全国2008年1月高等教育自学考试概率论与数理统计(经管类)试题

合集下载

2010年1月概率论与数理统计(经管类)试题答案

2010年1月概率论与数理统计(经管类)试题答案

2010年1月高等教育自学考试概率论与数理统计(经管类)试题答案一、单项选择题(本大题共10小题,每小题2分,共20分) 1.若A 与B 互为对立事件,则下式成立的是( C ) A .Ω=)(B A P B .)()()(B P A P AB P = C .)(1)(B P A P -=D .∅=)(AB PA .81 B .41 C .83 D .213.设A ,B 为两事件,已知3)(=A P ,3)|(=B A P ,5)|(=A B P ,则=)(B P ( A )A .51B .52C .53D .54则=k ( D ) A .0.1B .0.2C .0.3D .0.4的实数a ,有( B )A .⎰-=-adx x f a F 0)(1)(B .⎰-=-adx x f a F 0)(21)(C .)()(a F a F =-D .1)(2)(-=-a F a F则=}0(XY P A .121 B .61C .31D .32 A .=≤-}1{Y X P 21 B .=≤-}0{Y X P 21 C .=≤+}1{Y X P 21D .=≤+}0{Y X P 21 8.设随机变量X 具有分布5}{==k X P ,5,4,3,2,1=k ,则=)(X E ( B )A .2B .3C .4D .59.设521,,,x x x 是来自正态总体),(σμN 的样本,其样本均值和样本方差分别为∑==5151i i x x 和2512)(41∑=-=i i x x s ,则sx )(5μ-服从( A )A .)4(tB .)5(tC .)4(2χD .)5(2χ10.设总体X ~),(2σμN ,2σ未知,n x x x ,,,21 为样本,∑=--=ni i x x n s 122)(11,检验假设0H :2σ20σ=时采用的统计量是( C )A .)1(~/--=n t ns x t μB .)(~/n t ns x t μ-=C .)1(~)1(2222--=n s n χσχ D .)(~)1(22022n s n χσχ-=二、填空题(本大题共15小题,每小题2分,共30分)11.设4.0)(=A P ,3.0)(=B P ,4.0)(=B A P ,则=)(B A P ___________.12.设A ,B 相互独立且都不发生的概率为9,又A 发生而B 不发生的概率与B 发生而A不发生的概率相等,则=)(A P ___________.14.设随机变量X 的概率密度为⎪⎩⎪⎨⎧≤≤=其他,00,24)(2cx x x f ,则常数=c ___________.15.X 服从均值为2,方差为σ的正态分布,且3.0}42{=≤≤X P ,则=≤}0{X P _______.16.设X ,Y 相互独立,且2}1{=≤X P ,3}1{=≤Y P ,则=≤≤}1,1{Y X P ___________.17.X 和Y 的联合密度为⎩⎨⎧≤≤≤=--其他,010,2),(2y x e y x f y x ,则=>>}1,1{Y X P _________.18.设),(Y X 的概率密度为⎩⎨⎧=其他,0),(y x f ,则Y 的边缘概率密度为________.注:第18题联合概率密度是错误的,不满足规范性.19.设X 服从正态分布)4,2(N ,Y 服从均匀分布)5,3(U ,则=-)32(Y X E __________.n 则对任意的}|{|lim ,0εμε<->∞→p nP nn =___________.21.X ~)1,0(N ,Y ~)2,0(2N 相互独立,设22Y CX Z +=,则当=C _____时,Z ~)2(2χ.n 21均值,0>θ为未知参数,则θ的矩估计=θˆ ___________.00称这种错误为第___________类错误.24.设总体X ~),(11σμN ,Y ~),(22σμN ,其中21σσσ==未知,检验0H :21μμ=,1H :21μμ≠,分别从X ,Y 中取出9个和16个样品,计算得3.572=x ,1.569=y ,样本方差25.14921=s ,2.14122=s ,则t 检验中统计量=t ___________(要求计算出具体数值).0026.飞机在雨天晚点的概率为0.8,在晴天晚点的概率为0.2,天气预报称明天有雨的概率为0.4,试求明天飞机晚点的概率.解:设=A {明天有雨},=B {明天飞机晚点},已知8.0)|(=A B P ,2.0)|(=A B P ,4.0)(=A P ,则6.0)(=A P ,明天飞机晚点的概率为44.02.06.08.04.0)|()()|()()(=⨯+⨯=+=A B P A P A B P A P B P .27.已知9)(=X D ,4)(=Y D ,相关系数4.0=XY ρ,求)2(Y X D +,)32(Y X D -. 解:由)()(),cov(Y D X D Y X XY =ρ,即23),cov(4.0⨯=Y X ,得4.2),cov(=Y X ,),cov(4)(4)()2,cov(2)2()()2(Y X Y D X D Y X Y D X D Y X D ++=++=+6.344.24449=⨯+⨯+=,),cov(12)(9)(4)3,2cov(2)3()2()32(Y X Y D X D Y X Y D X D Y X D -+=-+-+=-2.434.2124994=⨯-⨯+⨯=.四、综合题(本大题共2小题,每小题12分,共24分)28. 设某种晶体管的寿命X (以小时计)的概率密度为⎪⎩⎪⎨⎧≤>=100,0100,100)(2x x x x f .(1)若一个晶体管在使用150小时后仍完好,那么该晶体管使用时间不到200小时的概率是多少?(2)若一个电子仪器中装有3个独立工作的这种晶体管,在使用150小时内恰有一个晶体管损坏的概率是多少?解:(1)注意到32100100)(}150{1501502150=-===>+∞+∞+∞⎰⎰x dx xdx x f X P ,61100100)(}200150{2001502001502200150=-===<<⎰⎰x dx xdx x f X P ,所求概率为413/26/1}150{}200150{}150|200{==><<=><X P X P X X P ;(2)每一个晶体管在使用150小时内损坏的概率为31321}150{1}150{=-=>-=≤X P X P , 设使用150小时内损坏的晶体管数为Y ,则Y ~⎪⎭⎫⎝⎛31,3B ,所求概率为943231}1{213=⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛==C YP .29.某柜台做顾客调查,设每小时到达柜台的顾客数X ~)(λP ,已知}2{}1{===X P X P ,且该柜台销售情况Y (千元),满足2212+=X Y .试求:(1)参数λ的值;(2)一小时内至少有一个顾客光临的概率;(3)该柜台每小时的平均销售情况)(Y E . 解:X 的分布律为λλ-==e k k X P k!}{, ,2,1,0=k .(1)由}2{}1{===X P X P ,即λλλλ--=e e 22,得2=λ,X ~)2(P ;(2)所求概率为21}0{1}1{--==-=≥e X P X P ;(3)由X ~)2(P ,得2)()(==X D X E ,642)()()(22=+=+=X E X D X E ,526212)(21)(2=+⨯=+=X E Y E . 五、应用题(本大题共1小题,10分)30.某生产车间随机抽取9件同型号的产品进行直径测量,得到结果如下:21.54, 21.63, 21.62, 21.96, 21.42, 21.57, 21.63, 21.55, 21.48 根据长期经验,该产品的直径服从正态分布)9.0,(2μN ,试求出该产品的直径μ的置信度为0.95的置信区间.(96.1025.0=u ,645.105.0=u )(精确到小数点后三位) 解:已知9.00=σ,05.0=α,9=n ,算得57.21=x ,588.099.096.102/=⨯=⋅nu σα,μ的置信度为0.95的置信区间为⎥⎦⎤⎢⎣⎡⋅+⋅-n u x n u x σσαα2/2/,]158.22,982.20[]588.057.21,588.057.21[=+-=.。

全国2008年1月自学考试线性代数(经管类)试题+答案

全国2008年1月自学考试线性代数(经管类)试题+答案

全国2代码:04184 一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列 出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后 的括号内。错选、多选或未选均无分。 1.设A为三阶方阵且则( D ) A.-108 B.-12 C.12 D.108 2.如果方程组有非零解,则 k=( B ) A.-2 B.-1 C.1 D.2 3.设A、B为同阶方阵,下列等式中恒正确的是( D ) A.AB=BA B. C. D. 4.设A为四阶矩阵,且则( C ) A.2 B.4 C.8 D.12 5.设可由向量α1 =(1,0,0)α2 =(0,0,1)线性表示,则下列向量 中只能是( B ) A.(2,1,1) B.(-3,0,2) C.(1,1,0) D.(0,-1,0) 6.向量组α1 ,α2 ,…,αs 的秩不为s(s)的充分必要条件是( C ) A. α1 ,α2 ,…,αs 全是非零向量 B. α1 ,α2, …,αs 全是零向量 C. α1 ,α2, …,αs中至少有一个向量可由其它向量线性表出
= 22.设A=,求A. A= 23.设A=,B=,且A,B,X满足(E-BA)求X,X (E-BA) X= = X== 24.求向量组α1 =(1,-1,2,4)α2 =(0,3,1,2), α3 =(3,0,7,14), α4 =(2,1,5,6), α5 = (1,-1,2,0)的一个极大线性无关组. α1 α2 α4 为极大无关组。 25.求非齐次方程组的通解 通解 26. 设A=,求P使为对角矩阵. = P= = 四、证明题(本大题共1小题,6分) 27.设α1,α2,α3 是齐次方程组A x =0的基础解系. 证明α1,α1+α2, α1 +α2 +α3也是Ax =0的基础解系. 略。

概率论与数理统计

概率论与数理统计

04183 概率论与数理统计(经管类)一 、单选题1、将一枚硬币连抛两次,则此随机试验的样本空间为 【 】 A:{(正,正),(反,反),(一正一反)}B:{ (反,正),(正,反),(正,正),(反,反)} C:{一次正面,两次正面,没有正面}D:{先得正面,先得反面} 做题结果:A 参考答案:B.{ (反,正),(正,反),(正,正),(反,反)}2、若AB ≠Φ,则下列各式中错误的是【 】A:P(AB)>=0B:P(AB)<=1 C:P(A+B)=P(A)+P(B) D:P(A-B)<=P(A) 做题结果:A 参考答案:C.P(A+B)=P(A)+P(B)3、袋中有a 个白球,d 个黑球,从中任取一个,则取得白球的概率是 【 】A:1/2B:1/(a+d) C:a/(a+d) D:d/(a+d)做题结果:A 参考答案:C.a/(a+d)4、四人独立地破译一份密码,已知各人能译出的概率分别为1/5,1/4,1/3,1/6则密码最终能被译的概率为 【 】B:1/2A:1C:2/5 D:2/3做题结果:A 参考答案:D.2/35、已知P(A)=P(B)=P(C)=1/4,P(AB)=0,P(AC)=P(BC)=1/16,则事件A,B,C全不发生的概率为【】B:3/8A:1/8C:5/8 D:7/8做题结果:A 参考答案:B.3/86、设X服从[1,5]上的均匀分布,则【】B:P{3<X< 4>A:P{a<=X<=b}=(b-a)/4C:P{0<X<> D:P{-1<X<=3}=1 td < 2>做题结果:A 参考答案:D.P{-1<X<=3}=1 td < 2>7、B:P(B-A)>=0A:B未发生A可能发生C:P(A)<=P(B) D:B发生A可能不发生做题结果:A 参考答案:A.B未发生A可能发生8、B:A与B相容A:A与B不相容C:A与B不独立D:A与B独立做题结果:A 参考答案:D.A与B独立9、B:0.2A:0C:0.3 D:0.5做题结果:A 参考答案:C.0.310、设F1(x)与F2(x)分别是随机变量X与Y的分布函数,为使aF1(x)-bF2(x)是某个随机变量的分布函数,则a,b的值可取为【】B:a=2/3,b=2/3A:a=3/5,b=-2/5C:a=-1/2,b=3/2 D:a=1/2,b=-3/2做题结果:A 参考答案:A.a=3/5,b=-2/511、X为随机变量,E(X)=-1,D(X)=3,则E[3(X2)+20]= 【】B:9A:18C:30 D:32做题结果:C 参考答案:D.3212、X,Y独立,且方差均存在,则D(2X-3Y)= 【】B:4DX-9DYA:2DX-3DYC:4DX+9DY D:2DX+3DY做题结果:C 参考答案:C.4DX+9DY13、设X1,X2,……,X n是来自总体X的简单随机样本,则X1,X2,……,X n必然满足【】B:分布相同但不相互独立A:独立同分布C:独立但分布不同D:不能确定做题结果:A 参考答案:A.独立同分布14、B:0.4A:0C:0.8 D:1做题结果:A 参考答案:D.115、袋中有c个白球,d个黑球,从中任取一个,则取得白球的概率是【】B:1/(c+d)A:1/2C:c/(c+d) D:d/(c+d)做题结果:A 参考答案:C.c/(c+d)16、从标号为1,2,…,101的101个灯泡中任取一个,则取得标号为偶数的灯泡的概率为【】B:51/101A:50/101C:50/100 D:51/100做题结果:C 参考答案:A.50/10117、四人独立地破译一份密码,已知各人能译出的概率分别为1/2,1/4,1/3,1/5,则密码最终能被译的概率为【】B:1/2A:1C:4/5 D:2/3做题结果:A 参考答案:C.4/518、已知P(A)=P(B)=P(C)=1/8,P(AB)=0,P(AC)=P(BC)=1/16,则事件A,B,C全不发生的概率为【】B:3/8A:3/4C:5/8 D:7/8做题结果:C 参考答案:A.3/419、设X服从[1,5]上的均匀分布,则【】B:P{3<X< 2>A:P{a<=X<=b}=(b-a)/4C:P{0<X<> D:P{-1<X<=3}=1 td < 4>做题结果:C 参考答案:B.P{3<X< 2>20、A:0.2B:0.4C:0.8 D:1做题结果:C 参考答案:A. 0.221、设F1(x)与F2(x)分别是随机变量X与Y的分布函数,为使aF1(x)-bF2(x)是某个随机变量的分布函数,则a,b的值可取为【】A:a=3/5,b=-4/5B:a=2/3,b=2/3C:a=-1/2,b=3/2 D:a=1/2,b=-1/2做题结果:C 参考答案:D.a=1/2,b=-1/222、下列叙述中错误的是【】A:联合分布决定边缘分布B:边缘分布不能决定联合分布C:边缘分布之积即为联合分布D:两个随机变量各自的联合分布不同,但边缘分布可能相同做题结果:C 参考答案:C.边缘分布之积即为联合分布24、下列叙述中错误的是【】A:联合分布决定边缘分布B:边缘分布不能决定联合分布C:两个随机变量各自的联合分布不同,但边缘分布可能相同D:边缘分布之积即为联合分布做题结果:C 参考答案:D.边缘分布之积即为联合分布25、下列关于“统计量”的描述中,不正确的是【】A:统计量为随机变量B:统计量是样本的函数C:统计量表达式中不含有参数D:估计量是统计量做题结果:C 参考答案:C.统计量表达式中不含有参数26、已知D(X)=4,D(Y)=25,Coν(X,Y)=4,则ρXY= 【】A:0.004B:0.04C:0.4 D:4做题结果:A 参考答案:C.0.427、设X1,X2,……,X n是来自总体X的简单随机样本,则X1,X2,……,X n必然满足【】A:独立但分布不同B:分布相同但不相互独立C:独立同分布D:不能确定做题结果:C 参考答案:C.独立同分布28、X,Y独立,且方差均存在,则D(3X-4Y)= 【】B:9DX-16DYA:9DX+16DYC:3DX-4DY D:3DX+4DY做题结果:A 参考答案:A.9DX+16DY29、设事件A,B相互独立,且P(A)=1/3,P(B)>0,则P(AㄧB)= 【】B:1/5A:1/15C:4/15 D:1/3做题结果:A 参考答案:D.1/330、袋中有a个白球,d个黑球,从中任取一个,则取得白球的概率是【】B:1/(a+d)A:1/2C:a/(a+d) D:d/(a+d)做题结果:A 参考答案:C.a/(a+d)31、B:P(A)A:1C:P(B) D:P(AB)做题结果:C 参考答案:A.132、四人独立地破译一份密码,已知各人能译出的概率分别为1/5,1/4,1/7,1/6,则密码最终能被译的概率为【】B:1/2A:1C:3/7 D:4/7做题结果:A 参考答案:D.4/7已知P(A)=P(B)=P(C)=1/5,P(AB)=0,P(AC)=P(BC)=1/25则事件A,B,C全不发生的概率为【】B:12/25A:1/25C:15/25 D:13/25做题结果:A 参考答案:B.12/2534、B:0.6A:0.5C:0.66 D:0.7做题结果:A 参考答案:C.0.6635、B:1/2A:1/6C:2/3 D:1做题结果:A 参考答案:C.2/336、设随机变量X与Y独立同分布,它们取-1,1两个值的概率分别为1/4,3/4,则P{XY=-1}= 【】B:3/16C:1/4 D:3/8做题结果:A 参考答案:D.3/837、设X服从[1,5]上的均匀分布,则【】A:P{a<=X<=b}=(b-a)/4B:P{3<X< 2>C:P{0<X<> D:P{-1<X<=3}=3 td < 4>做题结果:A 参考答案:B.P{3<X< 2>38、A:0B:0.2C:0.3 D:0.5做题结果:C 参考答案:D.0.539、设F1(x)与F2(x)分别是随机变量X与Y的分布函数,为使aF1(x)-bF2(x)是某个随机变量的分布函数,则a,b的值可取为【】A:a=3/5,b=2/5B:a=2/3,b=-1/3C:a=-1/2,b=3/2 D:a=1/2,b=-3/2做题结果:A 参考答案:B.a=2/3,b=-1/340、下列叙述中错误的是【】A:联合分布决定边缘分布B:边缘分布不能决定联合分布C:两个随机变量各自的联合分布不同,但边缘分布可能相同D:边缘分布之积即为联合分布做题结果:C 参考答案:D.边缘分布之积即为联合分布41、已知随机变量X服从参数为2的指数分布,则随机变量X的期望为【】A:-1/2B:0C:1/2 D:2做题结果:C 参考答案:C.1/242、下列关于“统计量”的描述中,不正确的是【】A:统计量为随机变量B:统计量是样本的函数C:统计量表达式中不含有参数D:估计量是统计量做题结果:A 参考答案:C.统计量表达式中不含有参数43、X,Y独立,且方差均存在,则D(2X-5Y)= 【】A:2DX-5DYB:4DX-25DYC:4DX+25DY D:2DX+5DY做题结果:A 参考答案:C.4DX+25DY44、设X1,X2,……,X n是来自总体X的简单随机样本,则X1,X2,……,X n必然满足【】A:独立但分布不同B:分布相同但不相互独立C:不能确定D:独立同分布做题结果:A 参考答案:D.独立同分布58、设X~N(μ,4),则B:P{X<=0}=1/2A:(X-μ)/4~N(0,1)C:P{X-μ>2}=1-φ(1) D:μ>=0做题结果:A 参考答案:C.P{X-μ>2}=1-φ(1)59、设随机变量X的分布函数为F(X),下列结论中不一定成立的是【】B:F(-∞)=0A:F(+∞)=1C:0<=F(X)<=1 D:F(X)为连续函数做题结果:A 参考答案:D.F(X)为连续函数60、某人每次射击命中目标的概率为p(0<p<1),他向目标连续射击,则第一次未中第二次命中的概率为【】B:(1-p)(1-p)A:p*pC:1-2p D:p(1-p)做题结果:A 参考答案:D.p(1-p)61、设A与B互不相容,且P(A)>0,P(B)>0,则有【】做题结果:A 参考答案:D.P(A∪B)=P(A)+P(B)62、设A,B,C是三个相互独立的事件,且O<P(C)<1,则下列给定的四对事件中,不独立的是【】,,,做题结果:A 参考答案:C.63、设随机变量X服从参数为λ的泊松分布,且P{X=1}=P{X=2},则P{X>2}的值为e-2,,,做题结果:A 参考答案:B64、(x) ,则Y=-2X+3的密度函数设随机变量X的概率密度函数为fx为【】,,,做题结果:A 参考答案:B 65、设随机事件A与B相互独立,且P(A)>0,P(B)>0,则。

自考04183概率论与数理统计(经管类)总结2-数理统计部分

自考04183概率论与数理统计(经管类)总结2-数理统计部分

高等教育自学考试辅导《概率论与数理统计(经管类)》第二部分数理统计部分专题一统计量及抽样的分布I.考点分析近几年试题的考点分布和分数分布II.内容总结一、总体与样本1.总体:所考察对象的全体称为总体;组成总体的每个基本元素称为个体。

2.样本:从总体中随机抽取n个个体x1,x2…,x n称为总体的一个样本,个数n称为样本容量。

3.简单随机样本如果总体X的样本x1,x2…,x n满足:(1)x1与X有相同分布,i=1,2,…,n;(2)x1,x2…,x n相互独立,则称该样本为简单随机样本,简称样本。

得到简单随机样本的方法称为简单随机抽样方法。

4.样本的分布(1)联合分布函数:设总体X的分布函数为F(x),x1,x2…,x n为该总体的一个样本,则联合分布函数为二、统计量及其分布1.统计量、抽样分布:设x1,x2…,x n为取自某总体的样本,若样本函数T=T(x1,x2…,x n)不含任何未知参数,则称T为统计量;统计量的分布称为抽样分布。

2.样本的数字特征及其抽样分布:设x1,x2…,x n为取自某总体X的样本,(2)样本均值的性质:①若称样本的数据与样本均值的差为偏差,则样本偏差之和为零,即②偏差平方和最小,即对任意常数C,函数时取得最小值. (5)样本矩(7)正态分布的抽样分布A.应用于小样本的三种统计量的分布的为自由度为n的X2分布的α分位点.求法:反查X 2分布表.III.典型例题[答疑编号918020101]答案:D[答疑编号918020102]答案:[答疑编号918020103]答案:B[答疑编号918020104]答案:1[答疑编号918020105]答案:B[答疑编号918020106]故填20.[答疑编号918020107]解析:[答疑编号918020108]答案:解析:本题考核正态分布的叠加原理和x2-分布的概念。

根据课本P82,例题3-28的结果,若X~N(0,1),Y~N(0,1),且X与Y相互独立,则X+Y~N(0+0,1+1)=N(0,2)。

自考作业答案概率论与数理统计(山大)

自考作业答案概率论与数理统计(山大)

答案和题目概率论与数理统计(经管类)综合试题一(课程代码 4183)一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.下列选项正确的是( B ).A. A B A B +=+B.()A B B A B +-=-C. (A-B )+B =AD. AB AB = 2.设()0,()0P A P B >>,则下列各式中正确的是( D ).(A -B )=P (A )-P (B ) (AB )=P (A )P (B )C. P (A +B )=P (A )+P (B )D. P (A +B )=P (A )+P (B )-P (AB )3.同时抛掷3枚硬币,则至多有1枚硬币正面向上的概率是 ( D ).A. 18B. 16C. 14D. 124.一套五卷选集随机地放到书架上,则从左到右或从右到左卷号恰为1,2,3,4,5顺序的概率为 ( B ).A.1120 B. 160C. 15 D. 12 5.设随机事件A ,B 满足B A ⊂,则下列选项正确的是 ( A ).A.()()()P A B P A P B -=-B. ()()P A B P B +=C.(|)()P B A P B =D.()()P AB P A =6.设随机变量X 的概率密度函数为f (x ),则f (x )一定满足( C ).A. 0()1f x ≤≤B. f (x )连续C. ()1f x dx +∞-∞=⎰D. ()1f +∞=7.设离散型随机变量X 的分布律为(),1,2,...2kbP X k k ===,且0b >,则参数b 的值为( D ).A.12B. 13C. 15 D. 18.设随机变量X , Y 都服从[0, 1]上的均匀分布,则()E X Y += ( A ).9.设总体X 服从正态分布,21,()2EX E X =-=,1210,,...,X X X 为样本,则样本均值101110ii X X ==∑~( D ).A.(1,1)N -B.(10,1)NC.(10,2)N -D.1(1,)10N - 10.设总体2123(,),(,,)XN X X X μσ是来自X 的样本,又12311ˆ42X aX X μ=++ 是参数μ的无偏估计,则a = ( B ). A. 1 B.14 C. 12D. 13二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。

2008年高考数学试题分类汇编——概率与统计

2008年高考数学试题分类汇编——概率与统计

2008年高考数学试题分类汇编(概率与统计)1.(全国一20).(本小题满分12分)已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性即没患病.下面是两种化验方法:方案甲:逐个化验,直到能确定患病动物为止.方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.(Ⅰ)求依方案甲所需化验次数不少于依方案乙所需化验次数的概率;(Ⅱ)ξ表示依方案乙所需化验次数,求ξ的期望.2.(全国二18).(本小题满分12分)购买某种保险,每个投保人每年度向保险公司交纳保费a元,若投保人在购买保险的一年度内出险,则可以获得10 000元的赔偿金.假定在一年度内有10 000人购买了这种保险,且各投保人是否出险相互独立.已知保险公司在一年度内至少支付赔偿金10 000元的概率为410-.10.999(Ⅰ)求一投保人在一年度内出险的概率p;(Ⅱ)设保险公司开办该项险种业务除赔偿金外的成本为50 000元,为保证盈利的期望不小于0,求每位投保人应交纳的最低保费(单位:元).3.(北京卷17).(本小题共13分)甲、乙等五名奥运志愿者被随机地分到A B C D ,,,四个不同的岗位服务,每个岗位至少有一名志愿者.(Ⅰ)求甲、乙两人同时参加A 岗位服务的概率;(Ⅱ)求甲、乙两人不在同一个岗位服务的概率;(Ⅲ)设随机变量ξ为这五名志愿者中参加A 岗位服务的人数,求ξ的分布列.4.(四川卷18).(本小题满分12分)设进入某商场的每一位顾客购买甲种商品的概率为0.5,购买乙种商品的概率为0.6,且购买甲种商品与购买乙种商品相互独立,各顾客之间购买商品也是相互独立的。

(Ⅰ)求进入商场的1位顾客购买甲、乙两种商品中的一种的概率;(Ⅱ)求进入商场的1位顾客至少购买甲、乙两种商品中的一种的概率;(Ⅲ)记ξ表示进入商场的3位顾客中至少购买甲、乙两种商品中的一种的人数,求ξ的分布列及期望。

08级本科《概率论与数理统计》A卷答案(教考分离)

上海立信会计学院2009~2010学年第二学期2008级本科《概率论与数理统计》期终考试试卷(A )(本场考试属闭卷考试,考试时间120分钟,可使用计算器) 共8页学院 班级 学号 姓名一、单项选择题(每题2分,共10分)在每小题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在题后的括号内。

1.对于事件设B A ,,下列命题正确的是 ( ) A .若B A ,互不相容,则A 与B 也互不相容 B .若B A ,相容,则A 与B 也相容C .若B A ,互不相容,且概率都大于零,则A 与B 也相互独立D .若B A ,相互独立,则A 与B 也相互独立2.将一枚骰子掷两次,记21X X 、分别第一、第二掷出的点数。

记:}10{21=+=X X A ,}{21X X B <=。

则=)|(A B P ( )A .31 B .41 C .52 D .65 3.设随机变量X 与Y 均服从正态分布,)2,(~2μN X ,)5,(~2μN Y ,记}2{1-≤=μX P p ,}5{2+≥=μY P p ,则 ( )A .对任何实数μ,都有21p p =B .对任何实数μ,都有21p p <C .只对μ的个别值才有21p p =D .对任何实数μ,都有21p p > 4.设随机变量21,X X 独立,且21}1{}0{====i i X P X P (2,1=i ),那么下列结论正确的是 ( )A .21X X =B .1}{21==X X PC .21}{21==X X P D .以上都不正确 5.设21,X X 取自正态总体)2,(μN 的容量为2的样本,下列四个无偏估计中较优的是( )A .2114341ˆX X +=μB .2122121ˆX X +=μC .21332ˆX X +=μD .2147374ˆX X +=μ 二、填空题(每题2分,共10分)1.设B A ,为随机事件,5.0)(=A P ,6.0)(=B P ,8.0)|(=A B P ,则=)(B A P2.设离散型随机变量X 的分布列为kA k X P )2/1(}{==( ,2,1=k ),则常数=A3.设X 的概率密度为21)(x ex f -=π,则=)(X D4.已知随机变量X 的密度为⎩⎨⎧<<=其它010)(x x a x f ,则=a5.设随机变量X 和Y 相互独立且都服从正态分布)3,0(2N ,而91,,X X 和91,,Y Y 分别是来自总体X 和Y 简单随机样本,则统计量292191YY X X U ++++=服从 分布。

2008.01考研管理类联考初数真题(有答案)

2008.01考研管理类联考初数真题(有答案)2008年1月真题一、问题求解:第1~15小题,每小题3分,共45分。

下列每题给出的五个选项中,只有一项是符合试题要求的。

请在答题卡上将所选项的字母涂黑。

1、24832234101(13)(13)(13)(13)(13)233333++++++= A 10191332?+ B 19132+ C 19132?D 9132?E 以上结论均不正确 2、若ABC ?的三边为,,a b c 满足222a b c ab ac bc ++=++,则ABC ?为()A 等腰三角形B 直角三角形C 等边三角形D 等腰直角三角形E 以上都不是3、P 是以a 为边长的正方形,1P 是以P 的四边中点为顶点的正方形,2P 是以1P 的四边中点为顶点的正方形,i P 是以1i P -的四边中点为顶点的正方形,则6P 的面积是() A 216a B 232a C 240a D 248a E 264a 4、某单位有90人,其中65人参加外语培训,72人参加计算机培训,已知参加外语培训而未参加计算机培训的有8人,则参加计算机培训而未参加英语培训的人数是()A 5B 8C 10D 12E 155、方程2(13)30x x -++=的两根分别为等腰三角形的腰a 和底b(a b <),则该三角形的面积是() A 114 B 118 C 34 D 35 E 386、一辆出租车有段时间的营运全在东西走向的一条大道上,若规定向东为正向,向西为负向。

且知该车的行驶的公里数依次为-10、6、5、-8、9、-15、12,则将最后一名乘客送到目的地时,该车的位置是()A 在首次出发地的东面1公里处B 在首次出发地的西面1公里处C 在首次出发地的东面2公里处D 在首次出发地的西面2公里处E 仍在首次出发地7、如图所示长方形ABCD 中的AB=10CM ,BC=5CM ,设AB 和AD 分别为半径作14圆,则图中阴影部分的面积为: A 225252cm π- B 2125252cm π+ C 225504cm π+ D 2125504cm π- E 以上都不是 8、若用浓度为30%和20%的甲乙两种食盐溶液配成浓度为24%的食盐溶液500克,则甲乙两种溶液各取:A 180克 320克B 185克 315克C 190克 310克D 195克 305克E 200克 300克9、将价值200元的甲原料与价值480元的乙原料配成一种新原料,若新原料每一千克的售价分别比甲、乙原料每千克的售价少3元和多1元则新原料的售价是:A 15 元B 16元C 17元D 18元E 19元10、直角边之和为12的直角三角形面积最大值等于:A 16B 18C 20D 22E 以上都不是11、如果数列{}n a 的前n 项的和332n n s a =-,那么这个数列的通项公式是: A 22(1)n a n n =++B 32n n a =?C 31n a n =+D 23n n a =?E 以上都不是12、以直线0y x +=为对称轴且与直线32y x -=对称的直线方程为: A 233x y =+ B 233x y =+- C 32y x =-- D 32y x =-+ E 以上都不是13.有两排座位,前排6个座,后排7个座。

2008年1月管理综合联考数学试题

本文档为2008年1月管理综合联考数学试题,并非用户期望的2014年10月管理类联考数学真题解析。然而,文档中包含了一系列数学问题及其解答选项,这些问题涉及数列、几何图形、概率等多个数学领域。例如,文三角形面积最大值的问题,以及一个关于概率计算的问题。这些问题都是管理类联考中常见的数学题型,对于准备参加类似考试的考生来说,具有一定的参考价值和练习意义。但请注意,由于这不是用户特定请求的2014年10月的真题解析,因此可能无法完全满足用户的期望。

08年秋季学期概率统计考试题及解答(xin2)

概率论与数理统计试题(2008秋)(注:需用到的标准正态分布表,t -分布表见第四页末尾处。

)一、填空题(每题3分,共计15分)1.设事件,A B 满足()0.5,()0.6,(|)0.6P A P B P B A ===, 则()P A B = .2.设事件,,A B C 两两独立,且ABC φ=,1()()()2P A P B P C ==<,9()16P A B C =,则()P A = .3.设r. v X 的概率密度为⎩⎨⎧<<=其他,010,2)(x x x f ,对X 进行三次独立重复观察,用Y表示事件1()2X ≤出现的次数,则(1)P Y ==_______.4.已知一批零件长度未知μμ),4,(~N X ,从中随机地抽取16个零件,得样本均值,30=X 则μ的置信度为0.95的置信区间是 .5.在区间)1,0(中随机取两数,则事件“两数之差的绝对值小于21”的概率为 .二、单项选择题(每题3分,共计15分)1.设,A B 为两个事件,()()0P A P B ≠>,且B A ⊂,则一定成立 (A )(|)1P B A =; (B )(|)1P A B =;(C )(|)1P B A =; (D )(|)0P A B =. 【 】 2.设,,A B C 三个事件两两独立,则,,A B C 相互独立的充分必要条件是 (A )A 与B C 独立; (B )A B 与A C 独立;(C )A B 与A C 独立; (D )A B 与A C 独立. 【 】 3.设随机变量X 的密度函数为||1()2x f x e-=,则对随机变量||X 与X ,下列结论成立的是(A )相互独立; (B )分布相同; (C )不相关; (D )同期望. 【 】4.设随机变量X 服从参数为31的指数分布,Y ~)6,0(U ,且31=XY ρ,根据切比晓夫不等式有:)44(≤-≤-Y X P ≥(A )81. (B )85. (C )41. (D )92. 【 】5.设12,,,n X X X 是总体X ~),(2σμN 的样本,2,,EX DX X μσ==是样本均值,2S 是样本方差,2*S为样本的二阶中心矩,则(A )),(~2σμN X . (B ))1(~)1222*--n Sn χσ(.(C )∑=-n i i X X 122)(1σ是2σ的无偏估计. (D )相互独立与22S X . 【 】三、(10分)今从装有白球3个,黑球3个的甲箱子中任取2个,然后将2个球放入含有2个白球3个黑球的乙箱中,再从乙箱中任取1个球,求(1)从乙箱中取到1个白球的概率;(2)已知从乙箱中取到一个白球的条件下,从甲箱中取出两个白球的概率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第 1 页
全国2008年1月高等教育自学考试概率论与数理统计(经管类)试题
课程代码:04183

一、单项选择题(本大题共10小题,每小题2分,共20分)
在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未
选均无分。
1.设事件A与B相互独立,且P(A)>0,P(B)>0,则下列等式成立的是( )
A.AB= B.P(AB)=P(A)P(B)

C.P(B)=1-P(A) D.P(B |A)=0
2.设A、B、C为三事件,则事件CBA( )

A.ACB B.ABC
C.(AB)C D.(AB)C
3. 设随机变量X的取值范围是(-1,1),以下函数可作为X的概率密度的是( )
A.f(x)=.;11,0,其它xx B.f(x)=
.;11,,02其它

x
x

C.f(x)=.;11,0,21其它x D.f(x)=
.;11,0,2其它

x

4.设随机变量X~N(1,4),5.0)0(,8413.0)1(,则事件{13X}的概率为( )
A.0.1385 B.0.2413 C.0.2934 D.0.3413

5.设随机变量(X,Y)的联合概率密度为f(x,y)=.;0y,0x,0,eAey2x其它则A=( )

A.21 B.1 C.23 D.2
6.设二维随机变量(X、Y)的联合分布为( )

则P{XY=0}=( )
A. 41 B.125

Y
X
0 5

0
41 6

1

2 31 41
第 2 页

C.43 D.1
7.设X~B(10,31),则E(X)=( )
A.31 B.1
C.310 D. 10
8.设X~N(1,23),则下列选项中,不成立...的是( )
A.E(X)=1 B.D(X)=3
C.P(X=1)=0 D.P(X<1)=0.5

9.设),10000,2,1(,1,0iAAXi发生事件不发生事件且P(A)=0.8,1000021X,,X,X相互独立,令Y=,100001iiX则由中心极限定理知

Y近似服从的分布是( )
A.N(0,1) B.N(8000,40)
C.N(1600,8000) D.N(8000,1600)

10.设n1X,,X为正态总体N(2,)的样本,记niixxnS122)(11,则下列选项中正确的是( )

A.)1(~)1(222nSn B.)(~)1(222nSn
C.)1(~)1(22nSn D.)1(~222nS
二、填空题(本大题共15小题,每小题2分,共30分)
请在每小题的空格中填上正确答案。错填、不填均无分。
11.连续抛一枚均匀硬币5次,则正面都不出现的概率为 ___________。
12.袋中有红、黄、蓝球各一个,从中任取三次,每次取一个,取后放回,则红球出现的概率为___________。
13.设P(A | B)=,61P(B)=,21P(B | A)=,41则P(A)= ___________。

14.设事件A、B相互独立,P(AB)=0.6, P( A )=0.4,则P(B)= ___________。
15.设随机变量X表示4次独立重复射击命中目标的次数,每次命中目标的概率为0.5,则X~ ___________分布。
16.设随机变量X服从区间[0,5]上的均匀分布,则P3X= ___________.

17.设(X,Y)的分布律为:则=_______。
Y
X
-1 1 2

0
15

1

15

1

1
10

3

5
1

15
4
第 3 页

18.设X~N(-1,4),Y~N(1,9)且X与Y相互独立,则X+Y~___________。
19.设二维随机变量(X,Y)概率密度为f(x,y)=。yxyx其它,0;10,20),(31则

)x(f
x
______________________。

20.设随机变量X具有分布PkX=,5,4,3,2,1,51k则E ( X )= ___________。
21.设随机变量X在区间(0,1)上服从均匀分布,Y=3X-2,则E ( Y )= ___________。
22.设随机变量X的E(X)=2)(,XD,用切比雪夫不等式估计P(|23|)(XEX) ___________。

23.当随机变量F~F(m,n)时,对给定的.)),((),10(nmFFPa若F~F(10,5),则P(F<)10,5(195.0F)= ___________。
24.设总体X ~ N (1,),(321,,xxx)为其样本,若估计量
321
312

1
ˆ
kxxx

为的无偏估计量,则k= ___________。

25.已知一元线性回归方程为,4ˆˆ0xy且6,3yx,则0ˆ ___________。
三、计算题(本大题共2小题,每小题8分,共16分)
26.100张彩票中有7张是有奖彩票,现有甲、乙两人且甲先乙后各买一张,试计算甲、乙两人中奖的概率是否相同?
27.设nxxx,,21为来自总体X的样本,总体X服从(0,)上的均匀分布,试求的矩估计,ˆ并计算当样本值为

0.2,0.3,0.5,0.1,0.6,0.3,0.2,0.2时,ˆ的估计值。
四、综合题(本大题共2小题,每小题12分,共24分)
28.袋中装有5只球,编号为1,2,3,4,5,现从袋中同时取出3只,以X表示取出的3只球中的最大号码,试求:
(1)X的概率分布;
(2)X的分布函数;
(3)Y=2X+1的概率分布。

29.设离散型随机变量X的分布律为:
求(1)D(X);(2)D(Y);(3)Cov( X,Y ).
五、应用题(本大题共1小题,10分)
30. 假设某城市购房业主的年龄服从正态分布,根据长期统计资料表明业主年龄X~N(35,52).今年随机抽取400名业

主进行统计调研,业主平均年龄为30岁.在01.0下检验业主年龄是否显著减小.(58.2,32.2005.001.0uu)

X -1 0 1
P
41 21 4

1
,令Y=2X,

相关文档
最新文档