金属材料的断裂和断裂韧性
材料的断裂和韧性PPT课件

2
0
临界应力为:
c
2E c
1/ 2
E
c
1/ 2
2/ 1
平面应变状态下的断裂强度:
(2.7)格里菲斯公式
c
(1
2E 2 )c
1/
2
Chapter3 Properties of Materials
陶瓷、玻璃 等脆性材料
按照晶体材料断裂时裂纹扩展的途径
穿晶断裂;沿晶断裂;
根据断裂机理分类 解理断裂;剪切断裂;
根据断裂面的取向分类 正断;切断。
Chapter3 Properties of Materials
11/25/2019 4:22:35 PM
2
1.金属材料的韧性断裂与脆性断裂
韧性断裂(延性断裂)是材料断裂前及断裂过程 中产生明显宏观塑性变形的断裂过程。
07amchapter3propertiesmaterials17从能量平衡的观点出发格里菲斯认为裂纹扩展的条件是物体内储存的弹性应变能的减小大于或等于开裂形成两个新表面所需增加的表面能即认为物体内储存的弹性应变能降低或释放就是裂纹扩展的动力否则裂纹不会扩展
§1-5 材料的断裂和强度
固体材料在力的作用下分成若干部分的现象称为断 裂。材料的断裂是力对材料作用的最终结束,它意味 着材料的彻底失效。因材料断裂而导致的机件失效与 其他失效方式(如磨拙、腐蚀等)相比危害性最大,并 且可能出现灾难性的后果。因此,研究材料断裂的宏 观与微观构征、断裂机理、断裂的力学条件,以及影 响材料断裂的各种因素不仅具有重要的科学意义,而 且也有很大的实用价值。
11/25/2019 4:22:35 PM
材料的韧性与断裂韧性研究

材料的韧性与断裂韧性研究引言:材料的韧性和断裂韧性是评价材料性能的重要指标,也是材料科学和工程领域中的热门研究课题。
本文将探讨材料的韧性和断裂韧性的概念、研究方法以及应用领域。
一、材料的韧性韧性是指材料在受力时能够承受塑性变形和吸收冲击能量的能力。
它通常用断裂前的应变能量密度来衡量,也可以用断裂韧性来描述。
韧性高的材料具有良好的延展性和抗冲击性,有利于避免材料的突然断裂和破裂。
二、断裂韧性的研究方法研究材料的断裂韧性可以采用多种方法。
其中,最常用的是断裂韧性试验。
这种试验通常通过施加恒定的力或应变加载材料,观察材料的断裂行为,从而得到材料的断裂韧性参数。
常用的断裂韧性试验方法有缺口冲击试验、拉伸试验和压缩试验等。
三、材料的韧性与应用领域1.金属材料金属材料通常具有较高的韧性和断裂韧性,广泛应用于工程领域。
例如,航空航天领域对金属材料的韧性要求较高,以确保航空器在遭受风险和外界环境冲击时保持结构完整。
2.高分子材料高分子材料在韧性方面具有一定的优势。
其中,聚合物材料是最常见的高分子材料,具有较高的韧性和断裂韧性。
这使得聚合物材料广泛应用于制造塑料制品、橡胶制品以及复合材料中。
3.陶瓷材料陶瓷材料一般具有较高的强度但韧性较低。
很多陶瓷材料在受到外力时很容易产生裂纹,并最终导致破裂。
因此,研究如何提高陶瓷材料的韧性和断裂韧性是陶瓷领域的重要课题。
结论:材料的韧性和断裂韧性是评价材料性能的重要指标,对于提高材料的工程应用性能至关重要。
通过研究材料的韧性和断裂韧性,可以为材料设计和材料工程提供更准确的理论基础和实验依据。
不同类型的材料在韧性和断裂韧性方面存在差异,因此需要根据应用需求进行选择和改进。
第一章 材料在静载下的力学行为3(4.1金属的断裂)

沿晶断裂的断口形貌呈冰糖状,有时也称“萘状断 口”,上左图为18CrNiWA钢的冰糖状断口。 如晶粒很细小,则肉眼无法辨认出冰糖状形貌,此 时断口一般呈晶粒状,颜色较纤维状断口明亮,但 比纯脆性断口要灰暗些。 穿晶断裂和沿晶断裂有时可以混合发生。
剪切断裂与解理断裂
(1)剪切断裂是金属材料在切应力作用下沿滑 移面分离而造成的滑移面分离断裂,其中又 分滑断(纯剪切断裂)和微孔聚集型断裂。
(2)解理断裂
解理断裂是金属材料在一定条件下(如低温),当外 加正应力达到一定数值后,以极快速率沿一定晶体 学平面产生的穿晶断裂,因与大理石断裂类似,故 称此种晶体学平面为解理面。 一般在体心立方、密排六方金属中发生,而面心立 方金属只在特殊情况下才发生。 解理面一般是低指数晶面或裸露后表面能最低的晶 面。 解理断裂总是脆性断裂,但有时在解理断裂前也显 示一定的塑性变形,所以解理断裂与脆性断裂不是 同义词,解理断裂指断裂机理而言,脆性断裂则指 断裂的宏观性态。
1.甄纳-斯特罗位错塞积理论
在滑移面上的切应力作用下, 刃型位错在晶界前受阻并互 相靠近形成位错塞积,如果 塞积头处的应力集中不能为 塑性变形所松弛,当切应力 达到某一临界值时,塞积头 处的最大拉应力能够等于材 料理论断裂强度而形成高nb、 长为r的楔形裂纹。
解理裂纹的形成,并不意味着裂纹将迅速扩 展而导致金属材料完全断裂。 柯垂耳用能量分析法推导出解理裂纹扩展的 临界条件为
放射区的形成过程
纤维区中裂纹扩展是很慢的,当其达到临界尺寸后 就快速扩展而形成放射区。 放射区有放射线花样特征。放射线平行于裂纹扩展 方向而垂直于裂纹前端(每一瞬间)的轮廓线,并逆 指向裂纹源。 撕裂时塑性变形量越大,则放射线越粗。对于几乎 不产生塑性变形的极脆材料,放射线消失。 温度降低或材料强度增加,由于塑性降低,放射线 由粗变细乃至消失。
金属材料的断裂力学分析

金属材料的断裂力学分析一、前言金属材料是工业生产中使用最广泛的材料之一,具有良好的物理特性和机械性质,但在使用过程中,金属材料断裂是一种较为常见的失效模式。
断裂力学是研究材料在外部载荷作用下失效的科学。
本文主要围绕金属材料的断裂力学进行分析。
二、金属的特性概述金属材料是指常温下是固体,能够引导电流和热量,通常具有具有良好的可塑性,强度和刚度较高,主要由于金属材料的晶粒结构和晶格缺陷的存在,使得其具有良好的机械性能。
金属材料的力学行为可以通过塑性和弹性来描述,而塑性使得金属具有较好的变形后硬化效应,可以避免松弛而导致的失效。
三、金属材料失效的机制金属材料失效的基本机制是应力集中产生离散化损伤,导致材料的断裂。
在载荷作用下,金属材料中的应力会发生集中作用,这样的集中应力部位容易形成各种损伤,例如缺陷、裂缝和微观缺陷。
金属材料临界断裂应力的定义是材料在严格单向应力下破坏的最小应力值。
这个值主要决定于金属材料的材料特性和制造工艺。
四、金属材料断裂分析金属材料的断裂分析主要涵盖了材料损伤形成、损伤扩展和破坏机理分析等。
微观结构、应力、损伤、断裂等因素都可以影响材料的断裂力学行为。
因此,断裂力学的分析需要结合多个方面的知识与技术来展开。
常用的断裂力学分析方法主要包括有限元分析、断裂力学模型和试验分析等。
有限元分析是利用计算机程序把真实的结构抽象化成有限的元素,利用这些元素之间的相对位置关系和应力、位移等变量来求解物体的力学行为。
通过有限元分析可以评估金属材料中存在的缺陷和微观结构对其力学性能的影响。
断裂力学常用的模型包括破裂、塑性和弹塑性模型、裂缝力学模型和疲劳模型等。
这些模型可以用于描述材料的基本性质,例如断裂韧性、脆性和持久性等参数。
试验分析是将不同载荷下的材料样品进行试验,以获取其断裂行为。
这些试验包括金属的拉伸试验、压缩试验、扭转试验等,可用于获得属于材料的力学行为数据。
五、结论本文通过对金属材料的特性、失效机制和断裂分析等方面的阐述,介绍了金属材料的断裂力学分析。
材料的断裂韧性研究

材料的断裂韧性研究断裂韧性是材料性能中的重要指标之一,它描述了材料在受力过程中抵抗断裂的能力。
随着科技的进步和工程领域对材料性能要求的提升,对材料的断裂韧性研究引起了广泛关注。
本文将介绍材料的断裂韧性的含义、重要性以及常用的研究方法。
一、断裂韧性的含义断裂韧性是材料在受力条件下抵抗断裂的能力,是材料强度和韧性的综合指标。
一个材料具有较高的断裂韧性通常意味着它能承受更大的载荷、更大的变形以及更高的应力集中。
断裂韧性的高低直接关系到材料在使用中的可靠性和安全性。
二、断裂韧性的重要性1. 工程设计:在工程设计中,材料的断裂韧性是评估材料是否能够承受外部冲击和载荷的重要依据。
只有具备较高的断裂韧性的材料才能确保工程结构的安全可靠。
2. 材料改进:通过研究和改进材料的断裂韧性,可以使材料在受力条件下不易发生断裂或变形。
这对于提高材料的使用寿命、减少材料的损耗具有重要意义。
三、断裂韧性的研究方法1. 断裂韧性测试:常用的断裂韧性测试方法包括冲击试验、拉伸试验和缺口试验等。
通过对材料在不同应力条件下的断裂性能进行测试,可以得到材料的断裂应力、断裂韧性等相关参数。
2. 断裂韧性的改进方法:研究材料的断裂韧性还可以通过改变材料的制备工艺、添加合适的增强相等方法进行。
例如,在金属材料中,通过精细调控晶界数量和晶粒尺寸,可以显著提高材料的断裂韧性。
3. 断裂韧性模型的建立:建立准确的断裂韧性模型是研究材料断裂行为的重要手段之一。
通过理论研究和数值模拟,可以预测材料在受力条件下的断裂性能,并指导材料设计和工程应用。
四、结语材料的断裂韧性是评估材料性能的重要指标之一,对保证工程结构的安全可靠以及提高材料使用寿命具有重要意义。
通过采用合适的断裂韧性测试方法、改进材料制备工艺以及建立准确的断裂韧性模型,可以为材料的研发和应用提供有效的参考和指导。
通过持续的研究和探索,我们可以进一步提高材料的断裂韧性,并不断推动工程科技的发展。
材料力学性能教学课件材料的断裂韧性

目 录
• 引言 • 材料断裂韧性基础知识 • 材料断裂韧性分析 • 断裂韧性在工程中的应用 • 案例分析 • 结论与展望
01
引言
课程背景
材料力学性能是工程学科中的重要基础课程,而材料的断裂 韧性是其中的一个关键概念。通过学习本课程,学生将了解 材料的力学性能及其在工程实践中的应用。
应力状态
断裂韧性测试中,试样处于平 面应变状态,即应变在试样宽 度和厚度方向均匀分布。
断裂准则
当试样在断裂前达到最大载荷 时,根据应力强度因子或能量 释放率等参数确定材料的断裂
韧性值。
断裂韧性影响因素
01
02
03
04
温度
温度对材料的断裂韧性有显著 影响。随着温度的降低,材料
的断裂韧性通常提高。
应变速率
03
复合材料的断裂韧性通常通过实验测试获得,如弯曲试验、拉伸试验和落锤冲 击试验等。这些测试可以提供关于复合材料韧性和脆性的详细信息,有助于优 化复合材料的设计和应用性能。
04
断裂韧性在工程中的应用
结构安全设计
结构安全是工程设计中的重要考虑因素,而材料的断裂韧 性直接影响到结构的承载能力和安全性。在结构设计中, 需要考虑材料的断裂韧性,以确保结构在受到外力作用时 能够承受足够的应力而不会发生断裂。
04
加强断裂韧性与其他材料性能指标之间的关联研究,深入理解材料的 多性能耦合效应,为材料的多功能优化提供理论支持。
感谢观看
THANKS
层合板复合材料案例
03
层合板复合材料的断裂韧性受层间粘结强度、层数和铺层角度
等因素影响。
06
结论与展望
断裂韧性的重要性
工程材料强度、断裂及断裂韧性

4-1-5 强度(strength)、断裂及断裂韧性 1、基本概念 Concept
(1)强度:材料抵抗形变和断裂的能力。 材料的内部应力:拉伸、压缩、剪切 强度分为:拉伸强度、压缩强度、剪切强度 加载特征分为:弯曲、扭曲、冲击、疲劳 未到破坏强度,形变而失去承载能力(屈服、屈曲) (2)断裂和韧性( fracture and toughness) 断裂是主要破坏形式,韧性是材料抵抗断裂的能力。 断裂韧性 材料抵抗其内部裂纹扩展能力的性能指标; 冲击韧性 材料在高速冲击负荷下韧性的度量。二者间存在 着某种内在联系。 实际应用中,材料的屈服、断裂 是最值得引起注意的 两个问题,
SOLUTION (a) The modulus of elasticity is the slope of the elastic or initial linear portion of the stress–strain curve.
In as much as the line segment passes through the origin, it is convenient to take both 1 and 1 as zero. If 2 is arbitrarily taken as 150 MPa, then 2 will have a value of 0.0016. Therefore,
拉伸模量 MPa 820~930
2740~3460 650~2840 3140 1130~1380 2450~4120 3140~3240 2550
抗弯强度 MPa 24.5~39.2
60.0~87.4 24.8~93.0 89.8~117.5 41.4~55.2 69.2~110.4 98.0~108.0 98.0
材料性能断裂力学与断裂韧性

无限宽板中Griffith裂纹的能量平衡
断裂应力和裂纹尺寸的关系:
2 E c
1/
2
Griffith公式
因为
2
1/ 2
1
E
c
与 1/ 2
c
E
a
1/ 2
相似。
1
c
若取 c 104 a 则实际断裂强度只是理论
第三章 断裂力学与 断裂韧性
,
3.1 概述
断裂是一种最危险失效形式
按传统力学设计,工作应力σ‹许用应力[σ]为安全。
塑性材料[σ]=σS/n 脆性材料[σ]=σb/n 但是在σ《σS《σ-1情况下,也可产生断裂,所谓 低应力脆断现象,传统或经典的强度理论无法解释。
传统力学是把材料看成均匀的,没有缺陷的,没有 裂纹的理想固体,但实际的工程材料,在制备,加 工及使用过程中 ,都会产生各种宏观缺陷乃至宏观 裂纹,传统力学解决不了带裂纹构件的断裂问题。
值的1/100
3.2.3 Orowan的修正
Orowan公式
2E s a
8a
1/ 2
适用于当 8 a ,裂纹尖端塑性变形较大,控制着
裂纹的扩展时
当
8
a
时,就成为Griffith公式。
当 8 a时,用Griffith公式。
对金属材料:裂纹尖端由于应力集中的作用,局部
则R=2 S P
定义: G
u
2c
2c