材料成型基础大纲

材料成型基础大纲
材料成型基础大纲

材料成型基础考试知识点(模具塑工)

1、液态金属的结构

液态金属是由许多“原子集团”组成,其中原子呈与原固体“显微晶体”类似的规则排列。热运动剧烈,原子集团时散时聚,空位较多。

可将液态金属的结构总结为:“近程有序,远程无序”+“能量起伏、结构起伏、成分起伏”。

液态金属结构特点

1)液态金属是由游动的原子集团构成。

2)液态金属中的原子热运动强烈,原子所具有的能量各不相同,且瞬息万变,这种原子间能量的不均匀性,成为能量起伏。

3)由于液态原子处于能量起伏之中,原子团是时聚时散,时大时小,此起彼伏的,成为结构起伏。

4)对于多元素液态金属而言,同一种元素在不同原子团中的分布量不同,也随着原子的热运动瞬息万变,这种现象称为成分起伏。

2、液态金属的充形能力和流动性

1)充形能力:液态金属充满型腔,获得形状完整、轮廓清晰的铸件的能力。

2)流动性:液态金属本身的流动能力。

影响充形能力的因素:液态金属的流动性(金属)、铸型、浇筑条件、铸件结构。

3、铸件的凝固方式

金属或合金在铸型中凝固时,可以分为三个典型的区域:

1)液相区

2)固液两相区

3)固相区

三种凝固方式:逐层凝固、体积凝固、中间凝固

1)逐层凝固:铸件凝固过程中,液体和固体之前有明显的界限分开,液体

向固体转变。固体逐层加厚,这种方式称为逐层凝固。(纯金

属是典型的逐层凝固)

2)体积凝固:宽结晶温度范围的合金在凝固过程中,液体和固体之前的凝

固区域很宽,甚至贯穿铸件的整个断面,这种方式称为体积

凝固。

3)中间凝固:介于上两者之前的凝固方式。

影响凝固方式的因素:

1)结晶温度范围的影响:结晶温度范围增加,凝固由逐层凝固向体积凝固发展;

结晶范围范围剑侠,凝固由体积凝固向逐层凝固发展。 2)温度梯度的影响:温度梯度增加,凝固向逐层凝固发展;

温度梯度减小,凝固向体积凝固发展。

4、铸造合金的收缩

铸造合金从液态冷却到室温的过程中,其体积和尺寸缩减的现象称为收缩,他主要包括液态收缩、凝固收缩和固态收缩三个阶段。

1)液态收缩:金属在液态时由于温度降低而发生的体积收缩。

2)凝固收缩:熔融金属在凝固阶段的体积收缩。

液态收缩和凝固收缩是产生缩孔和缩松的基本原因。

3)固态收缩:金属在固态时由于温度降低而发生的体积收缩。

固态收缩对铸件的形状和尺寸精度影响很大,是铸造应力、变形和裂纹等缺陷产生的基本原因。

5、缩孔及缩松

1)缩孔:由于合金的收缩,在最后凝固部位出现的体积大而集中的孔洞称为缩孔。

2)缩松:由于合金的收缩,在最后凝固部位出现的细小而分散的孔洞称为缩松。

缩孔、缩松的防止措施

1)冒口、补贴和冷铁的应用

2)加压补缩

6、铸件的热裂和冷裂

1)热裂

在凝固结束阶段(高温段),在铸件中产生的裂纹称为热裂。

①热裂是铸件生产中最常见的铸造缺陷之一。

②裂纹沿晶粒边界发生和扩展,外形曲折而不规律,表面有氧化的颜色。

③热裂分为外裂和内裂

热裂的形状特征:裂纹短,缝隙宽,形状曲折,缝内呈氧化色。

2)冷裂

冷裂是铸件处于弹性状态,即在低温时,当应力大于抗拉强度时,形成冷裂。

①冷裂表面光滑,具有金属光泽或轻微氧化色。

②冷裂常出现在铸件受拉伸的部位,尤其是应力集中的地方。

③冷裂纹常常穿过晶界,外形规则。

冷裂的形状特征:裂纹细小,呈连续直线状,缝内有金属光泽或轻微氧化色。

7、偏析

在铸造条件下,想要获得成分完全均匀的铸件(锭)几乎是不可能的,这种化学成分的不均匀现象称为偏析。

偏析分为微观偏析和宏观偏析。

1)微观偏析

①胞状偏析

②晶界偏析

③枝晶偏析

2)宏观偏析

宏观偏析不是在晶粒尺度上的偏析,而是在整个铸件的宏观尺度上发生的成分不均匀现象。

8、气孔及气孔的形成

1)气孔的分类:析出性气孔与反应性气孔

2)气体在金属液中以三种方式存在:固溶、形成化合物和气泡(气孔)。

9、铸件凝固的三种典型组织

1)表面细晶区:当液体金属浇入铸型型腔时,铸件表面温度较低,铸件凝

固的温度梯度较大,有利于液态金属原子集团的形核与长

大,形成表面细晶区。

2)柱状晶区:表面细晶区形成以后,型腔表面温度升高,只有垂直于型壁方向的温度梯度较大,便于液态金属原子的形核与长大,垂

直于型壁方向生成柱状晶区。

3)内部等轴晶区:表面细晶区和柱状晶区形成以后,铸件内部温度梯度变

小,液态金属原子沿各方向自由生长,形成晶粒粗大的

等轴晶区。

10、砂型铸造:用型砂紧实成型的铸造方法称为砂型铸造。

砂型铸造是应用最广泛的一种铸造方法。

11、型砂:按一定比例配合的造型材料,经过混制成符合造型,造芯要求的混合

料。

组成型砂的基本物质:原砂、粘结剂、水和附加物混制而成。

12、铸造工艺对铸件结构的要求

1)铸件外形应便于取出模型

①避免外侧侧凹

②应尽量使分型面平直

③改进妨碍起模的凸台,凸缘和肋条的结构。

2)应使铸件尽可能不用或少用型芯,并有利于型芯的固定和排气

3)铸件要有结构斜度

13、合金的铸造性对铸件结构的要求

1)铸件应有合理的壁厚

2)铸件壁厚应力求均匀

3)铸件的转角应采用圆角联接

4)尽量增设防裂筋

5)铸件结构应注意缓解收缩压力

14、浇注位置

对于铸件结构中有两个或三个甚至更多个壁相连的情况,可采用交错街头或环形接头的形式。

1)分型面:为了将已成型的铸件从模具型腔内取出来,把铸型组元间的接合面成为分型面。

2)分型负数:为了保证铸件尺寸精确,在拟定工艺时,为抵消铸件在分型

面部位的增厚(垂直于分型面的方向),在模样上相应减去的

尺寸,成为分型负数。

3)起模斜度:为使模样容易从铸型中取出或型芯自型芯盒中脱出,平行于

起模方向在模样或型芯盒上的斜度称为起模斜度。

15、浇注系统

1)浇口杯:承受金属液,防飞溅外溢,分离熔渣,避免对型腔的直接冲击。

2)直浇道:提供充形压力,控制充形能力和流速。

3)横浇道:水平通道,梯形截面,起挡渣,分配流量的作用。

4)内浇道:在横浇道的下部,直接和型腔相连的部分,截面扁梯形,分配金属、控制充形速度。

浇筑系统的四种类型

根据浇注系统各单元截面的比例关系,浇筑系统可分为:封闭式、半封闭式、开放式、封闭开放式等四种类型。

根据金属液相对于铸件引入位置的不同,浇筑系统可分为:顶注式、底注式、中注式、阶梯式和垂直缝隙式。

16、冒口及其作用

冒口:在铸型内储存供补缩铸件用熔融金属的空腔,称为冒口,也指该空腔中充填的金属。

冒口的作用:

1)补给铸件凝固收缩所需的金属,避免产生缩孔。

2)有时也起排气和集渣作用。

17、冷铁及其作用

冷铁可分为内冷铁和外冷铁两种。

1)内冷铁:采用与铸件材质相同或相近的材料直接插入需要激冷处的型腔内,随后与浇筑金属熔接在一起,成为铸件壁的一部分。(内冷

铁大多用于厚大而又不十分重要的铸件,例如垫座、落锤等。

对于承受高温、高压的铸件不宜采用。)

2)外冷铁:只与铸件上被激冷部位表面相接触而不熔接,故用后可回收重复使用。

冷铁的作用:加速铸件壁厚部位的冷却,使其与邻近部位同时凝固,避免在热节处出现缩孔、缩松,当它与冒口配合使用时,可实现铸件的顺序凝

固和扩大冒口的有效补缩距离,从而消除铸件的缩孔、缩松缺陷。

18、粘结剂的分类(型(芯)砂的分类)

1)粘土砂 2)水玻璃砂

3)油砂和合脂砂 4)树脂砂

19、特种铸造

特种铸造的优点

1)铸件尺寸精确,表面光洁度好,更接近零件最后尺寸,从而易于实现少切削或无切削加工。

2)铸件内部质量好,力学性能高,铸件壁厚可以减薄。

3)降低金属消耗和铸件废品率。

4)简化生产工序,便于生产。

5)改善劳动条件,提高劳动生产率。

差压铸造

定义:液体金属在压力差的作用下,填充到预先有一定压力的铸型中,进行凝固而获得铸件的一种工艺方法。

优点:1)可获得更佳的充型速度。

2)铸件尺寸精确和表面粗糙度低。

3)铸件组织致密,力学性能高。

4)可以实现可控气氛浇筑。

缺点:设备较庞大,操作麻烦。

适用范围:差压铸造可用于砂型,金属型,石膏型,石墨型及壳型铸造的单件,小批量及批量生产中,并适用于铝合金,锌合金,铜合金,

铸铁及铸铜,特别是铝镁合金。

金属型铸造

定义:将定量的液态金属浇入金属型中,在重力作用下凝固而获得铸件的方法。

优点:1)生产效率高,劳动条件好。

2)金属型导热性和蓄热性高,铸件冷却速度快,组织致密。

3)工序简单,铸件质量和尺寸易于控制,其稳定性高。

4)具有较高的尺寸精度,减少了加工余量,材料消耗减少。

5)工序简化,易于实现生产的机械化和自动化。

缺点:1)模具结构复杂,成本高。

2)金属型激冷作用大,无退让性,无透气性,易出现冷隔、浇不足等缺陷。

3)不易生产过大和过薄的铸件。

4)铸造铸钢等高熔点合金是,金属型的寿命低。

适用范围:主要用于铝、铜、镁等有色合金铸件的大批量生产,也少量用于一些铸铁件的生产。

熔模铸造

定义:又称“失蜡铸造”,它是用可熔性材料(不限于石墨)制成尺寸精确,没有分模面的实体模样,在模样上涂挂数层耐火材料,经硬化,干燥

制成型壳,然后加热使模样熔失制得空心型壳,再经高温焙烧,然后

进行浇筑而得到铸件的一种成型方法。

基本特点:制壳时采用的可熔化的一次性模。

优点:1)铸件尺寸精确,表面光滑。

2)可铸造形状复杂的铸件。

3)不受合金材料的限制。

4)可以提高金属材料的利用率。

5)生产灵活性高,适应性强。

缺点:1)铸件尺寸不能太大。

2)工艺过程复杂,工序繁多,生产周期长。

3)铸件冷却速度慢,降低机械性能。

适用范围:主要适用于生产汽轮机,涡轮发动机等的各种叶片以及其他小型零件。目前其应用范围已扩大到航空、汽车、船舶、仪器、仪表

等制造工业中。

消失模铸造

定义及原理:消失模铸造的原理是用泡沫塑料模样(包括浇冒口)代替普通模样紧实造型,造好型后不取出模样就浇入金属液,在灼热液

态金属的热作用下,泡沫塑料气化、燃烧而消失,金属液取代

了原来泡沫塑料模所占的空间位置,冷却凝固后即可获得所需

要的铸件。

消失模铸造的三个典型区域

1)泡沫塑料模样的成形加工及组装部分,通常称为白区。

2)造型、浇注、清理及型砂处理部分,又称为黑区。

3)涂料的制备及模样上涂料、烘干部分,也称为黄区。

(消失模铸造的关键技术:包括制造泡沫模样的材料及模具技术、涂料技术、

多维振动紧实技术等。)

优点:1)生产效率高

2)铸件尺寸精度高

3)铸件质量好

4)工艺技术容易掌握,生产管理方便

5)投资少,生产线灵活,机械化程度高

6)减轻了劳动强度,改善了作业环境

消失模铸造缺陷(增碳)

缺点就是在热解过程中形成大量的游离碳,这些游离碳往往给铸件造成缺陷,其主要表现为铸铁件积碳,铸钢件增碳。

解决方法:1)提高涂料的润湿性和透气性,减少型腔内的气压。(气孔) 2)采用耐火度高的中性或弱碱性耐火骨料,并且尽可能少的添

加低熔点材料。(夹渣)

3)提高涂料的室温性能,严格控制烘干温度,提高涂料的抗高

温爆裂性。(夹涂料)

半固态铸造

定义:半固态金属成形技术,就是在金属凝固过程中,进行剧烈搅拌,或控

制固-液态温度区间,得到一种液态金属母液均匀地悬浮着一定固相

组分的固液混合浆料,(这种半固态金属浆料具有很好的流动性,易

于通过普通加工方法制成产品),采用这种既非完全液态,又非完全

固态的金属浆料加工成形的方法,称为半固态金属成形技术。

优点:1)应用范围广泛。

2)半固态金属充形平稳,成形温度低,凝固收缩小,因而铸件尺寸精度高。

3)半固态合金已释放了部分结晶潜热,因而减轻了对成形装置,尤其是模具的热冲击,使其寿命大幅度提高。

4)半固态金属成形件表面平整光滑,铸件内部组织致密,内部气孔、偏析等缺陷少,晶粒细小,力学性能高,可接近或达到变形材料的

力学性能。

5)应用半固态成形工艺可改善制备复合材料中非金属材料的漂浮,偏析以及与金属基体不润湿的技术难题,这为复合材料的制备和

成形提供了有利条件。

6)与固态金属模锻相比,半固态金属的流动应力显著降低,因此其模锻成形速度更高,而且可以成形十分复杂的零件。

7)节约能源。

半固态金属浆料和坯料制备

1)机械搅拌方法 2)电磁搅拌方法

3)应变激活方法 4)紊流效应方法

5)超声振动方法 6)单辊旋转方法

7)粉末冶金方法

半固态金属成形方法:

1)半固态金属的流变成形:

利用剧烈搅拌等方法制备出预定固相分数的半固态金属浆料,并将其直接送往成形设备进行铸造或锻造成形,这种成形过程称为半固态金

属的流变成形。

2)半固态金属的触变成形:

利用剧烈搅拌等方法制备出球状晶的半固态金属浆料,并凝固成锭坯或坯料分切成一定大小。将这种切分的固态坯料重新加热至固液两相

区,然后利用机械搬运将该半固态坯料送往成形设备进行铸造或锻造成

形,这种成形过程称为半固态金属的触变成形。

20、金属塑性成型

塑性成型的基本生产方式

1)轧制 2)挤压

3)拉拔 4)自由锻造

5)模锻 6)板料冲压

金属的可锻性:金属材料在压力加工时成形的难易程度。

自由锻造

定义:金属毛坯在上、下砧铁之间受力、变形的塑性加工方法。

自由锻零件的结构工艺性:

1)避免存在斜体或锥体

2)避免存在曲面

3)避免存在加强筋,凸台等结构

4)采用锻压和焊接组合的工艺

模锻

定义:利用模锻使金属毛坯受力,获得一定形状零件的塑性成型方法。

模锻零件的结构工艺性:

1)零件结构应该简单、平直、对称

2)零件应便于从模具中取出

3)避免存在加强筋,薄壁,凸台等复杂结构

4)尽量使用浅孔或少用孔结构

5)采用锻压和焊接的组合工艺

板料冲压

定义:利用冲模对金属板料施加压力,使其产生分离或变形获得所需零件的工艺方法。

冲裁模设计及冲裁工艺特点:

1)凹凸模要具有锋利的刃口

2)凹凸模间隙要合理

3)凹凸模刃口尺寸要正确

21、焊接

焊接

定义:以加热、高温或者高压的方式接合金属或其他热塑性材料(如塑料)的制造工艺及技术。

焊接的三种形式:熔焊、压力焊、钎焊

1)熔焊:两种物质通过加热到一定温度熔化,实现原子间界面结合的

一种连接成型方法。

2)压力焊:两种物质主要通过施加一定压力(可以加热或不加热)而

实现原子间界面结合的连接方法。

3)钎焊:通过引入低熔点钎料使两种母材金属焊接成型的方法。

焊接接头

焊接接头由焊缝区、熔合区和热影响区三部分组成,其性能取决于三部分中最薄弱的部分。

1)焊缝:焊缝是由母材金属和填充金属共同熔化而形成,主要组织形态是柱状晶,性能高于母材。

2)熔合区:由液态凝固获得的粗大等轴晶和固态热影响作用形成的粗大等轴晶组成,性能最差。

3)热影响区:受焊接热作用的影响,主要由粗大的等轴晶粒组成,性能视

情况而定。

焊接接头的形式

1)对接接头 2)盖板接头

2)搭接接头 4)T形接头

5)十字接头 6)卷边接头

金属的焊接性

是指在特定的焊接条件下,获得符合使用形状和力学性能要求的焊接接头的可靠性。

金属焊接性的评定

1)直接评定法:通过拉伸试验,耐腐蚀试验等测定焊接接头的可靠性

2)间接评定法:碳当量=Wc+Wmn/6+(Wcr+Wmo+Wk)/5+(Wcu+Wni)/15

焊缝布置的基本结构

1)焊缝布置应便于焊接操作

2)焊缝应该尽量少

3)焊缝应避免密集和交叉放置

4)焊缝应尽量避免大应力集中的部位

5)焊缝应尽量避免大的切削加工面

6)尽量使焊缝对称布置

焊接的两种具体工艺

埋弧焊

优点:1)生产效率高,焊丝的导电长度小,电流密度高,焊透率大。

2)焊接质量好,保护效果好,自动化程度高。

3)劳动条件好,劳动强度低,无弧光辐射。

4)节约,无焊条尾端,未熔化的焊剂可以重复使用

缺点:焊材料种类、结构尺寸和焊接位置等受限。

摩擦焊

优点:1)生产效率高

2)电能消耗少

3)焊接的质量好,消除了夹渣、气孔、缩松等缺陷

4)可焊接异种金属,如紫铜-不锈钢

缺点:1)靠工件的宣传实现,焊接非圆头截面比较困难

2)盘状工件及薄壁管件时,不易夹持

钨极气体保护焊 TIG焊

氩气或氦气保护电弧焊 MIG焊

氧化性气体保护焊 MAG焊

23、粉末冶金成型

粉末冶金

粉末冶金是一种制取金属粉末,以及采用成形和烧结工艺将金属粉末(或金属粉末与非金属粉末的混合物)制成材料或制品的工艺技术。

粉末冶金的优点

1)粉末冶金能生产用普通熔炼无法生产的具有特殊性能的材料

2)粉末冶金方法生产的某些材料与普通熔炼法相比,性能优越,可避免成分的偏析

粉末冶金的缺点

1)粉末成本高

2)粉末冶金制品的大小和形状受到一定限制

3)烧结零件的韧性较差

烧结

定义:压制成型后的粉状物料在低于熔点的高温作用下,通过坯体间颗粒相互粘结和物质传递,气孔排除,体积收缩,强度提高,逐渐变成具有

一定的几何形状和坚固整体的过程。

(烧结是将压坯按一定的规范加热到规定温度并保温一段时间,使压坯获得一定的物理及力学性能的工序。)

烧结分为固相烧结和液相烧结两类

1)固相烧结:粉体颗粒在固相状态下的烧结

2)液相烧结:粉体颗粒在有液相出现条件下的烧结

烧结的三个阶段

1)起始阶段(烧结初期)

烧结颈的形成,粉体颗粒由点接触变为面接触,形成烧结颈。在压制成型的粉体形状没有明显变化,但是导电性能明显增加。

2)烧结中期

烧结颈的长成,随着粉体颗粒原子不断向烧结颈部位扩散,烧结颈不断长大,样品的密度越来越大。

3)烧结后期

封闭孔隙的球化和缩小,孔隙由开放形式变为封闭形式,并逐渐变为球形,不断收缩使样品的致密度升高。

烧结的驱动力

1)表面自由能的降低

2)颗粒的晶格畸变能降低

《材料科学基础》复习提纲剖析

《材料科学基础》复习提纲 一、(共20分)名词解释(每个名词2分) 简单正交点阵、晶向族、无限固溶体、配位数、交滑移、大角度晶界、上坡(顺)扩散、形核功、回复、滑移系 底心正交点阵、晶面族、有限固溶体、致密度、攀移、小角度晶界、下坡(逆)扩散、形核率、再结晶、孪生 二、(共30分)简要回答下列问题 1、计算面心立方晶体的八面体间隙尺寸。 2、简述固溶体与中间相的区别。 3、已知两个不平行的晶面(h1k1l1)和(h2k2l2),求出其所属的晶带轴。 4、计算面心立方晶体{111}晶面的面密度。 5、简述刃型位错线方向、柏氏矢量方向、位错运动方向及晶体运动方向之间的关系。 6、简述刃型位错攀移的实质。 7、简述在外力的作用下,螺型位错的可能运动方式。 8、当碳原子和铁原子在相同温度的 -Fe中进行扩散时,为何碳原子的扩散系数大于铁原子的扩散系数? 9、简述单组元晶体材料凝固的一般过程。 10、如图,已知A、B、C三组元固态完全不互溶,成分为80%A、10%B、10%C的O 合金在冷却过程中将进行二相共晶反应和三相共晶反应,在二元共晶反应开始时,该合金液相成分(a点)为60%A、20%B、20%C,而三元共晶反应开始时的液相成分(E点)为50% A、10%B、40%C,写出图中I和P合金的室温平衡组织。 1、计算体心立方晶体的八面体间隙尺寸。 2、简述决定组元形成固溶体与中间相的因素。 3、已知二晶向[u1v1w1]和[u2v2 w2],求出由此二晶向所决定的晶面指数。· 4、计算体心立方晶体{110}晶面的面密度。 5、简述螺型位错线方向、柏氏矢量方向、位错运动方向及晶体运动方向之间的关系。 6、简述刃型位错滑移的实质。 7、简述在外力的作用下,刃型位错的可能运动方式。 8、当碳原子和铁原子在相同温度的a-Fe 中进行扩散时,为何碳原子的扩散系数大于铁原子的扩散系数? 9、简述纯金属凝固的基本条件。 10、如图,已知A、B、C三组元固态完全不互溶,成分为80%A、10%B、10%C的O合 金在冷却过程中将进行二相共晶反应和三相共晶反应,在二元共晶反应开始时,该合金液相成分(a点)为60%A、20%B、20%C,而三元共晶反应开始时的液相成分(E点)为 %、(A+B)%和(A+B+C)%的相对量。 50% A、10%B、40%C,试计算A 初

材料工程基础---教学大纲

材料工程基础》课程教学大纲 课程代码:050231021 课程英文名称:Fundamentals of Materials Engineering 课程总学时:40 讲课:40 实验:0 上机:0 适用专业:金属材料工程专业大纲编写(修订)时间:2017.7 一、大纲使用说明 (一)课程的地位及教学目标材料工程基础是金属材料工程专业学生必修的专业基础课,是学位课,是从事材料科学与工程专业技术领域人员必备的课程。 本课程主要讲授液态金属成形工艺、金属塑性成形工艺、金属连接成形工艺、粉末冶金成形、非金属材料成形工艺及各种材料成形工艺方法的选择原则。通过学习,使学生初步具备为不同零件的生产选择合理的制造方法的能力,为其他相关课程如工程材料学、热处理原理与工艺学以及从事新材料成形研究奠定必要的基础,同时使学生具有对典型的金属材料零件分析讨论使用不同的成形方法制造的能力。 通过本课程的学习,学生将达到以下要求: 1.掌握液态金属成形的工艺设计、浇注系统、冒口、冷铁等的设计基本原则;掌握顺序凝固的应用,同时凝固的应用;掌握砂型铸造、金属型铸造、压力铸造、离心铸造、熔模铸造、低压铸造等特种铸造方法的原理、特点和应用;了解3D 打印等先进成形技术; 2.掌握自由锻件图设计和模锻工艺;掌握板料冲压、挤压、拉拔、轧制等工艺特点和应用;了解超塑性成形、液态模锻等先进塑性成形工艺。 3.掌握金属连接成形原理和方法;掌握电弧焊、气焊、埋弧自动焊、气体保护电阻焊、等离子弧焊与切割、压力焊、钎焊等焊接工艺原理、特点及应用;了解焊接缺陷的检验方法;了解电子束焊接等现代焊接方法。 4.掌握粉末冶金成形工艺的方法、特点和应用。 5.掌握塑料、橡胶、陶瓷成形方法的特点和应用。 6.掌握各种材料成形工艺选用原则和方法。对具体典型的金属材料零件如暖气片、机床床身、大口径地下输水管、黄铜水龙头、发动机缸体、汽车铝轮毂、大型发电子转子、大批量齿轮毛坯、柴油机曲轴、连杆、半轴、硬币、汽车面板、火车钢轨、铜线、钢瓶、船体、硬质合金刀具、显示器壳体等分析讨论使用不同的成形方法制造的合理性。 7.了解国家相关政策,了解“一带一路”政策给材料成形带来的挑战以及机遇。 8.了解各种成形方法的设备。 9.了解各种新的材料成形方法。 (二)知识、能力及技能方面的基本要求 1.基本知识:掌握材料成形方法的一般知识,主要掌握金属材料成形的常用方法及特点。 2.基本理论及方法:掌握液态金属各种成形方法及工艺设计,浇注系统、冒口、冷铁的设计基本原则,掌握铸造缺陷及检验方法,掌握特种铸造方法的原理;掌握塑性成形方法的原理及工艺设计,锻件图设计,板料冲压、挤压、拉拔、轧制等工艺,掌握模型锻造的零件结构特点;掌握金属连接成形的方法及工艺设计,电弧焊、气焊、埋弧自动焊、气体保护电阻焊、等离子弧焊与切割、压力焊、钎焊等工艺,掌握焊接接头的组织和性能,掌握焊接缺陷及检验方法;掌握粉末冶金成形工艺的方法、特点和应用;掌握塑料、橡胶、陶瓷成形方法的特点和应用;

材料成型工艺

材料成型工艺 (Material Molding Process) 课程代码:(07310060) 学分:6 学时:90(其中:讲课学时78:实验学时:12) 先修课程:材料成型原理、金属学及热处理、机械设计基础 适用专业与培养计划:材料成型及控制工程专业2012年修订版培养计划 教材:《金属材料液态成型工艺》、贾志宏主编、化学工业出版社、第一版; 《金属材料焊接工艺》、雷玉成主编、化学工业出版社、第一版; 《冲压工艺与模具设计》、姜奎华主编、机械工业出版社、第一版开课学院:材料科学与工程学院 课程网站:(选填) 一、课程性质与教学目标 (一)课程性质与任务(需说明课程对人才培养方面的贡献) 《材料成型工艺》是材料成型及控制工程专业的主干课程之一。该课程主要任务是学习液态成型、塑性成型及焊接成型的工艺原理、方法、特点、质量影响因素及其规律、质量控制、适用范围等。学习过程中侧重于实际经验、工程技术及其理论知识的综合应用。通过系统学习,在掌握成型工艺过程基本规律及其物理本质的基础上,学生能够根据不同的零件需求,灵活选择和全面分析成型工艺、完成合理的工艺设计;同时,针对成型过程中出现的质量问题进行科学分析,找到解决措施,消除和减少工件质量缺陷; 本课程以数学、物理、化学、物理化学、力学、金属学与热处理、材料成型原理等作为理论基础,主要应用物理冶金、化学冶金、成形力学理论,系统阐述金属材料成型工艺过程的相关现象及其影响因素、规律、形成机制;同时,还汇总了大量的工程技术经验和实用技术。 通过本课程的学习,可以为材料成型工艺课程设计、金属综合性实验、毕业设计等后续课程学习奠定必要的基础知识。 (二)课程目标(需包括知识、能力与素质方面的内容,可以分项写,也可以合并写) 1. 掌握铸造成型、冲压成型和焊接成型工艺过程所涉及的主要物理原理; 2. 掌握各种成型方法的工艺特点及应用范围,能够根据实际产品需要选择高效、优质低成本的成型工艺方法;

材料成型工艺基础部分复习题答案

材料成型工艺基础(第三版)部分课后习题答案 第一章 ⑵.合金流动性决定于那些因素?合金流动性不好对铸件品质有何影响? 答:①合金的流动性是指合金本身在液态下的流动能力。决定于合金的化学成分、结晶特性、粘度、凝固温度围、浇注温度、浇注压力、金属型导热能力。 ②合金流动性不好铸件易产生浇不到、冷隔等缺陷,也是引起铸件气孔、夹渣、縮孔缺陷的间接原因。 ⑷.何谓合金的收縮?影响合金收縮的因素有哪些? 答:①合金在浇注、凝固直至冷却至室温的过程中体积和尺寸縮减的现象,称为收縮。 ②影响合金收縮的因素:化学成分、浇注温度、铸件结构和铸型条件。 ⑹.何谓同时凝则和定向凝则? 答:①同时凝则:将浇道开在薄壁处,在远离浇道的厚壁处出放置冷铁,薄壁处因被高温金属液加热而凝固缓慢,厚壁出则因被冷铁激冷而凝固加快,从而达到同时凝固。 ②定向凝则:在铸件可能出现縮孔的厚大部位安放冒口,使铸件远离冒口的部位最先凝固,靠近冒口的部位后凝固,冒口本身最后凝固。 第二章 ⑴.试从石墨的存在和影响分析灰铸铁的力学性能和其他性能特征。 答:石墨在灰铸铁中以片状形式存在,易引起应力集中。石墨数量越多,形态愈粗大、分布愈不均匀,对金属基体的割裂就愈严重。灰铸铁的抗拉强度低、塑性差,但有良好的吸震性、减摩性和低的缺口敏感性,且易于铸造和切削加工。石墨化不充分易产生白口,铸铁硬、脆,难以切削加工;石墨化过分,则形成粗大的石墨,铸铁的力学性能降低。 ⑵.影响铸铁中石墨化过程的主要因素是什么?相同化学成分的铸铁件的力学性能是否相同? 答:①主要因素:化学成分和冷却速度。 ②铸铁件的化学成分相同时铸铁的壁厚不同,其组织和性能也不同。在厚壁处冷却速度较慢,铸件易获得铁素体基体和粗大的石墨片,力学性能较差;而在薄壁处,冷却速度较快,铸件易获得硬而脆的白口组织或麻口组织。 ⑸.什么是孕育铸铁?它与普通灰铸铁有何区别?如何获得孕育铸铁? 答:①经孕育处理后的灰铸铁称为孕育铸铁。 ②孕育铸铁的强度、硬度显著提高,冷却速度对其组织和性能的影响小,因此铸件上厚大截面的性能较均匀;但铸铁塑性、韧性仍然很低。 ③原理:先熔炼出相当于白口或麻口组织的低碳、硅含量的高温铁液,然后向铁液中冲入少量细状或粉末状的孕育剂,孕育剂在铁液中形成大量弥散的石墨结晶核心,使石墨化骤然增强,从而得到细化晶粒珠光体和分布均匀的细片状石墨组织。 ⑻.为什么普通灰铸铁热处理效果没球墨铸铁好?普通灰铸铁常用热处理方法有哪些?目的是什 么? 答:①普通灰铸铁组织中粗大的石墨片对基体的破坏作用不能依靠热处理来消除或改进;而球墨铸铁的热处理可以改善其金属基体,以获得所需的组织和性能,故球墨铸铁性能好。 ②普通灰铸铁常用的热处理方法:时效处理,目的是消除应力,防止加工后变形;软化退火,目的是消除白口、降低硬度、改善切削加工性能。 第三章 ⑴.为什么制造蜡模多采用糊状蜡料加压成形,而较少采用蜡液浇铸成形?为什么脱蜡时水温不应达到沸点? 答:蜡模材料可用石蜡、硬脂酸等配成,在常用的蜡料中,石蜡和硬脂酸各占50%,其熔点为50℃~60℃,高熔点蜡料可加入塑料,制模时,将蜡料熔为糊状,目的除了使温度均匀外,对含填充料的蜡料还有防止沉淀的作用。

823材料科学基础考试大纲

823 材料科学基础考试大纲 一、考试目的 材料科学基础考试是南开大学材料科学与工程学院招收材料物理与化学、材料学、材料工程硕士研究生的入学资格考试之专业基础课。根据考生参加本考试的成绩和其他三门考试的成绩总分来选择参加第二轮,即复试的考生。 二、考试的性质与范围 本考试是测试考生掌握材料化学、材料物理专业知识以及综合运用的能力。考试范围包括本大纲规定的内容。 三、考试基本要求 1. 具备材料化学、材料物理相关的基础专业知识。 2. 具有扎实的基本功。 3. 具备一定的运用基础知识分析、解决实际问题的能力。 四、考试形式 本考试采取客观试题与主观试题相结合,单项技能测试与综合技能测试相结合的方法,强调考生掌握材料化学基础知识以及综合运用的能力。 考试时间为180分钟,答题方式为闭卷考试(可以使用数学计算器)。 五、考试内容 本考试包括两个部分:材料化学、材料物理。

一、材料化学部分 1、化学热力学 热力学第一、二、三定律及其应用;各种变化过程(单纯pVT变化过程、相变化过程和化学变化过程)的方向和限度的判别;相平衡体系和化学平衡体系中的应用;二组分体系相图的绘制及解析。 2、化学动力学 具有简单级数的反应的特点;反应级数及速率方程的确定;各种因素对反应速率及速率常数的影响;复合反应的近似处理方法及其应用;根据反应机理推导速率方程;化学动力学基本原理在气相反应、多相反应、溶液中反应、催化反应和光化学反应体系中的应用。 3、电化学 电解质溶液的导电能力—电导、电导率、摩尔电导率及其应用;可逆电池、可逆电极的能斯特公式及其应用;可逆电池的热力学;电池电动势的测定及其应用;极化与超电势及其应用;分解与分解电压;金属电沉积;不可逆电极过程的基本原理及其应用。 4、界面化学 表面自由能和表面张力;润湿现象与接触角;毛细管现象;新相的生成和亚稳定状态;固体表面的吸附及非均相催化反应。 5、无机化学中的化学原理 (1)掌握化学反应中的质量和能量关系; (2)了解酸碱理论,熟悉溶液中的单相与多相离子平衡,掌握弱酸、弱碱溶液中离子浓度、盐类水解和沉淀平衡的计算;

工程材料教学大纲教学基本目标课程涉及知识技能

《工程材料》教学大纲 一、教学基本目标 《工程材料》课程是高等院校机械类专业的一门必修的技术基础课,是机械设备设计合理选择材料和使用材料的基础。通过教学使学生: 1.了解工程材料的发展,了解非金属材料的分类及其应用,了解新材料、新工艺; 2.掌握机械工程材料的基本理论及基本知识,熟悉金属材料的分类及其应用;(毕业要求1-3) 3.熟悉铁碳相图、钢的热处理工艺、合金化等基本知识,掌握材料的成分、组织、性能之间的关系,具有分析机械工程材料性能的能力;(毕业要求1-3)4.能够根据机械零件使用条件和性能要求,对结构零件进行合理选材的能力;(毕业要求1-3) 5.能够根据机械零件使用条件和性能要求,制定结构零件热处理工艺的能力。(毕业要求1-3) 二、课程涉及知识技能 本课程通过课堂教学、实验、综合作业等综合教学环节,训练以下知识技能(毕业要求1-3): 1.掌握工程材料基本理论及基本知识,具备根据工业需求选择材料及制定热处理工艺的初步能力; 2.掌握铁碳相图和钢的合金化原理相关知识,具备分析材料、成份和组织和性能关系的能力; 3.掌握钢的热处理工艺、目的及其应用,具备根据材料的性能需求选择热

处理工艺的能力; 4.培养学生自主学习的能力和材料性能分析的工程意识; 5.通过材料金相试样制备及金相组织观察实验,具备分析材料成份、组织和性能关系的能力; 6.设计典型机械零件材料热处理工艺实验,具备分析不同热处理工艺对材料组织和性能影响能力。 三、相关能力培养 1.具有根据工业需求选择材料及制定热处理工艺的初步能力;(毕业要求1-3) 2.具有设计实验方案、进行实验、分析和解释数据的能力; 3.通过分组实验研究与讨论,培养学生具有团队意识和人际交流能力; 4.通过工程材料的选择与应用,培养学生工程设计的安全意识和社会责任感;(毕业要求1-3) 5.具有自主学习的能力。 四、教学基本内容 绪论 1. 了解材料的发展简史及工程材料研究的对象 2. 熟悉工程材料的分类 第 1 章材料的结构与性能 1. 掌握常见的纯金属晶体结构和合金的晶体结构 2. 掌握实际金属中的晶体缺陷 3. 熟悉金属材料的力学性能,了解金属材料的工艺性能和理化性能 4. 了解金属晶体中的晶面和晶向 5. 了解组织和性能的关系 第2章金属材料组织和性能的控制 1. 掌握纯金属的结晶过程 2. 掌握细晶强化的措施 3. 掌握匀晶相图、共晶相图、包晶相图和共析相图的分析 4. 掌握铁碳合金中的相和组织的概念,掌握相图中重要的点和线的含义,

《材料成形技术基础》习题集答案

填空题 1.常用毛坯的成形方法有铸造、、粉末冶金、、、非金属材料成形和快速成形. 2.根据成形学的观点,从物质的组织方式上,可把成形方式分为、、 . 1.非金属材料包括、、、三大类. 2.常用毛坯的成形方法有、、粉末冶金、、焊接、非金属材料成形和快速成形作业2 铸造工艺基础 2-1 判断题(正确的画O,错误的画×) 1.浇注温度是影响铸造合金充型能力和铸件质量的重要因素。提高浇注温度有利于获得形状完整、轮廓清晰、薄而复杂的铸件。因此,浇注温度越高越好。(×) 2.合金收缩经历三个阶段。其中,液态收缩和凝固收缩是铸件产生缩孔、缩松的基本原因,而固态收缩是铸件产生内应力、变形和裂纹的主要原因。(O) 3.结晶温度范围的大小对合金结晶过程有重要影响。铸造生产都希望采用结晶温度范围小的合金或共晶成分合金,原因是这些合金的流动性好,且易形成集中缩孔,从而可以通过设置冒口,将缩孔转移到冒口中,得到合格的铸件。(O) 4.为了防止铸件产生裂纹,在零件设计时,力求壁厚均匀;在合金成分上应严格限制钢和铸铁中的硫、磷含量;在工艺上应提高型砂及型芯砂的退让性。(O) 5.铸造合金的充型能力主要取决于合金的流动性、浇注条件和铸型性质。所以当合金的成分和铸件结构一定时;控制合金充型能力的唯一因素是浇注温度。(×) 6.铸造合金在冷却过程中产生的收缩分为液态收缩、凝固收缩和固态收缩。共晶成分合金由于在恒温下凝固,即开始凝固温度等于凝固终止温度,结晶温度范围为零。因此,共晶成分合金不产生凝固收缩,只产生液态收缩和固态收缩,具有很好的铸造性能。(×)7.气孔是气体在铸件内形成的孔洞。气孔不仅降低了铸件的力学性能,而且还降低了铸件的气密性。(O) 8.采用顺序凝固原则,可以防止铸件产生缩孔缺陷,但它也增加了造型的复杂程度,并耗费许多合金液体,同时增大了铸件产生变形、裂纹的倾向。(O) 2-2 选择题 1.为了防止铸件产生浇不足、冷隔等缺陷,可以采用的措施有(D)。 A.减弱铸型的冷却能力; B.增加铸型的直浇口高度; C.提高合金的浇注温度; D.A、B和C; E.A和C。 2.顺序凝固和同时凝固均有各自的优缺点。为保证铸件质量,通常顺序凝固适合于(D),而同时凝固适合于(B)。 A.吸气倾向大的铸造合金; B.产生变形和裂纹倾向大的铸造合金; C.流动性差的铸造合金; D.产生缩孔倾向大的铸造合金。 3.铸造应力过大将导致铸件产生变形或裂纹。消除铸件中残余应力的方法是(D);消除铸件中机械应力的方法是(C)。 A.采用同时凝固原则; B.提高型、芯砂的退让性; C.及时落砂; D.去应力退火。 4.合金的铸造性能主要是指合金的(B)、(C)和(G)。 A.充型能力;B.流动性;C.收缩;D.缩孔倾向;E.铸造应力;F.裂纹;G.偏析;H.气孔。

材料科学基础考试大纲

2018年硕士研究生招生考试大纲 考试科目名称:材料科学基础考试科目代码:875 一、考试要求 材料科学基础考试大纲适用于北京工业大学材料科学与工程学院(0805)材料科学与工程和(085204)材料工程(专业学位);激光工程研究院(0803)光学工程与(085202)光学工程(专业学位);以及固体微结构与性能研究所(0805)材料科学与工程学科的硕士研究生入学考试。此课程是材料科学与工程学科的重要基础理论课,是理解并学习各种材料其结构、加工工艺与性能之间联系的基础。材料科学基础的考试内容主要包括各类材料共性基础知识部分(原子结构与结合键、晶体结构、晶体缺陷、相图与相平衡、材料的凝固)、金属材料基础知识部分(金属晶体中位错、表面与界面、塑性变形与再结晶、金属晶体中扩散、固态相变、金属材料强韧化)和无机材料基础知识部分(无机材料化学键结构与晶体结构、无机材料的缺陷、无机材料的相图与相变过程、无机材料的基本制造加工原理、无机材料的机械性能、无机材料的光学和电学性能),要求考生对其中的基本概念和基础理论有深入的理解,系统掌握各类基本概念、理论及其计算和分析的方法,具有综合运用所学知识分析和解决材料科学与工程实际问题的能力。 二、考试内容 考试内容分为材料共性知识、金属材料基础知识和无机材料基础知识三大部分,总分150分。其中,材料共性知识部分所有学生均需作答,共105分;金属材料基础知识部分和无机材料基础知识部分考生需根据自己的专业背景二选一作答,不能混做,共45分。题型一般包括名词解释、填空、判断正误、问答、计算、分析题等。 (一)材料共性知识部分 1.原子结构与结合键 (1)熟练掌握电离能、电子亲和能、电负性、金属间化合物、电子化合物等概念,熟练掌握原子核外电子排布,理解光的波粒二象性、测不准原理、泡利不相容原理、洪特规则、能量最低原理、电子能带结构理论;

《机械工程材料》教学大纲

《机械工程材料》教学大纲 修订单位:机械工程学院材料工程系 执笔人:吕柏林 一、课程基本信息 1.课程中文名称:机械工程材料 2.课程英文名称:Mechanical Engineering Materials 3.适用专业:机械设计制造及其自动化 4.总学时:48学时 5.总学分:3学分 二、本课程在教学计划中的地位、作用和任务 机械工程材料课程是为机械类本科生开设的必修课,本课程的主要目的是使学生通过本课程的学习,掌握金属材料,非金属材料,材料热处理以及材料选用等方面的技术基础知识.本课程的任务是结合校内金工教学实习,使学生通过工程材料的基础知识,材料处理,材料选用基础的学习,获得常用机械工程材料方面的实践应用能力,也为进一步学习毛坯成型和零件加工知识以及其它有关课程及课程设计,制造工艺方面奠定必要的基础。 三、理论教学内容与教学基本要求 (一)教学基本要求: 1.熟悉工程材料的基本性能 2.掌握金属学的基础知识,包括金属的晶体结构,结晶,塑性变形与再结晶,二元合金的结构与结晶. 3.掌握运用铁碳合金相图,等温转变曲线,分析铁碳合金的组织与性能的关系. 4.熟悉各种常规热处理工艺以及材料的表面热处理技术. 5.掌握常用工程材料(包括高分子材料,陶瓷材料)的组织,性能,应用与选用原则.(二)理论教学内容 1.绪论(2学时) 课程的目的和任务 ;教学方法和教学环节 ;学习要求与方法 2.工程材料的机械性能(2学时) 强度,刚度,硬度,弹性,塑性,冲击韧性 3.金属的晶体结构和结晶(6学时) 常见的三种晶体结构 ;金属实际结构及晶体缺陷 ;金属的同素异构转变4.金属的塑性变形与再结晶(6学时)

材料成型及工艺基础考试题含答案.

《材料成形技术基础》考试样题答题页 (本卷共10页) 三、填空(每空0.5分,共26分) 1.( ) ( ) ( ) 2.( ) 3.( ) ( ) 4.( ) 5.( ) ( )6.( ) ( )7.( ) ( )8.( ) ( )9.( ) 10.( )11.( )12.( ) ( ) 13.( ) ( )14.( )15.( ) 16.( ) ( )17.( ) ( ) 18.( )19.( )20.( ) ( ) 21.( ) ( )22.( )23.( ) 24.( )25.( ) ( )26.( ) ( )27.( ) ( )28.( ) 29.( ) ( )30.( )31.( ) ( ) ( )32.( ) ( )

四、综合题(20分) 1、绘制图5的铸造工艺图(6分) 修 2、绘制图6的自由锻件图,并按顺序选择自由锻基本工序。(6分) 自由锻基本工序: 3、请修改图7--图10的焊接结构,并写出修改原因。 图7手弧焊钢板焊接结构(2分)图8手弧焊不同厚度钢板结构(2分) 修改原因:焊缝集中修改原因:不便于操作 图9钢管与圆钢的电阻对焊(2分)图10管子的钎焊(2分) 修改原因:修改原因:

《材料成形技术基础》考试样题 (本卷共10页) 注:答案一律写在答题页中规定位置上,写在其它处无效。 一、判断题(16分,每空0.5分。正确的画“O”,错误的画“×”) 1.过热度相同时,结晶温度范围大的合金比结晶温度范围小的合金流动性好。这是因为在结晶时,结晶温度范围大的合金中,尚未结晶的液态合金还有一定的流动能力。F 2.采用顺序凝固原则,可以防止铸件产生缩孔缺陷,但它也增加了造型的复杂程度,并耗费许多合金液体,同时增大了铸件产生变形、裂纹的倾向。T 3.HT100、HT150、HT200均为普通灰口铸铁,随着牌号的提高,C、Si含量增多,以减少片状石墨的数量,增加珠光体的数量。 4.缩孔和缩松都是铸件的缺陷,在生产中消除缩孔要比消除缩松容易。T 5.铸件铸造后产生弯曲变形,其原因是铸件的壁厚不均匀,铸件在整个收缩过程中,铸件各部分冷却速度不一致,收缩不一致,形成较大的热应力所至。T 6.影响铸件凝固方式的主要因素是合金的化学成分和铸件

土木工程材料教学大纲

《土木工程材料》课程教学大纲 一、课程的性质和学习目的 1、本课程的性质和任务 《土木工程材料》是土木工程专业的一门重要专业技术基础课, 是直接为土木工程实际问题服务的一门重要的学科。 《土木工程材料》是研究土木工程用材料结构、性能、标准及相互关系的一门科学,并且研究如何选用和组配复合材料。通过本课程的学习,使学生掌握各种材料内部组成、结构、技术性能、技术标准及其相互关系。培养学生合理选用和组配新型复合材料的能力。 2、课程的基本要求: (1)掌握砂石材料、水泥、水泥混凝土、沥青混合料的组成结构、技术性质及其关系;掌握矿质混合料、水泥混凝土、沥青混合料配合比设计; (2)熟悉石灰、沥青及钢材的组成结构、技术性质及技术要求; (3)了解各种外加剂的性能;了解部分新建筑材料的技术性能及发展趋向; (4)了解石灰、水泥凝结硬化原理;沥青混凝土强度理论;集料的级配理论;沥青乳化机理。 (5)了解土木工程中合成高分子材料的主要制品及应用、了解建筑功能材料的主要类型及特点。 3、本课程与其他课程的关系 在学习本课程之前, 应学完《数学》、《物理》、《化学》、《材料力学》、《工程地质》等课程,以便同学在学习本课程的过程中充分运用过去学过的知识。它是后续专业课的基础。二、本课程学习和考核的内容 绪论(2学时) 教学内容:土木工程材料发展概况,土木工程材料在土木工程建筑结构物中的作用,以及在经济发展中的意义;课程研究的对象和内容、要求和学习方法。 教学目标:了解土木工程材料在土木工程建筑结构物中的作用,以及在经济发展中的意义;明确本课程在本专业中的地位,了解本课程研究的对象和内容、要求和学习方法。 重点:土木工程材料在土木工程建筑结构物中的作用,土木工程材料的发展概况。 难点:土木工程材料在土木工程建筑结构物中的作用 (一)土木工程材料的基本性质(2学时) 教学内容:材料学的基本理论,材料的物理性质、力学性质、材料的耐久性。 教学目标:了解材料学的基本理论,掌握材料的物理性质、力学性质,掌握材料的物理—力学性质相互间的关系及在土木工程中的应用,掌握材料耐久性的基本概念。 重点:材料的物理—力学性质相互间的关系及在土木工程中的应用。 难点:材料的物理性质。 (二)天然石料(2学时) 教学内容:岩石的组成与分类、岩石的力学性能与测试方法、常用石料品种

(完整word版)材料成型工艺基础习题及答案

1.铸件在冷却过程中,若其固态收缩受到阻碍,铸件内部即将产生内应力。按内应力的产生原因,可分为应力和应力两种。 2.常用的特种铸造方法 有:、、、、和 等。 3.压力加工是使金属在外力作用下产生而获得毛 坯或零件的方法。 4.常用的焊接方法有、和 三大类。 5.影响充型能力的重要因素有、和 等。 6.压力加工的基本生产方式 有、、、、和等。 7.热应力的分布规律是:厚壁受应力,薄壁受 应力。 8.提高金属变形的温度,是改善金属可锻性的有效措施。但温度过高,必将产生、、和严重氧化等缺陷。所以应该严格 控制锻造温度。 9.板料分离工序中,使坯料按封闭的轮廓分离的工序称为; 使板料沿不封闭的轮廓分离的工序称为。 10.拉深件常见的缺陷是和。 11.板料冲压的基本工序分为和。前者指冲裁工序,后者包括、、和。 12.为防止弯裂,弯曲时应尽可能使弯曲造成的拉应力与坯料的纤维 方向。 13.拉深系数越,表明拉深时材料的变形程度越大。 14.将平板毛坯变成开口空心零件的工序称为。 15.熔焊时,焊接接头是由、、和 组成。其中和是焊接接头中最薄弱区域。 16.常用的塑性成形方法 有:、、、、 等。 16.电阻焊是利用电流通过焊件及接触处所产生的电阻热,将焊件局 部加热到塑性或融化状态,然后在压力作用下形成焊接接头的焊接方法。电阻焊分为焊、焊和焊三种型式。

其中适合于无气密性要求的焊件;适合于焊接有气密性要求的焊件;只适合于搭接接头;只适合于对接接头。 1.灰口铸铁的流动性好于铸钢。() 2.为了实现顺序凝固,可在铸件上某些厚大部位增设冷铁,对铸件进行补缩。() 3. 热应力使铸件的厚壁受拉伸,薄壁受压缩。() 4.缩孔是液态合金在冷凝过程中,其收缩所缩减的容积得不到补足,在铸件内部形成的孔洞。() 5.熔模铸造时,由于铸型没有分型面,故可生产出形状复杂的铸件。() 6.为便于造型时起出模型,铸件上应设计有结构斜度即拔模斜度。() 7.合金的液态收缩是铸件产生裂纹、变形的主要原因。() 8.在板料多次拉深时,拉深系数的取值应一次比一次小,即 m1>m2>m3…>mn。() 9.金属冷变形后,其强度、硬度、塑性、韧性均比变形前大为提高。() 10.提高金属变形时的温度,是改善金属可锻性的有效措施。因此,在保证金属不熔化的前提下,金属的始锻温度越高越好。()11.锻造只能改变金属坯料的形状而不能改变金属的力学性能。 () 12.由于低合金结构钢的合金含量不高,均具有较好的可焊性,故焊前无需预热。() 13.钢中的碳是对可焊性影响最大的因素,随着含碳量的增加,可焊性变好。() 14.用交流弧焊机焊接时,焊件接正极,焊条接负极的正接法常用于

西南交通大学 材料成型技术基础复习纲要

第一篇 金属铸造成形工艺 一.掌握铸造定义与实质及其合金的铸造性能。 A铸造:将熔融金属浇入铸型型腔, 经冷却凝固后获得所需铸件的方法。 B铸造实质:液态成形。 C合金:两种或两种以上的金属元素、或金属与非金属元素(碳)熔和在一起,所构成具有金属特性的物质。 D合金的铸造性能:是指合金在铸造过程中获得尺寸精确、结构完整的铸件的能力,流动性和收缩性是合金的主要铸造工艺特性。 二.掌握合金的充型能力及影响合金充型能力的因素。 A合金的充型能力:液态合金充满铸型,获得轮廓清晰、形状准确的铸件的能力。 B影响合金充型能力的因素: (1)铸型填充条件 a. 铸型材料; b. 铸型温度; c. 铸型中的气体 (2)浇注条件 a. 浇注温度(T) T 越高(有界限),充型能力越好。 b. 充型压力 流动方向上所受压力越大, 充型能力越好。 (3)铸件结构

结构越复杂,充型越困难。 三.掌握合金收缩经历的三个阶段及其铸造缺陷的产生。 A合金的收缩:合金从浇注、凝固、冷却到室温,体积 和尺寸缩小的现象。 B合金收缩的三个阶段: (1)液态收缩 合金从 T浇注→ T凝固开始 间的收缩。 (2)凝固收缩 合金从 T凝固开始→T凝固终止 间的收缩。 液态收缩和凝固收缩是形成铸件缩孔和缩松缺陷的基本原因。 (3)固态收缩(易产生铸造应力、变形、裂纹等。) 合金从 T凝固终止→T室 间的收缩。 四.了解形成铸造缺陷(缩孔,缩松)的主要原因及其防止措施。 A产生缩孔和缩松的主要原因:液态收缩 和 凝固收缩 导致。 B缩孔形成原因:收缩得不到及时补充; 缩松形成原因:糊状凝固,被树枝晶体分隔区域难以实现补缩。 C缩孔与缩松的预防: (1)定向凝固,控制铸件的凝固顺序; (2)合理确定铸件的浇注工艺 五.掌握铸件产生变形和裂纹的根本原因。 铸件产生变形和裂纹的根本原因:铸造内应力(残余内应力) 六.掌握预防热应力的基本途径。 预防热应力的基本途径:缩小铸件各部分的温差,使其均匀冷却。借助于冷铁使铸件实现同时凝固。

上海大学2018年硕士《材料科学基础》考试大纲

上海大学2018年硕士《材料科学基础》考试大纲复习要求: 要求考生掌握金属材料的结构、组织、性能方面的基本概念、基本原理;理解金属材料的结构、组织、性能之间的相互关系和基本变化规律。 二、主要复习内容: (一)晶体学基础 理解晶体与非晶体、晶体结构与空间点阵的差异;掌握晶面指数和晶向指数的标注方法和画法;掌握立方晶系晶面与晶向平行或垂直的判断;掌握立方晶系晶面族和晶向族的展开;掌握面心立方、体心立方、密排六方晶胞中原子数、配位数、紧密系数的计算方法;掌握面心立方和密排六方的堆垛方式的描述及其它们之间的差异。 重点:晶体中原子结构的空间概念及其解析描述(晶面和晶向指数)。 (二)固体材料的结构 掌握波尔理论和波动力学理论对原子核外电子的运动轨道的描述。掌握波粒两相性的基本方程。掌握离子键、共价键、金属键、分子键和氢键的结构差异。了解结合键与电子分布的关系和键合作用力的来源。掌握影响相结构的因素。了解不同固溶体的结构差异。 重点:一些重要类型固体材料的结构特点及其与性能的关系。 (三)晶体中的缺陷 掌握缺陷的类型;掌握点缺陷存在的必然性;掌握点缺陷对晶体性能的影响及其应用。理解位错的几何结构特点;掌握柏矢量的求法;掌握用位错的应变能进行位错运动趋势分析的方法。掌握位错与溶质原子的交互作用,掌握位错与位错的交互作用。掌握位错的运动形式。掌握位错反应的判断;了解弗兰克不全位错和肖克莱不全位错的形成。 重点:位错的基本概念和基本性质。 (四)固态中的扩散 理解固体中的扩散现象及其与原子运动的关系,掌握扩散第一定律和第二定律适用的场合及其对相应的扩散过程进行分析的方法。掌握几种重要的扩散机制适用的对象,了解柯肯达尔效应的意义。掌握温度和晶体结构对扩散的影响。 重点:扩散的基本知识及其在材料科学中的应用 (五)相图 掌握相律的描述和计算,及其对相平衡的解释;掌握二元合金中匀晶、共晶、包晶、共析、二次相析出等转变的图形、反应式;掌握二元典型合金的平衡结晶过程分析、冷却曲线;掌握二元合金中匀晶、共晶、共析、二次相析出的平衡相和平衡组织名称、相对量的计算;掌握铁-渗碳体相图及其典型合金的平衡冷却曲线分析、反应式、平衡相计算、平衡组织计算、组织示意图绘制;掌握简单三元合金的相平衡分析、冷却曲线分析、截面图分析;定性的掌握单相固溶体自由能的求解方法,掌握单相固溶体自由能表达式,掌握固溶体的自由能-成分曲线形式,掌握混合相自由能表达式,了解相平衡条件表达式,掌握相平衡的公切线法则。

材料工程基础教学大纲

材料工程基础教学大纲 课程编号: 课程名称:材料工程基础 英文名称:Fundamentals of Material Engineering 学时:32 学分:2 适用专业:材料化学 课程性质:限选 执笔人: 先修课程:无机化学、高等数学、化工原理 编写日期:2011年3月 修订日期:2012年3月

材料工程基础教学大纲 一、课程教学目标 材料工程基础课程是材料化学专业的一门学科基础课。围绕材料生产过程主要涉及到的工程理论,本课程主要介绍与之相关的基本理论和基础研究方法。通过本课程的学习,要使学生获得工程流体力学、传热与传质基础等方面的基本概念、基本理论和基本运算技能;掌握材料生产过程中相关的工程理论基本知识,具备一定的工程研究能力。 二、教学内容及基本要求 第一章流体力学基础 (1)了解流体的基本物理属性和流体的输送设备。 (2)理解流体静力学、流体动力学、流体流动及流动阻力的基本概念、特性和工程应用。 第二章两相运动现象 (1)了解两相与多相流的专用术语和基本特性参数。 (2)了解粒子-流体的相互作用、连续相方程、流体-固体两相流的数值模拟。 第三章传热学基础 (1)了解传导传热、对流传热、辐射传热、综合传热等基本概念。 (2)掌握温度梯度、热流量的概念,平壁导热、园筒壁导热的计算,影响对流换热的主要因素及对流换热过程的描述,发射率、角系数的概念,物体之间的辐射传热,强化和削弱传热过程的方法。 第四章质量传递基础 (1)了解传质基本概念、分子扩散传质、传质与化学反应。 (2)掌握对流传质中的浓度边界层与对流传质系数、对流传质准数方程。 第五章物料干燥 (1)了解固体物料的去湿方法、物料的干燥方法、湿空气状态的变化过程、水分在气-固两相间的平衡。 (2)掌握对流干燥、传导干燥、辐射干燥、场干燥技术。

材料成型及工艺基础考试题含答案

( . . , [ ' 《材料成形技术基础》考试样题答题页 (本卷共10页) 三、填空(每空分,共26分)

1.( ) ( ) ( ) 2.( ) 3.( ) ( ) 4.( ) 5.( ) < ( )6.( ) ( )7.( ) ( )8.( ) ( )9.( ) 10.( )11.( )12.( ) ( ) 13.( ) ( )14.( )15.( ) 16.( ) ( )17.( ) ( ) 18.( )19.( )20.( ) ( ) 21.( ) ( )22.( )23.( ) 24.( )25.( ) ( )26.( ) — ( )27.( ) ( )28.( ) 29.( ) ( )30.( )31.( ) ( ) ( )32.( ) ( ) 四、综合题(20分) 1、绘制图5的铸造工艺图(6分) 修 2、绘制图6的自由锻件图,并按顺 序选择自由锻基本工序。(6分) ·

自由锻基本工序: 3、请修改图7--图10的焊接结构,并写出修改原因。 、 图7手弧焊钢板焊接结构(2分)图8手弧焊不同厚度钢板结构(2分) 修改原因:焊缝集中修改原因:不便于操作 ~ 图9钢管与圆钢的电阻对焊(2分)图10管子的钎焊(2分) 修改原因:修改原因: 《材料成形技术基础》考试样题 (本卷共10页) 注:答案一律写在答题页中规定位置上,写在其它处无效。 一、判断题(16分,每空分。正确的画“O”,错误的画“×”) 1.( 结晶温度范围大的合金比结晶温度范围小的合2.过热度相同时,

金流动性好。这是因为在结晶时,结晶温度范围大的合金中,尚未结晶的液态合金还有一定的流动能力。F 3.采用顺序凝固原则,可以防止铸件产生缩孔缺陷,但它也增加了造型的复杂程度,并耗费许多合金液体,同时增大了铸件产生变形、裂纹的倾向。T 4.HT100、HT150、HT200均为普通灰口铸铁,随着牌号的提高,C、Si含量增多,以减少片状石墨的数量,增加珠光体的数量。 5.缩孔和缩松都是铸件的缺陷,在生产中消除缩孔要比消除缩松容易。T 6.铸件铸造后产生弯曲变形,其原因是铸件的壁厚不均匀,铸件在整个收缩过程中,铸件各部分冷却速度不一致,收缩不一致,形成较大的热应力所至。T 7.影响铸件凝固方式的主要因素是合金的化学成分和铸件的冷却速度。F 8.制定铸造工艺图时,铸件的重要表面应朝下或侧立,同时加工余量应大于其它表面。T 9.铸造应力包括热应力和机械应力,铸造应力使铸件厚壁或

材料成型技术基础知识点总结

第一章铸造 1.铸造:将液态金属在重力或外力作用下充填到型腔中,待其凝固冷却后,获得所需形状和尺寸的毛坯或零件的方法。 2.充型:溶化合金填充铸型的过程。 3.充型能力:液态合金充满型腔,形成轮廓清晰、形状和尺寸符合要求的优质铸件的能力。 4.充型能力的影响因素: 金属液本身的流动能力(合金流动性) 浇注条件:浇注温度、充型压力 铸型条件:铸型蓄热能力、铸型温度、铸型中的气体、铸件结构 流动性是熔融金属的流动能力,是液态金属固有的属性。 5.影响合金流动性的因素: (1)合金种类:与合金的熔点、导热率、合金液的粘度等物理性能有关。 (2)化学成份:纯金属和共晶成分的合金流动性最好; (3)杂质与含气量:杂质增加粘度,流动性下降;含气量少,流动性好。 6.金属的凝固方式: ①逐层凝固方式 ②体积凝固方式或称“糊状凝固方式”。 ③中间凝固方式 7.收缩:液态合金在凝固和冷却过程中,体积和尺寸减小的现象称为合金的收缩。 收缩能使铸件产生缩孔、缩松、裂纹、变形和内应力等缺陷。 8.合金的收缩可分为三个阶段:液态收缩、凝固收缩和固态收缩。 液态收缩和凝固收缩,通常以体积收缩率表示。液态收缩和凝固收缩是铸件产生缩孔、缩松缺陷的基本原因。 合金的固态收缩,通常用线收缩率来表示。固态收缩是铸件产生内应力、裂纹和变形等缺陷的主要原因。 9.影响收缩的因素 (1)化学成分:碳素钢随含碳量增加,凝固收缩增加,而固态收缩略减。 (2)浇注温度:浇注温度愈高,过热度愈大,合金的液态收缩增加。 (3)铸件结构:铸型中的铸件冷却时,因形状和尺寸不同,各部分的冷却速度不同,结果对铸件收缩产生阻碍。 (4)铸型和型芯对铸件的收缩也产生机械阻力 10.缩孔及缩松:铸件凝固结束后常常在某些部位出现孔洞,按照孔洞的大小和分布可分为缩孔和缩松。大而集中的孔洞称为缩孔,细小而分散的孔洞称为缩松。 缩孔的形成:主要出现在金属在恒温或很窄温度范围内结晶,铸件壁呈逐层凝固方式的条件下。 缩松的形成:主要出现在呈糊状凝固方式的合金中或断面较大的铸件壁中,是被树枝状晶体分隔开的液体区难以得到补缩所致。 合金的液态收缩和凝固收缩越大,浇注温度越高,铸件的壁越厚,缩孔的容积就越大。 缩松大多分布在铸件中心轴线处、热节处、冒口根部、内浇口附近或缩孔下方。

《工程材料》课程教学大纲

《工程材料》课程教学大纲 课程名称:工程材料课程代码:MEAU2012 英文名称:Engineering Materials 课程性质:大类基础课程(专业基础 学分/学时:2学分/36学时 必修课程) 开课学期:第4学期 适用专业:机械设计制造及其自动化、机械电子工程、工业设计等专业 先修课程:材料力学、物理化学、传热学、有机化学 后续课程:无 开课单位:机电工程学院课程负责人:陈长军 大纲执笔人:陈长军大纲审核人:倪俊芳 一、课程性质和教学目标(在人才培养中的地位与性质及主要内容,指明学生需掌握知识与能力及其应达到的水平) 课程性质:本课程是机械设计及其自动化、过程装备与控制工程、热能与动力工程、理论与应用力学专业的技术基础课程之一。使学生获得有关工程结构和机械零件常用的金属材料和非金属材料的基本理论和性能特点,并使其初步具备合理选择与使用材料、正确制定零件的冷热加工工艺路线的能力。 教学目标:工程材料为工程学基础课。作为工程技术人员,必须具有合理选择、正确使用材料的能力。因此,通过本课程的学习,使学生掌握必要的材料方面的基本理论,具有解决工程实践中关于如何选用材料、确定热处理方法、安排某零件的工艺路线等问题的能力。 本课程的具体教学目标如下: 1)掌握金属材料的成分、组织、性能之间的关系 2)了解强化材料的基本方法 3)初步掌握钢的热处理原理及基本工艺 4)熟悉钢的牌号、性能、用途,正确选用材料的基本原则

教学目标与毕业要求的对应关系: 二、课程教学内容及学时分配(含课程教学、自学、作业、讨论等内容和要求,指明重点内容和难点内容。重点内容:★;难点内容:?) 1、绪论(1学时) 目标及要求: 1)材料与社会经济发展的关系;工程材料及其分类; 2)课程目的、任务与学习方法;课程内容,了解课程的主要教学内容、学 习方法和主要参考资料。 讨论内容: 讨论材料与社会经济发展的关系 作业内容: 掌握材料的概念及其基本的分类。 2、第一章工程材料的性能(2学时) 1.1静载时材料的力学性能 1.2动载时材料的力学性能 1.3断裂韧性 目标及要求: 1)掌握材料的拉伸强度指标,硬度的表达方法; 2)了解材料的冲击韧度与疲劳强度; 3)了解材料的断裂韧性; 讨论内容:

材料成型工艺

问答题 1、吊车大钩可用铸造、锻造、切割加工等方法制造,哪一种方法制得的吊钩承载能力大?为什么? 2、什么是合金的流动性及充形能力,决定充形能力的主要因数是什么? 3、铸造应力产生的主要原因是什么?有何危害?消除铸造应力的方法有哪些? 4.试讨论什么是合金的流动性及充形能力? 5. 分别写出砂形铸造,熔模铸造的工艺流程图并分析各自的应用范围. 6.液态金属的凝固特点有那些,其和铸件的结构之间有何相联关系? 7.什么是合金的流动性及充形能力,提高充形能力的因素有那些? 8.熔模铸造、压力铸造与砂形铸造比较各有何特点?他们各有何应用局限性? 9.金属材料固态塑性成形和金属材料液态成形方法相比有何特点,二者各有何适用范围? 10. 缩孔与缩松对铸件质量有何影响?为何缩孔比缩松较容易防止? 11. 什么是定向凝固原则?什么是同时凝固原则?各需采用什么措施来实现?上述两种凝固原则各适用于哪种场合? 12. 手工造型、机器造型各有哪些优缺点?适用条件是什么? 13.从铁-渗碳体相图分析,什么合金成分具有较好的流动性?为什么? 14. 铸件的缩孔和缩松是怎么形成的?可采用什么措施防止? 15. 什么是顺序凝固方式和同时凝固方式?各适用于什么金属?其铸件结构有何特点? 16. 何谓冒口,其主要作用是什么?何谓激冷物,其主要作用是什么? 17. 何谓铸造?它有何特点? 18. 既然提高浇注温度可提高液态合金的充型能力,但为什么又要防止浇注温度过高? 19.金属材料的固态塑性成形为何不象液态成形那样有广泛的适应性? 20..冷变形和热变形各有何特点?它们的应用范围如何? 21. 提高金属材料可锻性最常用且行之有效的办法是什么?为何选择? 22. 金属板料塑性成形过程中是否会出现加工硬化现象?为什么? 23. 纤维组织是怎样形成的?它的存在有何利弊? 24.许多重要的工件为什么要在锻造过程中安排有镦粗工序? 25. 模锻时,如何合理确定分模面的位置? 26. 模锻与自由锻有何区别?

相关文档
最新文档