, A 的位置为三列四行,表示为(3,4),那么B 的位置是 ( ) A.(4,5) B.(5,4) C.(4,2) D.(4,3)2.如图1所示,B 左侧第二个人的位置是 ( ) A.(2,5) B.(5,2) C.(2,2) D.(5,5)3.如图1所示,如果队伍向北前进,那么A(3,4)西侧第二个人的位置是 ( )A.(4,1)B.(1,4)C.(1,3)D.(3,1) 4.如图1所示,(4,3)表示的位置是 ( ) A.A B.B C.C D.D 5.小张看电影,买了一张8排10号的电影票,用有序实数对可表示为 ,如果变换有序数对的位置,所表示的位置和原来的位置 (填“相同”或“不同”).6.如图所示,A 的位置为(2,6),小明从A 出发,经(2,5)→(3,5)→(4,5)→(4,4)→(5,4)→(6,4),小刚也从A 出发,经(3,6)→(4,6)→(4,7)→(5,7)→(6,7),则此时两人相距几个格?三、当堂反馈1.如图2所示,进行“找宝”游戏,如果宝藏藏在(3,3)字母牌的下面, 那么应该在字母2.如图3所示,如果点A 的位置为(3,2),那么点B 的位置为______, 点C 的位置为______,点D和点E 的位置分别为______,_______.3.如图4所示,如果点A 的位置为(1,2),那么点B 的位置为_______,点C 的位置为_______.4.如图所示,请说出图中物体的位置.5.如图所示,从2街4巷到4街2巷,走最短的路线,共有几种走法? 请分别写出这些路线.(街)(巷)2354114532四、学习反思本节课你有哪些收获?2365417DC BA三行六行六列五列四列三列二列一列(4)图4【学习目标】1认识平面直角坐标系,了解点的坐标的意义;2会用坐标表示点,能画出点的坐标位置.【学习过程】 一、学前准备上学期,我们学习了数轴,知道数轴是规定了 、 和 的直线.在如图,你知道点A 和点B标.二、探索思考探索一:请仔细阅读课本P41~42页,完成下列填空:1.平面直角坐标系:平面内两条互相 、 重合的 ,组成平面直角坐标系.水平的数轴称为 或 ,习惯上取向 为正方向; 竖直的数轴称为 或 ,习惯上取向 为方正向。
第六章平面直角坐标系全章精品教案+学案+同步练习-10.doc

6.1.1 有序数对同步练习一、选择题:(每小题3分,共12分)1.如图1所示,一方队正沿箭头所指的方向前进,A 的位置为三列四行,表示为(3,4),那么B 的位置是 ( ) A.(4,5); B.(5,4); C.(4,2); D.(4,3)2.如图1所示,B 左侧第二个人的位置是 ( ) A.(2,5); B.(5,2); C.(2,2); D.(5,5)3.如图1所示,如果队伍向西前进,那么A 北侧第二个人的位置是 ( )A.(4,1);B.(1,4);C.(1,3);D.(3,1) 4.如图1所示,(4,3)表示的位置是 ( ) A.A B.B C.C D.D 二、填空题:(每小题4分,共12分)1.如图2所示,进行“找宝”游戏,如果宝藏藏在(3,3)字母牌的下面,那么应该在字母______(2)A B C D E F G H I J K L M N O P Q R S T U V W X Y2.如图3所示,如果点A 的位置为(3,2),那么点B 的位置为______, 点C 的位置为______,点D 和点E 的位置分别为______,_______.3.如图4所示,如果点A 的位置为(1,2),那么点B 的位置为_______,点C 的位置为_______. 三、基础训练:(共12分)用有序数对表示物体位置时,(2,4)与(4,2)表示的位置相同吗?请结合图形说明. (1)DC BA五行三行六行六列五列四列三列二列一行一列E(3)DCBA 2340(4)CBA四、提高训练:(共15分)如图所示,A 的位置为(2,6),小明从A 出发,经(2,5)→(3,5)→(4,5)→(4,4)→(5,4)→(6,4),小刚也从A 出发,经 (3,6)→(4,6)→(4,7)→(5,7)→(6,7),则此时两人相距几个格?236541745632五、探索发现:(共15分)如图所示,从2街4巷到4街2巷,走最短的路线,共有几种走法?(街)(巷)2354114532六、能力提高:(共18分)在平面内用有序数对可表示物体的位置, 你还能用其他类似的方法来表示物体的位置吗?请结合图形说明.七、中考题与竞赛题:(共16分)如图所示,四个正方形组成一个“T”字形,你能用四个这样的图形拼成一个正方形吗?答案:一、1.A 2.A 3.B 4.C二、1.M 2.(0,1) (1,3) (2,5) (2,1) 3.(0,1) (-1,0)三、解:不相同,如图所示,(2,4)表示A的位置,而(4,2)则表示B的位置.四、3个格.五、解:如图所示的是最短路线的6种走法.(3)(2)(1)(6)(5)(4)六、解:可利用角度和距离,如图所示,画一条水平的射线OA,则点B 的位置可以表示为(45,3),因此平面内不同的点可以用这样的有序数对进行表示.453B七、解:如图所示.。
人教七年级数学平面直角坐标系复习

第六章平面直角坐标系6.1平面直角坐标系6.1.1有序数对有顺序的两个数a与b组成的数对,叫做有序数对。
6.1.2平面直角坐标系平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴取2向上方向为正方向;两坐标轴的交点为平面直角坐标系的原点。
平面上的任意一点都可以用一个有序数对来表示。
建立了平面直角坐标系以后,坐标平面就被两条坐标轴分为了Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分,分别叫做第一象限、第二象限、第三象限和第四象限。
坐标轴上的点不属于任何象限。
6.2坐标方法的简单应用6.2.1用坐标表示地理位置利用平面直角坐标系绘制区域内一些地点分布情况平面图的过程如下:⑴建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向;⑵根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;⑶在坐标平面内画出这些点,写出各点的坐标和各个地点的名称。
6.2.2用坐标表示平移在平面直角坐标系中,将点(x,y)向右(或左)平移a个单位长度,可以得到对应点(x+a,y)(或(x-a,y));将点(x,y)向上(或下)平移b个单位长度,可以得到对应点(x,y+b)(或(x,y-b))。
在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度。
知识点有序数对两个有序的数a , b组成有序数对记作_________.平面直角坐标系1.平面直角坐标系的象限2.平面直角坐标系象限内点的坐标的符号(1)若点P(2,3k-1)在第四象限,则k的取值范围是___________. (2)如果点P(a,-b)在第二象限,则点Q(-a2 , 3b )在第_____象限.(3)若点P(x ,y)的坐标满足xy>0,x+y<0,则P点在第____象限.(4)如果点M(3x-9,1-x)是笫三象限内的点,且它的坐标都是整数,求M点的坐标.(5)若点A(x,8y)在第二象限,则点B(-x,-y2-1)在第_____象限.3.坐标轴上点的坐标特征x轴上的点___________,y轴上的点___________(1)已知点A(3-x,x+2)在y轴上,则x=______,点A的坐标为_________. (2)点P(-3m,3m+2)在x轴上,则m=_______.(3)已知点P(0,-5),则它的位置在__________轴上.(4)已知点A(x,y).1)若xy=0,则点A在_______________;2)若xy>0,则点A在_______________;3)若xy<0,则点A在________________.4.特殊直线上的点的坐标的特征:(一)若P(a,b)在第一、三象限的角平分线上,则a,b满足_________;若P(a,b)在第二、四象限的角平分线上,则a,b满足_________.(二)平行于x轴的直线上的点__________________________;平行于y轴的直线上的点__________________________.(1)已知点A(x , 2), B(-3, y),若AB∥y轴, 则x =____________. (2)已知A(-1,2), B(2,2),那么直线AB和x轴的位置关系是_________. (3)已知点P(3a-8,a-1), Q点坐标为(3,-6),并且直线PQ∥x轴,则P点坐标为 .5.有关“距离”与点的坐标之间的联系(一)坐标平面内点P(x,y)到x轴的距离为____,到y轴的距离为_____.(二)x轴上两点A(1x,0)、B(2x,0)的距离为AB=________;y轴上两点C(0,1y)、D(0,2y)的距离为CD= _________.(三)平行于x轴的直线上两点A(1x,y)、B(2x,y)的距离为AB=______;平行于y轴的直线上两点C(x,1y)、D(x,2y)的距离为CD=________. (1)点P到x轴的距离为5,到y轴的距离为2,则点P的坐标是__________. (2)点P位于y轴左方,距y轴3个单位长度,位于x轴上方,距x轴4个单位长度,点P的坐标为()(3)已知点A(-4,0),点B在x轴上,且线段AB=3,则B点坐标为____________ (4)已知线段PQ//y轴,且P(-2,2m-3),Q(m+3, 1),则m=___,PQ=________.6.*关于对称点P(x,y)关于x轴的对称点的坐标是__________;点P(x,y)关于y轴的对称点的坐标是__________;点P(x,y)关于原点的对称点的坐标是__________;(1)已知P(-3,a),Q(b,2)是关于x轴的对称点,则a,b的值为()A.a=2,b=3 B.a=-2,b=3C.a=-2,b=-3 D.a=2,b=-3(2)已知P(x,y),Q(m,n),若x+m=0,y-n=0,那么点P与Q()A.关于原点对称; B.关于x轴对称; C关于y轴对称; D无对称关系. (3)点A(a ,3)和点B(-2,b),关于y轴对称,则a=______b=________ (4)已知P(-3,a),Q(b,2)关于原点对称,则a=_____,b=______。
第六章 “平面直角坐标系”简介

第六章“平面直角坐标系”简介1. 概述在数学中,平面直角坐标系是研究平面几何的重要工具之一。
它由两条互相垂直的直线所构成,分别称为x轴和y轴,它们的交点被定义为原点O。
平面上的点可以用有序实数对(x, y)来表示,其中x表示点在x轴上的位置,y表示点在y轴上的位置。
本章将介绍平面直角坐标系的基本概念和性质,以及与其相关的常见概念和术语。
2. 坐标轴和坐标2.1 坐标轴平面直角坐标系由x轴和y轴组成,它们分别是垂直于水平方向和垂直于竖直方向的直线。
x轴和y轴的交点为原点O,通常将原点作为坐标系的起点。
2.2 坐标平面上的点可以用坐标表示,坐标形如(x, y)。
其中,x表示点在x轴上的位置,y表示点在y轴上的位置。
x轴和y轴将平面分成四个象限,分别是第一象限、第二象限、第三象限和第四象限。
每个象限都有特定的坐标范围。
3. 坐标系的性质3.1 坐标轴的正向在平面直角坐标系中,x轴的正向是由原点O指向正半轴,y轴的正向是由原点O指向正半轴。
根据右手定则,可以确定x轴和y轴的正向。
3.2 象限平面直角坐标系将平面划分为四个象限,分别是第一象限、第二象限、第三象限和第四象限。
第一象限的x坐标和y坐标都是正数,第二象限的x坐标是负数,y坐标是正数,第三象限的x坐标和y坐标都是负数,第四象限的x坐标是正数,y坐标是负数。
3.3 单位长度在平面直角坐标系中,x轴和y轴的单位长度相等。
它们的单位长度可以根据需要进行调整,常用的单位长度有厘米、米等。
4. 常见概念和术语4.1 点点是平面上最基本的几何元素,用坐标表示。
一个点在平面上的位置可以通过其坐标(x, y)唯一确定。
4.2 直线直线是由无数个点组成的,它们在平面上的分布满足某种规律。
直线可以用方程或参数方程等形式表示。
4.3 斜率斜率是直线的重要属性,表示直线的倾斜程度。
斜率的计算方法为直线上两点之间的纵坐标差与横坐标差的比值。
4.4 距离平面上两点之间的距离可以用勾股定理计算。
6_1平面直角坐标系

第六章平面直角坐标系
6.1平面直角坐标系
6.1.2平面直角坐标系
引导学生发现表示点的方法:
由点A分别向x轴和y轴作垂线,垂足M 在x轴上的坐标是4,垂足N在y轴上的坐标是2,有序数对(4,2)就叫做点A 的坐标,记作A(4,2),类似地能够确定
B、C、D的坐标分别是B(-3,-2),C(0,
1),D (0, -1) .
引导学生探索平面直角坐标系中各个局部的名称.
象限:x轴和y轴把坐标平面分成四个局部,如图4:
图4
每一个局部叫做一个象限.按逆时针方向分别为:第一象限、第二象限、第三象限、第四象限.
注意:坐标轴不属于任何象限.
活动4问题探究,合作交流,引导学生发现坐标平面内的点的坐标的特征.
问题:
(1)坐标原点的坐标是什么?(2)x轴、y轴上的点有什么特征?
(3)各个象限内点的横纵坐标有学生活动设计:
小组合作,分组讨论,然后实行交流;学
生经过思考,不难发现坐标原点的坐标是
(0,0),x轴上的点的纵坐标都是0,而y
轴上的点的横坐标都是0.如图5,由第一
象限内的点A向x轴作垂线,垂足一定在x
轴的正半轴上,所以横坐标是正数,向y
使学生探
究出特殊
位置点的
坐标特
征.。
西城区学习探究诊断 第六章 平面直角坐标系
第六章平面直角坐标系测试1平面直角坐标系学习要求认识并能画出平面直角坐标系;在给定的平面直角坐标系中,会根据坐标描出点的位置、由点的位置写出它的坐标.(一)课堂学习检测1.填空(1)平面内两条互相______并且原点______的______,组成平面直角坐标系.其中,水平的数轴称为______或______,习惯上取______为正方向;竖直的数轴称为______或______,取______为正方向;两坐标轴的交点叫做平面直角坐标系的______.直角坐标系所在的______叫做坐标平面.(2)有了平面直角坐标系,平面内的点就可以用一个______来表示.如果有序数对(a,b)表示坐标平面内的点A,那么有序数对(a,b)叫做______.其中,a叫做A点的______;b叫做A点的______.(3)建立了平面直角坐标系以后,坐标平面就被______分成了Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分,如图所示,分别叫做______、______、______、______.注意______不属于任何象限.(4)坐标平面内,点所在的位置不同,它的坐标的符号特征如下:(请用“+”、“-”、“0点的位置点的横坐标符号点的纵坐标符号在第一象限在第二象限在第三象限在第四象限在x轴的正半轴上在x轴的负半轴上在y轴的正半轴上在y 轴的负半轴上在原点2.如图,写出图中各点的坐标.A ( , );B ( , );C ( , );D ( , );E ( , );F ( , );G ( , );H ( , );L ( , );M ( , );N ( , );O ( , );3.分别在平面直角坐标系中描出下列各点,并将各组内的点用线段依次连结起来.(1)A (-6,-4)、B (-4,-3)、C (-2,-2)、D (0,-1)、E (2,0)、F (4,1)、G (6,2)、H (8,3).(2)A (-5,-2)、B (-4,-1)、C (-3,0)、 D (-2,1)、E (-1,2)、 F (0,3)、G (1,2)、H (2,1)、L (3,0)、M (4,-1)、N (5,-2).4.分别在平面直角坐标系中描出下列各点,并将各组内的点,用平滑的曲线依次连结起来.(1)A (1,4)、 B (2,2)、C (1,34)、 D (4,1)、 E (6,32)、 F (-1,-4)、G (-2,-2)、 H (-3,-34)、 L (-4,-1)、 M (-6,-32)(2)A (0,-4)、 B (1,-3)、C (-1,-3)、D (2,0)、E (-2,0)、F (2.5,2.25)、G (-2.5,2.25)、 H (3,5)、L (-3,5).5.下列各点A (-6,-3),B (5,2),C (-4,3.5),)43,2(D ,E (0,-9),F (3,0)中,属于第一象限的有______;属于第三象限的有______;在坐标轴上的有______.6.设P (x ,y )是坐标平面上的任一点,根据下列条件填空:(1)若xy >0,则点P 在______象限;(2)若xy <0,则点P 在______象限;(3)若y >0,则点P 在______象限或在______上;(4)若x <0,则点P 在______象限或在______上;(5)若y =0,则点P 在______上;(6)若x =0,则点P 在______上.7.已知正方形ABCD 的边长为4,它在坐标系内的位置如图所示,请你求出下列情况下四个顶点的坐标.(二)综合运用诊断8.试分别指出坐标平面内以下各直线上各点的横坐标、纵坐标的特征以及与两条坐标轴的位置关系.(1)在图1中,过A(-2,3)、B(4,3)两点作直线AB,则直线AB上的任意一点P(a,b)的横坐标可以取______,纵坐标是______.直线AB与y轴______,垂足的坐标是______;直线AB与x轴______,AB与x轴的距离是______.图1(2)在图1中,过A(-2,3)、C(-2,-3)两点作直线AC,则直线AC上的任意一点Q(c,d)的横坐标是______,纵坐标可以是______.直线AC与x轴______,垂足的坐标是______;直线AC与y轴______,AC与y轴的距离是______.(3)在图2中,过原点O和点E(4,4)两点作直线OE,我们发现,直线OE上的任意一点P(x,y)的横坐标与纵坐标______,并且直线OE______∠xOy.图29.选择题(1)已知点A(1,2),AC⊥x轴于C,则点C坐标为( ).A.(1,0)B.(2,0)C.(0,2)D.(0,1)(2)若点P位于y轴左侧,距y轴3个单位长,位于x轴上方,距x轴4个单位长,则点P的坐标是( ).A.(3,-4)B.(-4,3)C.(4,-3)D.(-3,4)(3)在平面直角坐标系中,点P(7,6)关于原点的对称点P′在( ).A.第一象限B.第二象限C.第三象限D.第四象限(4)如果点E(-a,-a)在第一象限,那么点F(-a2,-2a)在( ).A.第四象限B.第三象限C.第二象限D.第一象限(5)给出下列四个命题,其中真命题的个数为( ).①坐标平面内的点可以用有序数对来表示;②若a>0,b不大于0,则P(-a,b)在第三象限内;③在x轴上的点,其纵坐标都为0;④当m≠0时,点P(m2,-m)在第四象限内.A.1 B.2 C.3 D.410.点P(-m,m-1)在第三象限,则m的取值范围是______.11.若点P(m,n)在第二象限,则点Q(|m|,-n)在第______象限.12.已知点A到x轴、y轴的距离分别为2和6,若A点在y轴左侧,则A点坐标是______.13.A(-3,4)和点B(3,-4)关于______对称.14.若A(m+4,n)和点B(n-1,2m+1)关于x轴对称,则m=______,n=______.(三)拓广、探究、思考15.如图的围棋盘放在某个平面直角坐标系内,白棋②的坐标为(-7,-4),白棋④的坐标为(-6,-8),那么黑棋①的坐标应该为______.16.如图,已知长方形ABCD的边长AB=3,BC=6,建立适当的坐标系并求A、B、C、D 的坐标.17.求三角形ABC的面积.(1)已知:A(-4,-5)、B(-2,0)、C(4,0).(2)已知:A(-5,4)、B(-2,-2)、C(0,2).18.已知点A(a,-4),B(3,b),根据下列条件求a、b的值.(1)A、B关于x轴对称;(2)A、B关于y轴对称;(3)A、B关于原点对称.19.已知:点P(2m+4,m-1).试分别根据下列条件,求出P点的坐标.(1)点P在y轴上;(2)点P在x轴上;(3)点P的纵坐标比横坐标大3.(4)点P在过A(2,-3)点,且与x轴平行的直线上.20.x取不同的值时,点P(x-1,x+1)的位置不同,讨论当点P在不同象限或不同坐标轴上时,x的取值范围;并说明点P不可能在哪一个象限.测试2 坐标方法的简单应用学习要求能建立适当的平面直角坐标系描述物体的位置.在同一直角坐标系中,感受图形变换后点的坐标的变化.(一)课堂学习检测1.回答下面的问题.(1)如图表示赵明同学家所在社区的主要服务办公网点.点O表示赵明同学家,点A表示存车处,点B表示副食店.点C表示健身中心,点D表示商场,点E表示医院,点F表示邮电局,点H表示银行,点L表示派出所,点G表示幼儿园.请以赵明同学家为坐标原点,建立平面直角坐标系,并用坐标分别表示社区的主要服务网点的位置.(图中的1个单位表示50m)(2)利用平面直角坐标系绘制区域内一些地点分布情况平面图的过程是①建立______选择一个____________为原点,确定x轴、y轴的____________;②根据具体问题确定适当的______在坐标轴上标出____________;③在坐标平面内画出这些点,写出各点的______和各个地点的______.2.如图是某乡镇的示意图,试建立直角坐标系,取100米为一个单位长,用坐标表示各地的位置:3.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(4,-1).①把△ABC向上平移5个单位后得到对应的△A1B1C1,画出△A1B1C1,并写出点C1的坐标;②以原点O为对称中心,再画出与△A1B1C1关于原点O对称的△A2B2C2,并写出点C2的坐标;③写出以AB、BC为两边的平行四边形ABCD的顶点D的坐标.(二)综合运用诊断一、填空4.在坐标平面内平移图形时,平移的方向一般是平行于______或平行于______.5.将点(x,y)向右或向左平移a(a>0)个单位长度,得对应点的坐标为______或______;将点(x,y)向上或向下平移b(b>0)个单位长度,得对应点的坐标为______或______.6.把一个图形上各点的横坐标都加上或减去一个正数a,则原图形向______或向______平移______.把一个图形上各点的纵坐标都加或减去一个正数b,则原图形向______或向______平移______.7.把点(-2,3)向上平移2个单位长度所到达位置的坐标为______,向左平移2个单位长度所到达位置的坐标为______.8.把点P(-1,3)向下平移1个单位长度,再向右平移2个单位长度,所到达位置的坐标为______.9.点M(-2,5)向右平移______个单位长度,向下平移______个单位长度,变为M′(0,1).10.把点P1(2,-3)平移后得点P2(-2,3),则平移过程是__________________________ _______________________________________________________________________.二、选择题11.下列说法不正确的是( ).A.坐标平面内的点与有序数对是一一对应的B.在x轴上的点纵坐标为零C.在y轴上的点横坐标为零D.平面直角坐标系把平面上的点分为四部分12.下列说法不正确的是( ).A.把一个图形平移到一个确定位置,大小形状都不变B.在平移图形的过程中,图形上的各点坐标发生同样的变化C.在平移过程中图形上的个别点的坐标不变D.平移后的两个图形的对应角相等,对应边相等,对应边平行或共线13.把(0,-2)向上平移3个单位长度再向下平移1个单位长度所到达位置的坐标是( ).A .(3,-2)B .(-3,-2)C .(0,0)D .(0,-3)14.已知三角形内一点P (-3,2),如果将该三角形向右平移2个单位长度,再向下平移1个单位长度,那么点P 的对应点P ′的坐标是( ).A .(-1,1)B .(-5,3)C .(-5,1)D .(-1,3)15.将线段AB 在坐标系中作平行移动,已知A (-1,2),B (1,1),将线段AB 平移后,其两个端点的坐标变为A (-2,1),B (0,0),则它平移的情况是( ).A .向上平移了1个单位长度,向左平移了1个单位长度B .向下平移了1个单位长度,向左平移了1个单位长度C .向下平移了1个单位长度,向右平移了1个单位长度D .向上平移了1个单位长度,向右平移了1个单位长度16.如图在直角坐标系中,下边的图案是由左边的图案经过平移以后得到的.左图案中左右眼睛的坐标分别是(-4,2)、(-2,2),右图中左眼的坐标是(3,4),则右图案中右眼的坐标是__________.17.(1)如果动点P (x ,y )的坐标坐标满足关系式试121+=x y ,在表格中求出相对应的值,并在平面直角坐标系里描出这些点:点的名称A B C D E 点的横坐标x-2 2 点的纵坐标y -1 1 3 (2)若将这五个点都先向右平移五个单位,再向上平移三个单位,至A 1、B 1、C 1、D 1、E 1,试画出这几个点,并分别写出它们的坐标.(三)拓广、探究、思考18.如图,网格中每一个小正方形的边长为1个单位长度.可以利用平面直角坐标系的知识回答以下问题:1)请在所给的网格内画出以线段AB、BC为边的平行四边形ABCD;2)填空:平行四边形ABCD的面积等于______.19.在A市北300km处有B市,以A市为原点,东西方向的直线为x轴,南北方向的直线为y轴,并以50km为1个单位建立平面直角坐标系.根据气象台预报,今年7号台风中心位置现在C(10,6)处,并以40千米/时的速度自东向西移动,台风影响范围半径为200km,问经几小时后,B市将受到台风影响?并画出示意图.全章测试一、填空题:1.若点P(a,b)在第四象限,则(1)点P1(a,-b)在第______象限;(2)点P2(-a,b)在第______象限;(3)点P3(-a,-b)在第______象限.2.在x轴上,若点P与点Q(-2,0)的距离是5,则点P的坐标是______.3.在y轴上,若点M与点N(0,3)的距离是6,则点M的坐标是______.4.(1)点A(-5,-4)到x轴的距离是______;到y轴的距离是______.(2)点B(3m,-2n)到x轴的距离是______;到y轴的距离是______.5.已知:如图:试写出坐标平面内各点的坐标.A(______,______);B(______,______);C(______,______);D(______,______);E(______,______);F(______,______).6.若点P(m-3,m+1)在第二象限,则m的取值范围是______.7.已知点P在第二象限,且到x轴的距离是2,到y轴的距离是3,则点P的坐标为______.8.△ABC的三个顶点A(1,2),B(-1,-2),C(-2,3),将其平移到点A′(-1,-2)处,使A与A′重合.则B、C两点坐标分别为____________.9.平面直角坐标系中的一个图案的纵坐标不变,横坐标分别乘-1,那么所得的图案与原图案会关于______对称.10.在如下图所示的方格纸中,每个小正方形的边长为1,如果以MN所在直线为y轴,以小正方形的边长为单位长度建立平面直角坐标系,使A点与B点关于原点对称,则此时C点的坐标为______.二、选择题:11.若点P(a,b)的坐标满足关系式ab>0,则点P在( ).(A)第一象限(B)第三象限(C)第一、三象限(D)第二、四象限12.若点M(x,y)的坐标满足关系式xy=0,则点M在( ).(A)原点(B)x轴上(C)y轴上(D)x轴上或y轴上13.若点N到x轴的距离是1,到y轴的距离是2,则点N的坐标是( ).(A)(1,2)(B)(2,1)(C)(1,2),(1,-2),(-1,2),(-1,-2)(D)(2,1),(2,-1),(-2,1),(-2,-1)14.已知点A(a,-b)在第二象限,则点B(3-a,2-b)在( ).(A)第一象限(B)第二象限(C)第三象限(D)第四象限15.如图,若在象棋盘上建立平面直角坐标系,使“将”位于点(1,-2),“象”位于(3,-2),则“炮”位于点( ).(A)(1,3)(B)(-2,1)(C)(-1,2)(D)(-2,2)16.已知三角形的三个顶点坐标分别是(-2,1),(2,3),(-3,-1),把△ABC运动到一个确定位置,在下列各点坐标中,( )是平移得到的.(A)(0,3),(0,1),(-1,-1)(B)(-3,2),(3,2),(-4,0)(C)(1,-2),(3,2),(-1,-3)(D)(-1,3),(3,5),(-2,1)三、解答题:17.一长方形住宅小区长400m,宽300m,以长方形的对角线的交点为原点,过原点和较长边平行的直线为x轴,和较短边平行的直线为y轴,并取50m为1个单位.住宅小区内和附近有5处违章建筑,它们分别是A(3,3.5),B(-2,2),C(0,3.5),D(-3,2),E(-4,4).在坐标系中标出这些违章建筑位置,并说明哪些在小区内,哪些不在小区内.18.如图是规格为8×8的正方形网格(小正方形的边长为1,小正方形的顶点叫格点),请在所给网格中按下列要求操作:(1)请在网格中建立平面直角坐标系,使A点坐标为(-2,4),B点坐标为(-4,2);(2)按(1)中的直角坐标系在第二象限内的格点上找点C(C点的横坐标大于-3),使点C与线段AB组成一个以AB为底的等腰三角形,则C点坐标是______,△ABC的面积是______.19.已知:三点A(-2,-1)、B(4,-1)、C(2,3).在坐标平面内画出以这三个点为顶点的平行四边形,并写出第四个顶点的坐标.20.已知:A(0,1),B(2,0),C(4,3)(1)求△ABC的面积;(2)设点P在坐标轴上,且△ABP与△ABC的面积相等,求点P的坐标.参考答案第六章平面直角坐标系测试11.(1)垂直、重合、数轴,x轴、横轴,向右方向;y轴、纵轴,向上方向;原点、平面(2)有序数对.A点的坐标,横坐标,纵坐标.(3)两条坐标轴,第一象限、第二象限、第三象限、第四象限、坐标轴上的点.(4)略2.A(2,5);B(-4,6);C(-7,2);D(-6,0);E(-5,-3);F(-4,-5);G(0,-6);H(2,-5);L(5,-2);M(5,0);N(6,3);O(0,0).3.(1) (2)4.(1) (2)5.B、D;A;E和F6.(1)一或三 (2)二或四(3)一或二象限或y轴正半轴上.(4)二或三象限或x轴的负半轴上.(5)x轴上.(6)y轴上.7.(1)A(4,0),B(4,4),C(0,4),D(0,0)(2)A(2,-2),B(2,2),C(-2,2),D(-2,-2)(3)A(2,-4),B(2,0),C(-2,0),D(-2,-4)(4)A(0,-4),B(0,0),C(-4,0),D(-4,-4)8.(1)任意实数,3;垂直,(0,3),平行,3.(2)-2,任意实数;垂直,(-2,0),平行,2.(3)相等,平分.9.(1)A;(2)D;(3)C;(4)C;(5)B.10.0<m<1.11.第四象限.12.(-6,2),(-6,-2).13.原点.14.m=-2,n=3.15.(-4,-6).16.以点B为原点,射线BC、射线BA分别为x轴、y轴正半轴建立直角坐标系.A(0,3),B(0,0),C(6,0),D(6,3).17.(1)提示:作AD⊥x轴于D点,S△ABC=15.(2)提示:作AD⊥y轴于D点,作BE⊥y轴于E点,S△ABC=S梯形ABED-S△ACD-S△BCE=12.18.(1)a=3,b=4;(2)a=-3,b=-4;(3)a=-3,b=4.19.(1)令2m+4=0,解得m=-2,所以P点的坐标为(0,-3);(2)令m-1=0,解得m=1,所以P点的坐标为(6,0);(3)令m-1=(2m+4)+3,解得m=-8,所以P点的坐标为(-12,-9);(4)令m-1=-3,解得m=-2.所以P点的坐标为(0,-3).20.(1)当x=-1时,点P在x轴的负半轴上;(2)当x=1时,点P在y轴的正半轴上;(3)当x>1时,点P在第一象限;(4)当-1<x<1时,点P在第二象限;(5)当x<-1时,点P在第三象限;(6)点P不可能在第四象限.测试21.(1)A(-150,50),B(150,200),C(-250,300),D(450,-400),E(500,-100),F(350,400),G(-100,-300),H(300,-250),L(-150,-500).(2)略.2.略.3.(2)画图答案如图所示:①C1(4,4);②C2(-4,-4);③D(0,-1).4.x轴,y轴.5.(x+a,y),(x-a,y);(x,y+b),(x,y-b).6.右,左,a个单位长度,上,下,b个单位长度.7.(-2,5),(-4,3).8.(1,2).9.2,4.10.点P1(-2,-3)向左平移4个单位长度,再向上平移6个单位长度得到P2点.11.D12.C13.C14.A15.B16.(5,4).17.(1)点的名称 A B C D E点的横坐标x-4 -2 0 2 4点的横坐标y-1 0 1 2 3图略.(2)A1(1,2),B1(3,3),C1(5,4),D1(7,5),E1(9,6),图略.18.解:(1)如图,平行四边形ABCD;(2)平行四边形ABCD的面积是15.(第18题答图)19.提示:50×6÷40=7.5(小时).所以经过7.5小时后,B市将受到台风的影响.(注:图中的单位1表示50km)(第19题答图)全章测试1.(1)一;(2)三;(3)二.2.(-7,0)或(3,0).3.(0,-3)或(0,9).4.(1)4,5;(2)2|n|,3|m|.5.A(-5,0),B(0,-3),C(5,-2),D(3,2),E(0,2),F(-3,3).6.-1<m<3.7.(-3,2).8.B'(-3,-6),(-4,-1).9.y轴.10.(2,-1).11.C;12.D;13.D;14.A;15.B;16.D.17.在小区内的违章建筑有B、D;不在小区内的违章建筑有A、E、C18.(1)略;(2)(-2,2)或(-1,1);2或419.如图所示,可以画出三个平行四边形,即平行四边形ABD1C,平行四边形AD2BC,平行四边形ABCD3,其中D1(8,3),D2(0,-5),D3(-4,3).20.(1)S△ABC=4;(2)P1(-6,0)、P2(10,0)、P3(0,5)、P4(0,-3).。
平面直角坐标系章节复习和知识点汇总
平面直角坐标系章节复习和知识点汇总集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-第六章 平面直角坐标系一、知识结构图 有序数对平面直角坐标系平面直角坐标系坐标方法的简单应用 用坐标表示地理位置用坐标表示平移二、知识定义有序数对:有顺序的两个数a 与b 组成的数对,记做(a,b)1、原点O 的坐标是 ,x 轴上的点的坐标的特点是 ,y 轴上的点的坐标的特点是 ;点M (a ,0)在 轴上。
2.若点B(a ,b)在第三象限,则点C(-a,-b) 在第 象限。
3.如果点M (x+3,2x -4)在第四象限内,那么x 的取值范围是 。
4.若点P(m,n)在第二象限,则下列关系正确的是( )A 0>mnB 0<mnC 0>mD 0<n图形平移变换的规律: , 。
例1..将点P(-3,y)向下平移3个单位,向左平移2个单位后得到点Q(x ,-1),则xy= 。
2.线段CD 是由线段AB 平移得到的。
点A (–1,4)的对应点为C (4,7),则点B (–4,–1)的对应点D 的坐标为 。
3.如图3所示的象棋盘上,若○帅位于点(1,-2)上,○相位于点(3,-2)上,则○炮位于点( ) A (-1,1) B (-1,2) C (-2,1) D (-2,2)A (3,2),并且AB =5,则B 的坐标3,2),并且AB =5,则B 的坐标B (2,– 2)、C (– 2,1)、D (3,1)是坐标平面内的四个图3相帅炮点,则线段AB 与CD 的关系是 。
4.在直角坐标系内顺次连结下列各点,不能得到正方形的是( )A 、(-2,2) (2,2) (2,-2) (-2,-2) (-2,2);B 、(0,0) (2,0) (2,2) (0,2) (0,0);C 、(0,0) (0,2) (2,-2) (-2,0) (0,0);D 、(-1,-1) (-1,1) (1,1) (1,-1) (-1,-1)。
《平面直角坐标系》平面直角坐标系知识点及题型总结
《平⾯直⾓坐标系》平⾯直⾓坐标系知识点及题型总结第六章平⾯直⾓坐标系知识点及题型总结⼀、主要知识点(⼀)有序数对:有顺序的两个数a与b组成的数对,记作(a ,b);注意:a、b的先后顺序对位置的影响。
(⼆)平⾯直⾓坐标系1、历史:法国数学家笛卡⼉最早引⼊坐标系,⽤代数⽅法研究⼏何图形;2、构成坐标系的各种名称;3、各种特殊点的坐标特点。
(三)坐标⽅法的简单应⽤1、⽤坐标表⽰地理位置;2、⽤坐标表⽰平移。
⼆、平⾏于坐标轴的直线的点的坐标特点:平⾏于x轴(或横轴)的直线上的点的纵坐标相同;平⾏于y轴(或纵轴)的直线上的点的横坐标相同。
三、各象限的⾓平分线上的点的坐标特点:第⼀、三象限⾓平分线上的点的横纵坐标相同;第⼆、四象限⾓平分线上的点的横纵坐标相反。
四、与坐标轴、原点对称的点的坐标特点:关于x轴对称的点的横坐标相同,纵坐标互为相反数关于y轴对称的点的纵坐标相同,横坐标互为相反数关于原点对称的点的横坐标、纵坐标都互为相反数五、特殊位置点的特殊坐标:六、利⽤平⾯直⾓坐标系绘制区域内⼀些点分布情况平⾯图过程如下:建⽴坐标系,选择⼀个适当的参照点为原点,确定x轴、y轴的正⽅向;根据具体问题确定适当的⽐例尺,在坐标轴上标出单位长度;在坐标平⾯内画出这些点,写出各点的坐标和各个地点的名称。
七、⽤坐标表⽰平移:见下图知识⼀、坐标系的理解例1、平⾯内点的坐标是()A ⼀个点B ⼀个图形C ⼀个数D ⼀个有序数对1.在平⾯内要确定⼀个点的位置,⼀般需要________个数据;在空间内要确定⼀个点的位置,⼀般需要________个数据.2、在平⾯直⾓坐标系内,下列说法错误的是()A 原点O 不在任何象限内B 原点O 的坐标是0C 原点O 既在X 轴上也在Y 轴上D 原点O 在坐标平⾯内知识⼆、已知坐标系中特殊位置上的点,求点的坐标例1 点P 在x 轴上对应的实数是-3,则点P 的坐标是,若点Q 在y 轴上对应的实数是31,则点Q 的坐标是,例2 点P (a-1,2a-9)在x 轴负半轴上,则P 点坐标是。
新人教七年级数学下册 第六章平面直角坐标系全章讲与练
第六章平面直角坐标系第一节:知识梳理一、学习目标1.认识并能画出平面直角坐标系;在给定的直角坐标系中,会根据坐标描出点的位置、由点的位置写出它的坐标.2.能在方格纸上建立适当的坐标系,描述物体的位置.3.在同一坐标系中,感受图形变换后点的坐标变化.4.能灵活应用不同的方式确定物体的位置.二、知识网络根据知识网络结构图,按其中数码顺序,说出各个数码所指内容,以达到梳理知识的目的.三、思想方法1.“由特殊到一般”“由一般到特殊”的思想,如图形的平移过程是通过图形上的一个点或几个点的坐标变化研究的,这些都体现了“由特殊到一般”的思想,而“由点与图形的平移”规律去解决图形的平移问题,又体现了“由一般到特殊”的思想.2.对应的思想,具体表现在平面直角坐标系中的一个点对应着一对有序数对,即点的坐标;而每一对有序数对确定的坐标对应着平面中的一个点.3.数形结合的思想,具体表现在借助平面直角坐标系把几何问题转化为代数问题,同时也可以把代数问题转化为几何问题,就是每一个有序数对(坐标)对应着平面上的一个点.第二节、错解剖析【例1】小虎正确地描出了各点,把它们连接起来,涂上阴影,如图所示.小虎兴奋地说:“真没想到,分布在四个象限内的这些点,居然能连成一只可爱的小猫.”不料,此话一出,又遭到小新的反对:“你说的话有毛病,坐标系内的点并不是都分布在四个象限中,还有些点在坐标轴上,它们不属于任何一个象限.比如,本题中(-2,0),(2,0),(3,0)三个点在横轴上,(0,-2),(0,2),(0,4)三个点在纵轴上”.小虎马上更正:“我说错了,我忘了在坐标轴上的点不属于任何象限,就像在横轴上的点都不能在纵轴一样.”没想到,小新又纠正道:“这话也有问题,原点是一个特殊的点,它既在横轴上,也在纵轴上.”这时,老师又问了小虎一个问题:“你能根据这只猫眼睛的大致位置,说出它们的坐标分别是什么吗?”小虎思考了一下,答道:“它两只眼睛的坐标分别是(-1.5,2.5)和(-0.5,2.5).”老师肯定了他的回答,又布置了一道思考题:请在坐标系中,描出到横轴距离为4、到纵轴距离为5的点.小虎一听,不假思索地说:“这有什么难的,不就是描出坐标为(4,5)的点吗?”他边说边在图中画出点M,没等画完就发现自己错了,急忙更正:“哦——错了!到横距离为4,不是说横坐标为4;到纵轴距离为5,也不是说纵坐标为5.所以,这个点的坐标不是(4,5),而应该是(5,4),这个点N才符合条件——这次,总该没错了吧.”小新一听,说:“你考虑得不全面,还有三个点呢.你看,点P(5,-4),Q(-5,-4)和R(-5,4)三个点是不是也符合条负数,一个点到横轴的距离是它的纵坐标的绝对值,到纵轴的距离是它的横坐标的绝对值.”第三节、思维点拨一、坐标平面内三角形面积的求法1.有一边在坐标轴上或平行于坐标轴【例1】如图,平面直角坐标系中,△ABC的顶点坐标分别为(-3,0),(0,3),(0,-1),你能求出三角形ABC的面积吗?【思考与解】根据三个顶点的坐标特征可以看出,△ABC的边BC在y轴上,由图形可得BC=4,点A到BC边的距离就是A点到y轴的距离,也就是A点横坐标的绝对值,所以三角形ABC的面积为S△ABC=BC×AO=×4×3=6.2.三边均不与坐标轴平行【例2】平面直角坐标系中,已知点A(-3,-1),B(1,3),C(2,-3),你能求出三角形ABC的面积吗?【思考与分析】由于三边均不平行于坐标轴,所以我们无法直接求边长,也无法求高,因此得另想办法.根据平面直角坐标系的特点,可以将三角形围在一个梯形或长方形中,这个梯形(长方形)的上下底(长)与其中一坐标轴平行,高(宽)与另一坐标轴平行.这样,梯形(长方形)的面积容易求出,再减去围在梯形(长方形)内边缘部分的直角三角形的面积,即可求得原三角形的面积.(AD+CE)×DE-AD×DB-CE×BE=×(4+6)×5-×4×4-×6×1=14.【小结】本题也可以把三角形ABC分割为两个三角形,转化为1中的情况求解,大家不妨试试.二、平面直角坐标系内四边形面积的求法【例3】如图,你能求出四边形ABCD的面积吗?【思考与分析】四边形ABCD是不规则的四边形,面积不能直接求,我们可以利用分割或补形来求.解法一:将四边形ABCD分割成如上图所示的直角三角形和直角梯形.由各顶点坐标可知DE=3,CE=2, EF=3,CF=5,BF=2,AF=4.所以四边形ABCD的面积为DE×CE+BF×CF+×(DE+AF)×EF=×3×2+×5×2+(3+4)×3=18.5.解法二:如下图,分别过点A、D作平行于y轴的直线,与过点C平行于x轴的直线交于点E、F.由各顶点坐标可知AB=6,AE=5,CE=4,EF=1,FC=3,DF=2.所以四边形ABCD的面积为(CE+AB)×AE-DF×CF-(DF+AE)×EF=×(4+6)×5-×2×3-(2+5)×1=18.5.三、由点的位置确定坐标【例4】如图,小强告诉小华,图中A 点和B 点的坐标分别为(-1,7)和(-3,5),小华一下就说出了C在同一坐标系下的坐标,你知道是多少吗?【思考与分析】我们先由A点和B 点的坐标确定它们所在的坐标系,从而确定C 点的位置.解: C点的坐标是(3,5).四、由坐标确定图的形状和位置【例5】在平面直角坐标系中,描出下列各组点,并用线段顺次连结起来,观察所得到的图形,说说它像什么?(1)(1,1),(2,0),(7,0),(8,2),(6,1),(1,1);(2)(6,1),(6,8);(3)(5,7),(7,8),(7,3),(5,4),(5,7);(4)(2,1),(6,7).【思考与解】解决本题,首先要理解本题的顺次连结,就是将每一组中的各点顺次连结起来.建立平面直角坐标系,通过描点,连线,可以发现,所得到的图案是一只帆船(如图).五、由坐标确定坐标系【例6】如下图,B,C两点的坐标分别是B(2,3),C(4,3),那么(0,0),(0,4),(4,0),(0,-2),(2,-1)及(4,-1)各是哪点的坐标?图中有和x轴平行的线段吗?有和y轴平行的线段吗?有互相平行的线段吗?【思考与分析】由B点和C点的坐标可知,图中的单位长度等于小正方形的边长,根据有序数对(a,b)的有序性,先在x轴上找到a,再在y轴找到b,分别过a,b作x,y轴的垂线,两垂线的交点就是有序数对(a,b)的对应点.解:(0,0),(0,4),(4,0),(0,-2),(2,-1)及(4,-1)对应的点分别是O、A、D、G、F、E.BC、EF平行于x轴,CE、BF平行于y轴;BC平行于EF,BF平行于AG、CE. 【例7】在纸上建立直角坐标系,根据点的坐标描出下列各点:(0,0),(5,3),(3,0),(5,1),(5,-1),(4,-2),然后按照(0,0)→(5,3)→(3,0)→(5,1)→(5,-1)→(3,0)→(4,-2)→(0,0)的顺序用线段连结起来.(1)看看你得到的图案像什么?(2)如果把这些点的横坐标都加上1,纵坐标都减去2.再按照原来的顺序将得到的各点用线段连结起来,这个图案与原图案在大小、形状、位置上有什么变化?【思考与解】(1)建立平面直角坐标系,将各点描出,连结后我们可以得到一条可爱的小鱼,如图1.(2)如果把这些点的横坐标都加上1,纵坐标都减去2,再按原来的顺序连结,仍得到一条小鱼,这条小鱼的大小、形状与原来的完全一样,它的位置可以看作将原来的小鱼向右平移1个单位长度,然后再向下平移两个单位长度得到,如图2.【例8】如果将点P绕定点M旋转180°后与点Q重合,那么称点P与点Q关于点M对称,定点M叫做对称中心.此时,M是线段PQ的中点.如图,在直角坐标系中,△ABO的顶点A、B、O的坐标分别为(1,0)、(0,1)、(0,0).点列P1、P2、P3…中的相邻两点都关于△ABO的一个顶点对称:点P1与点P2关于点A对称,点P2与点P3关于点B对称,点P3与P4关于点O对称,点P4与点P5关于点A对称,点P5与点P6关于点B对称,点P6与点P71的坐标是(1,1),试求出点P2、P7、P100的坐标.1与点P2关于点A对称,且P1的坐标是(1,1),所以P2的坐标是(1,-1);点P2与点P3关于点B对称,所以P3的坐标是(-1,3);点P3与P4关于点O对称,所以P4的坐标是(1,-3);点P4与点P5关于点A对称,所以P5的坐标是(1,3);点P5与点P6关于点B对称,所以P6的坐标是(-1,-1);点P6与点P7关于点O对称,所以P7的坐标是(1,1),这样的话P7与P1重合.依次类推,反复循环,可以知道P8与P2重合、P9与P3重合、P10与P4重合、P11与P5重合、P12与P6重合、P13与P7重合(即与P1重合),由此推断,点Pn是以6为一个周期进行循环的.因此100除以6商是16余数为4,因此P n的坐标与P6的坐标相等为(1,-3).答案为P2(1,-1), P7(1,1),P100(1,-3). 【小结】通过以上分析,在平面直角坐标系中,与点的坐标有关的探索问题中点的变化都是有周期性变化的.希望同学们认真探索、总结,以便做到熟能生巧.第四节、竞赛数学【例1】如果点M(1-x,1-y)在第二象限,那么点N(1-x,y-1)关于原点的对称点P在第几象限?【分析】若抓住对称点的坐标特性这一解题关键,则可由点M(1-x,1-y)与点N(1-x,y-1)的横坐标相等、纵坐标互为相反数,知两点关于x轴对称,从而可确定出点N在第三象限.于是,点N关于原点的对称点P在第一象限.解法一:∵点M(1-x,1-y)在第二象限,∴1-x<0,1-y>0.∴y-1<0,则点N(1-x,y-1)在第三象限.∵点P与点N关于原点对称,∴点P在第一象限.解法二:∵点M(1-x,1-y)与点N(1-x,y-1)关于x轴对称,且点M在第二象限,∴点N在第三象限.∵点P与点N关于原点对称,∴点P在第一象限.【小结】(1)若不能根据题设条件获得1-x与y-1的正、负情况,就没有解法一;(2)若不能发现点M与点N之间的对称关系,就没有解法二.(3)有序实数对与坐标上的点一一对应,这就使得数与形结合起来.解题时可根据条件,运用数形结合的思想灵活解题.【例2】国际象棋、中国象棋和围棋号称世界三大棋种.国际象棋中的“皇后”的威力可比中国象棋中的“车”大得多;“皇后”不仅能控制她所在的行与列中的每一个小方格,而且还能控制“斜”方向的两条直线上的每一个小方格.如图甲是一个4×4的小方格棋盘,图中的“皇后Q”能控制图中虚线(2,3)”来表示,请说明“皇后Q”所在的位置“(2,3)”的意义,并用这种表示法分别写出棋盘中不能被该“皇后Q”所控制的四个位置.【分析与解】注意行与列的区别,点(2,3)的意义是第3行、第2列.故“皇后Q”可控制整个第3行和第2列,还可以控制(1,4),(3,2),(4,1)和(1,2),(3,4).不能被该“皇后Q”所控制的四个位置是(1,1),(3,1),(4,2),(4,4). 【例3】如图.围棋盘的左下角呈现的是一局围棋比赛中的几手棋.为记录棋谱方便,横线用数字表示.纵线用英文字母表示,这样,黑棋①的位置可记为(C,4),白棋②的位置可记为(E,3),则白棋⑨的位置应记为________.【思考与解】本题平面直角坐标系中的横坐标用英文字母表示,根据坐标点位置的意义,易知白棋⑨的位置应记为(D,6).【例4】五子连珠棋和象棋、围棋一样,深受广大棋友的喜爱,其规则是:15×15的正方形棋盘中,由黑方先行,轮流弈子,在任一方向上连成五子者为胜.如图是两个五子棋爱好者甲和乙的对弈图;(甲执黑子先行,乙执白子后走),观察棋盘思考:若A点的位置记做(8,4),甲必须在哪个位置上落子,才不会让乙在短时间内获胜?为什么?【思考与分析】由对弈规则可知:只有当任一方向(包括直线和斜线)上有五个子连在一起时才能获胜,观察棋盘,不难发现,甲必须首先截断乙方的(2,6),(3,5)和(4,4)三颗白子,故必须在(1,7)或(5,3)处落子,方可不败.解:甲必须在(1,7)或(5,3)处落子,因为若甲不首先截断以上两处之一,而让乙在(1,7)或(5,3)处落子,则不论截断何处,乙总有一处落子可连成五子,乙必胜无疑.第五节、本章训练基础训练题1.如图,将平行四边形ABCD向右平移2个单位长度,可以得到平行四边形A′B′C′D′,再将平行四边形A′B′C′D′向上平移2个单位长度,可以得到平行四边形A″B″C″D″,画出平移后的图形,并写出平行四边形A″B″C″D″各个顶点的坐标.2.在如图所示的国际象棋棋盘中,双方四只马的位置分别是A(b,3),B(d,5),C(f,7),D(h,2),请在图中描出它们的位置.3.如图是一个8×8的球桌,小明用A球撞击B球,到C处反弹,再撞击桌边D处.请选择适当的坐标系,并用坐标表示各点的位置.答案1.解:如图,A″(1,0),B″(5,0),C″(6,3),D″(2,3).2.解:如图:3.解:以A为坐标原点,则B(2,1),C(6,3),D(-1,6).提高训练题1.如图所示的直角坐标系中,四边形ABCD各顶点坐标分别为A(0,0),B(5,0),C(7,3),D(3,6),你能求出这个四边形的面积吗?2.3. 2.已知长方形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,-2),则长方形的面积是多少?4.答案1.解:如图:S四边形ABCD = S四边形AEFG - S三角形ADG - S三角形BCE - S三角形CDF=7×6-×6×3-×(7-5)×3-×(7-3)×(6-3)= 42-9-3-6= 24.2.解:因为点B的坐标为(3,-2),所以AB=|-2|=2,BC=3.所以长方形的面积为2×3=6.强化训练题1.某学校校门在北侧,进校门向南走30米是旗杆,再向南走30米是教学楼,从教学楼向东走60米,再向北走20米是图书馆,从教学楼向南走60米,再向北走10 米是实验楼,请你选择适当的比例尺,画出该校的校园平面图.150m,再向北100m处,X明同学家在学校以西50m,再往南200m处,王玲同学家在学校以南150m处,建立适当的直角坐标系,在直角坐标系中画出这三位同学家的位置,并用坐标表示出来.5.如图为一辆公交车的得驶路线示意图,“●”表示停靠点,现在请你帮助小明完成对该公交车行驶的路线描述:起点站→(1,1)→…→终点站.6.答案1.解:如图:2.解:如图:3.解:起点站→(1,1)→(2,2)→(4,2)→(5,1)→(6,2)→(6,4)→(5,5)→(3,5)→(1,5)→(1,7)→(2,8).综合训练题一、填空题(每题7分,共35分)1.已知点M(-4,2),将坐标系先向下平移3个单位长度,再向左平移3个单位长度,则点M在新坐标系内的坐标为 .2.小红将直角坐标系中的点A的横坐标乘2再加2,纵坐标减2再除以2,点A恰好落在原点上,则点A的坐标是 .3.若A(a,6),B(0,2)两点在同一条直线上,则a的值为 .4.已知点(a,b)在x轴负半轴上,则点(a-b,b-a)在象限.5.如图所示,如果小力的位置可表示为(2,3),则小红的位置应表示为 .二、选择题(每题7分,共35分)6.平面直角坐标系中,将正方形向上平移3个单位后,得到的正方形各顶点与原正方形各顶点坐标相比().A.横坐标不变,纵坐标加3B.纵坐标不变,横坐标加3C.横坐标不变,纵坐标乘以3D.纵坐标不变,横坐标乘以37.小明家的坐标为(1,2),小丽家的坐标为(-2,-1),则小明家在小丽家的().A.东南方向B.东北方向C.西南方向D.西北方向8.在直角坐标系中,A(1,2)点的横坐标乘以-1,纵坐标不变,得到A′点,则A 与A′的关系是().A.关于x轴对称B.关于y轴对称C.关于原点对称D.将A点向x轴负方向平移一个单位9. 一只小虫子在一个小方格的线路上爬行,它起始的位置是A (2,2),先爬到B (2,4),再爬到C(5,4),最后爬到D(5,5),则小虫一共爬行了()个单位.A. 7B. 6C. 5D. 410. 已知点M1(-1,0)、M2(0,-1)、M3(-2,-1)、M4(5,0)、 M5(0,5)、M6(-3,2),其中在x轴上的点的个数是().A. 1 个B. 2 个C. 3个D. 4个三、解答题(每题15分,共30分)1. 如图是某城市的交通网络图,横向的行称为“道”,如第一大道,第二大道等,纵向的列称为“路”,如1路,2路等. 如图中的车,就在“第一大道2路”的位置.(1)想一想,如果只用“道”或“路”能不能确定一个点的位置?(2)如图的车,要到第五大道3路处,又要使路程最短,你能想出几种方法?12.已知点P(2,3)(1)在坐标平面内画出点P;(2)分别求出点P关于x轴、y轴的对称点P1、P2.(3)求三角形P1PP2的面积.答案一、1. (-1,5) 2. (-1,2) 3. 04. 第二5. (3,4)二、6.A 7.B 8.B 9.B 10.B三、11. 【解题思路】(1)在平面上确定点的位置至少需要两个数据.(2)车到第五大道3路去的路线很多,可先列出几条较近的再择优选取.解:(1)只用“道”或“路”一个数,不能确定点的位置.(2)要使路程最短,共有五种方法.①(1,2)→(2,2)→(3,2)→(4,2)→(5,2)→(5,3)②(1,2)→(2,2)→(3,2)→(4,2)→(4,3)→(5,3)③(1,2)→(2,2)→(3,2)→(3,3)→(4,3)→(5,3)④(1,2)→(2,2)→(2,3)→(3,3)→(4,3)→(5,3)⑤(1,2)→(1,3)→(2,3)→(3,3)→(4,3)→(5,3)12.【解题思路】我们可以看到,本题分三问,每一问都是下一问的基础,因此我们不能因为前边的问题简单而麻痹大意,因为一步错,步步错.所以我们必须认真对待,一丝不苟的完成解:(1)如图:(2)P1(2,-3),P2(-2,3).(3)如图:=PP1×PP2=×6×4=12.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
龙文学校教师一对一木樨地分校龙文学校个性化辅导资料启迪思维,点拨方法,开发潜能,直线提分!苏老师数学第六章平面直角坐标一、基础知识1:有序数对:用含有两个数的词表示一个确定的位置,其中各个数表示不同的含义,我们把这种有顺序的两个数a与b组成的数对,叫做有序数对(ordered pair),记作(a,b)利用有序数对,可以很准确地表示出一个位置。
常见的确定平面上的点位置常用的方法(1)以某一点为原点(0,0)将平面分成若干个小正方形的方格,利用点所在的行和列的位置来确定点的位置。
(2)以某一点为观察点,用方位角、目标到这个点的距离这两个数来确定目标所在的位置。
2:直线上点的位置:在一条直线上规定了原点,正方向和单位长度,就得到一个数轴,这时,数轴上的点就可以用一个数表示,这个数叫做点的坐标。
3:平面直角坐标系:平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系(rectangular coordinate system).水平的数轴称为x轴(x-axis)或横轴,习惯上取向右为正方向;竖直的数轴为y轴(y-axis)或纵轴,取向上方向为正方向;两个坐标轴的交点为平面直角坐标系的原点。
点的坐标:我们用一对有序数对表示平面上的点,这对数叫坐标。
表示方法为(a,b).a是点对应横轴上的数值,b是点在纵轴上对应的数值。
建立平面直角坐标系后,平面被坐标轴分成四部分,分别叫第一象限,第二象限,第三象限和第四象限。
4.由坐标确定点的方法:要确定由坐标(a,b)所表示的点P的位置,先在x轴上找到表示a的点,过这点做x轴的垂线,再在y轴上找到表示b的点,过这点作y轴的垂线,两条垂线的交点为P.5由点求坐标的方法:先由已知点P分别向x轴和y轴作垂线,设垂足分别为A和B,再求出A在x 轴上的坐标a和B在y轴上的坐标b,则P的坐标为P(a,b).6关于x轴,y轴,原点对称的点的坐标:关于x轴对称的点,其横坐标相同,纵坐标互为相反数;关于y轴对称的点,其横坐标互为相反数,纵坐标相同;关于原点对称的点,其横坐标,纵坐标均互为相反数。
设点P(a,b),它关于x轴对称的点的坐标为(a,-b),关于y轴对称点的坐标为(-a,b),关于原点对称点的坐标为(-a,-b).反之亦成立。
7用坐标表示地理位置的过程(1)建立坐标系,选择一个适当的参照点为原点,确定x轴、y轴的正方向;(2)根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;(3)在坐标平面内画出这些点,写出各点的坐标和各个地点的名称.8用坐标表示平移的方法规律:在平面直角坐标系中,将点(x,y)向右(或左)平移a个单位长度,可以得到对应点(x+a,y)(或(x-a ,y );将点(x,y)向上(或下)平移b个单位长度,可以得到对应点(x,y+b)(或(x ,y-b ).图1 1O1A B图 2 图3二、 经典例题(一)通过坐标原点确定点的坐标例1、(2005年杭州市中考题)如图1,的围棋盘放在某个平面直角坐标系内,白棋② 的坐标为(7,4)--,白棋④的坐标为(6,8)--,那么黑棋①的坐标应该是 。
分析:白棋②的横坐标是一7,白棋④的横坐标是一6,由图可知坐标原点距白棋④6个单位且在它的右侧。
则黑棋①的横坐标是一3。
白棋②的纵坐标是一4,白棋④的纵坐标是一8。
由图可知坐标原点距白棋④8个单位且在它的上方。
则黑棋①的纵坐标是一7。
所以黑棋①的坐标应该是(-3,-7)。
(二)根据对称确定点的坐标例2、(2005年青海省中考题)已知点A(3,n)关于y 轴对称的点的坐标为(-3,2),那么n 的值为 _______ ,点A 关于原点对称的点的坐标是 ________分析:根据点对称的知识:关于x 轴对称,横坐标不变,纵坐标为相反数。
关于y 轴对称,横坐标为相反数,纵坐标不变。
关于原点对称,横坐标、纵坐标都为相反数。
可得: n=2,点A 关于原点对称的点的坐标是(一3,一2)。
例3、(2005年南京市中考题)如果将点P 绕定点M 旋转180°后与点Q 重合,那么称点P 与点Q 关于点M 对称,定点M 叫做对称中心。
此时,M 是线段PQ 的中点。
如图2,在直角坐标系中,⊿ABO 的顶点A 、B 、O 的坐标分别为(1,0)、(0,1)、(0,0)。
点列P 1、P 2、P 3、…中的相邻两点都关于⊿ABO 的一个顶点对称:点P 1与点P 2关于点A 对称,点P 2与点P 3关于点B 对称,点P 3与P 4关于点O 对称,点P 4与点P 5关于点A 对称,点P 5与点P 6关于点B 对称,点P 6与点P 7关于点O 对称,…。
对称中心分别是A 、B ,O ,A ,B ,O ,…,且这些对称中心依次循环。
已知点P 1的坐标是(1,1),试求出点P 2、P 7、P 100的坐标。
解:P 2(1,-1) P 7(1,1) P 100=(1,-3) (三)根据点所在象限确定字母范围例4、(2005年重庆市中考题)点A (4-m ,m 21-)在第三象限,则m 的取值范围是( )A 、21>m B 、4<mC 、421<<m D 、4>m分析:点A 在第三象限,则4-m <0,m 21-<0。
∴421<<m 故应选择(C )。
(四)确定几何图形中顶点的坐标例5、(2005年绍兴市中考题)如图3,在平面直角坐标系中,已知点为A (-2,0),B (2,0) (1) 画出等腰三角形ABC (画出一个即可) (2) 写出(1)中画出的ABC 的顶点C 的坐图5 标分析:本题答案不唯一。
当点C 在y 轴上时(除原点O 外),△ABC 一定中等腰三角形。
如取点(0,2)等。
例6、(2005年东营市中考题)在直角坐标系中,O 为坐标原点,已知A (1,1),在x 轴上确定点P ,使△AOP 为等腰三角形,则符合条件的点P 的个数共有(A )4个 (B )3个 (C )2个(D )1个分析:由题意可知:合条件的点有几个,学生大多会出现遗漏。
因为线段OA 可能是所求等腰三角形的底也可能是它的腰。
因此要分两种情况分别去找符合条件的点。
(1)当线段OA 是等腰三角形的底时,作它的中垂线,中垂线与x 轴的交点P 1就是所求的点。
(2)当线段OA 是等腰三角形的腰时,分别以OA 的两个端点为圆心,OA 的长为半径作圆与x 轴的交点就是所求的点。
可知符合条件的点P 有4个P 1,P 2,P 3,P 4。
(如图4)。
(六)根据图形的移动确定点的坐标例7、(2005年湖南省湘潭市中考题)如图5,在△AOB 中,AO=AB ,在直角坐标系中,点A 的坐标是(2,2),点O 的坐标是(0,0),将△AOB 平移得到△A 'O 'B ',使得点A '在y 轴上。
点O '、B '在x 轴上。
则点B '的坐标是 _____。
分析:由题知,只要将△AOB 沿水平方向向左平移2个单位即可。
则点B '的坐标是(2,0)。
三.适时训练(一)精心选一选1.点A (4,3-)所在象限为( )A 、 第一象限B 、 第二象限C 、 第三象限D 、 第四象限 2.点B (0,3-)在()上A 、 在x 轴的正半轴上B 、 在x 轴的负半轴上C 、 在y 轴的正半轴上D 、 在y 轴的负半轴上3.点C 在x 轴上方,y 轴左侧,距离x 轴2个单位长度,距离y 轴3个单位长度,则点C 的坐标为() A 、(3,2) B 、 (3,2--) C 、 (2,3-) D 、(2,3-) 4. 若点P (x,y )的坐标满足xy =0,则点P 的位置是()A 、 在x 轴上B 、 在y 轴上C 、 是坐标原点D 、在x 轴上或在y 轴上 5.某同学的座位号为(4,2),那么该同学的所座位置是()A 、 第2排第4列B 、 第4排第2列C 、 第2列第4排D 、 不好确定6.线段AB 两端点坐标分别为A (4,1-),B (1,4-),现将它向左平移4个单位长度,得到线段A 1B 1,则A 1、B 1的坐标分别为()A 、 A 1(0,5-),B 1(3,8--) B 、 A 1(7,3), B 1(0,5)C 、 A 1(4,5-) B 1(-8,1)D 、 A 1(4,3) B 1(1,0) 7.坐标平面内下列各点中,在x 轴上的点是 ( ) A 、(0,3) B 、)0,3(- C 、)2,1(- D 、)3,2(--8.如果yx<0,),(y x Q 那么在( )象限 ( ) A 、 第四 B 、 第二 C 、 第一、三 D 、 第二、四 9.已知03)2(2=++-b a ,则),(b a P --的坐标为 ( ) A 、 )3,2( B 、 )3,2(- C 、 )3,2(- D 、 )3,2(-- 10.若点),(n m P 在第三象限,则点),(n m Q --在 ( ) A、第一象限 B、第二象限 C、第三象限 D、第四象限 11.如图:正方形ABCD 中点A 和点C 的坐标分别为 )3,2(-和)2,3(-,则点B 和点D 的坐标分别为(A 、)2,2(和)3,3(B 、)2,2(--和)3,3(C 、 )2,2(--和)3,3(--D 、 )2,2(和)3,3(--12.已知平面直角坐标系内点),(y x 的纵、横坐标满足x y =,则点),(y x 位 于( )A 、 x 轴上方(含x 轴)B 、 x 轴下方(含x 轴)C 、 y 轴的右方(含y 轴)D 、 y 轴的左方(含y 轴)(二)细心填一填13.分别写出数轴上点的坐标:A ( )B ( )C ( )D ( )E ( ) 14.在数轴上分别画出坐标如下的点:)1(-A )2(B )5.0(C )0(D )5.2(E )6(-FA-1-115. 点)4,3(-A 在第 象限,点)3,2(--B 在第 象限 点)4,3(-C 在第 象限,点)3,2(D 在第 象限 点)0,2(-E 在第 象限,点)3,0(F 在第 象限16.在平面直角坐标系上,原点O 的坐标是( ),x 轴上的点的坐标的特点 是 坐标为0;y 轴上的点的坐标的特点是 坐标为0。
17.如图,写出表示下列各点的有序数对: A ( , ); B ( , ); C ( , ); D ( , ); E ( , ); F ( , ); G ( , ); H ( , ); I ( , )18.根据点所在位置,用“+”“-”或“0”填表:19.在平面直角坐标系中,将点)5,2(-向右平移3个单位长度,可以得到对应点坐标( , );将点)5,2(--向左平移3个单位长度可得到对应点( , );将点)5,2(+向上平移3单位长度可得对应点( , );将点)5,2(-向下平移3单位长度可得对应点( , )。