理想流体动力学
合集下载
流体力学4-理想流体动力学

下标1 下标1、2为同一流线 上的任意两点
理想流体动力 学
二、拉氏积分和伯氏积分不同点: 拉氏积分和伯氏积分不同点: (1) 应用条件不同。 1 应用条件不同。 拉格朗日积分只能用于无旋流运动, 拉格朗日积分只能用于无旋流运动, 伯努利积分既可用于无旋运动, 伯努利积分既可用于无旋运动,又 可用于有旋运动。 可用于有旋运动。 (2)常数C性质不同。 常数C性质不同。 拉格朗日积分中的常数在整个流场中不变 伯努利积分常数C 伯努利积分常数Cl只在同一根流线上不变
伯努利方程也表明重力作用下不可压缩理想流体 定常流动过程中单位重量流体所具有的位能、 定常流动过程中单位重量流体所具有的位能、动能和 压强势能可互相转化,但总机械能保持不变。 压强势能可互相转化,但总机械能保持不变。
理想流体动力 学
?讨论: 讨论:
实际流动中总水头线不是水平线, 实际流动中总水头线不是水平线,单位重量 流体的总机械能沿流线也不守恒, 为什么? 流体的总机械能沿流线也不守恒, 为什么?
流体的质量力只有重力, 流体的质量力只有重力, U=-gz p v p V ∂Φ z + + = − 或为 + = − gz + γ 2g
2
2
ρ
2
∂t
1 ∂Φ g ∂t
2.定常运动 2.定常运动
p V2 −U + + =C ρ 2
(通用常数) 通用常数)
3.对于理想、不可压缩流体、 3.对于理想、不可压缩流体、在重力作用 对于理想 下的定常无旋运动
理想流体动力 学
伯努力积分式
p
在重力场中U=-gz 在重力场中U=-gz
p V2 −U + + =C ρ 2
北航水力学 第四章理想流体动力学和恒定平面势流解读

z1
p1
u12 2g
z2
p2
u22 2g
4.2.2 由动能定理推导理想流体的伯努利方程
推导过程同学们自学
z1
p1
u12 2g
z2
p2
u22 2g
本公式是由动能定理推导而得,它使伯努利方程有更加明确的 物理意义,说明伯努利方程是一能量方程。
第三节 元流伯努利方程的意义和应用
4.3.1 沿流线的伯努利方程的水力学意义
可见,在同一流线上各点的流函数为一常数,故等流函数线就是流线。
2、平面内任意两点流函数值的差等于通过这两点连线的流量。
y ABdrBnA x
d r dxi dy j
n cos i sin j dy i dx j
dr dr V ui v j
dq V
ndr
u
dy dr
v
dx dr
等 线和等Ψ线,这两族曲线互相垂直,构
成流网。
两族曲线所构成的正交网络,称为流网
流网的特征:
流网
等 线和速度矢量垂直,或者说, 等 线与等Ψ线(流线)垂直,
【例题】
已知90度角域内无粘流动,速度分布
ux kx uy ky
(k 0, x 0, y 0)
求:(1)判断该流场是否存在速度势函数, 若存在请给出并画出等势线;
流动。但粘滞性对流动 的影响很微小时,影响可以忽略。 --机械能守恒
引入势流的意义:使问题简化。
波浪运动,无分离的边界层外部的流动,多孔介质的流动(渗流) 等等可以看为势流。
4.4.1 流速势函数
以二维流动为例,根据流体运动学,它与无旋流动等价
由 ux 0 无旋流的条件→涡量 z 0
第4章理想流体动力学

Q=0.036m3/s,水柱的来流速度V=30m/s,若被截取的流量
Q=0.012m3/s,试确定水柱作用在板上的合力R和水流的偏
转角
(略去水的重量及粘性)。 解:设水柱的周围均为大气压。由于不计重力,因此由伯努利方程可知
由连续方程
取封闭的控制面如图,并建立 坐标,设平板对射流柱的作用力为 (由于不考虑粘性,仅为压力)。由动量定理
<<
,
<<
以及与水箱A中流出的流量相比,从B中吸出的流量为小量。) 解:(1)在
及
的假定下,本题可看作小孔出流 由Torricelli定理
处为基准,对水箱 自由液面及最小截面
建立总流伯努利方程 其中
, 故 要使最小截面处压强
低于大气压即为负值必须使 由连续方程
得 故
得此时的条件应为 (2)若从水槽中吸出水时,需具备的条件为 或者 将 代入
时,
例如,当 则
【4.18】 如图,锅炉省煤气的进口处测得烟气负压 h1=10.5mmH2O,出口负压h2=20mmH2O。如炉外空气 ρ=1.2kg/m3,烟气的密度ρ'= 0.6 kg/m3,两测压断面高度 差H=5m,试求烟气通过省煤气的压强损失。 解:本题要应用非空气流以相对压强表示的伯努利方程形式。 由进口断面1至出口断面2列伯努利方程
即 或者 ,
由于 将上述不等式代入
得 【4.14】 如图,一消防水枪,向上倾角
水管直径D=150mm,压力表读数p=3m水柱高,喷嘴直径 d=75mm,求喷出流速,喷至最高点的高程及在最高点的 射流直径。 解:不计重力,对压力表截面1处至喷咀出口2处列伯努利方程
其中
得
式得
另外,由连续方程 得 上式代入
第7章_理想流体动力学基本方程

④列动量方程求解。
Fx p1A1 p2 A2 cos Rx Qv2x v1x
Fy p2 A2 sin Ry Q v2y v1y
Fx p1A1 p2 A2 cos Rx Qv2 cos v1
Fy p2 A2 sin Ry Qv2 sin 0
Rx p1A1 p2 A2 cos Qv2 cos v1
动量方程:反映了流体的动量变 化与外力之间的关系
粘性流体:实际流体都具有粘性。既有粘性切应力,又有法向压应力。
0
理想流体:理想流体可忽略粘性。即无粘性切应力,只有法向压应力。
0
粘性流体:
理想流体:
一、动量方程——流体的运动方程
1、积分形式的动量方程——流体的运动方程
质点系的动量定理:
系统的动量对时间的变化率等于作
第7章 理想流体动力学动量方程
粘性流体:实际流体都具有粘性,致使所研究的问题比较复杂。 理想流体:指粘性为零的流体,实际上并不存在,但在有些问题
中,粘性的影响很小,可以忽略不计,致使所研究的 问题简单化。 理想流体动力学规律可以应用于粘性的影响很小的实 际流体中,所以本章的研究具有实际意义。
主要内容
过流断面是均匀流或渐(缓)变流断面不可压缩流体
Fx Q(2v2x 1v1x ) Fy Q(2v2 y 1v1y ) Fz Q(2v2z 1v1z )
④当沿程有分流和汇流时:
Fx (3Q3v3x 2Q2v2x 1Q1v1x ) Fy (3Q3v3y 2Q2v2 y 1Q1v1y ) Fz (3Q3v3z 2Q2v2z 1Q1v1z )
对1-1,2-2断面列伯努利方程
p1 v12 p2 v22
g 2g g 2g
v1 1.42m / s v2 3.18m / s
理想流体动力学

∂ϕ ∂z
利用梯度的概念,可类推出 vl =
∂ϕ 。 (参加书上的推导方式) ∂l
2.存在势函数的流动一定是无旋流动 设某一流动,存在势函数 设某 流动,存在势函数 ϕ ( x, y, z, t ) ,其流动的角速度分量:
1 ∂ ∂ϕ 1 ∂ 2ϕ ∂ 2ϕ 1 ∂v y ∂vx ∂ ∂ϕ ωz = ( ) = [ ( ) − ( )] = ( − )=0 − 2 ∂x ∂y 2 ∂x ∂y ∂y ∂x 2 ∂x∂y ∂x∂y
这说明, 一点的速度矢量与过该点的等势面是垂直的, 又因为速度矢 量与流向平行 可推知流线与等势面是正交的 量与流向平行,可推知流线与等势面是正交的。
4.势函数是调和函数(满足拉普拉斯方程的函数称为调和函数) ,对 不可压缩流体,连续性方程为: 缩 连
∂v x ∂v y ∂v z + =0 + ∂x ∂y ∂z
从上所见,在不可压缩流体有势流动中,拉普拉斯方程实质是连续 性方程的一种特殊形式,这样把求解无旋流动的问题,转化为求解一定 边界条件下的拉普拉斯方程的问题。 Laplace l 方程是一个线性方程,其解具有可叠加性,如: 方程是 个线性方程 其解具有可叠加性 如 ϕ1 ,ϕ 2 是 方程的解,则ϕ1 + ϕ 2 也是方程的解。利用这一性质,分析研究一些简单 的势流 然后叠加可组成比较复杂的势流 的势流,然后叠加可组成比较复杂的势流。 三、流函数 在三维、理想、不可压缩无旋流动中,由于存在速度势函数ϕ ,而 使问题大为简化。 对于不可压缩流体的平面运动(有旋、无旋) 缩 体 平 动 有旋 无旋 ,还存在另一个表征 存在另 个 征 流动的函数—流函数。且不同的流函数数值代表不同的流线。如下图所 示:
将用势函数表示的速度分量:v x = 得:
第六章 理想流体动力学(2)

ρ
+
2
=
ρ
∞
+
∞
将圆柱面上的速度带入上式,可得圆柱面上的压强分布: 将圆柱面上的速度带入上式,可得圆柱面上的压强分布:
2 1 Γ 2 p = p∞ + ρ v∞ − −2v∞sinθ − 2 2π r0
9
2 1 Γ 2 p = p∞ + ρ v∞ − −2v∞sinθ − 2 2π r0
r02 ∂ϕ = v∞ 1 − 2 cosθ vr = ∂r r
2 r0 ∂ϕ Γ vθ = = −v∞ 1 + 2 sinθ − r ∂θ 2π r r
这说明,流体只有沿着圆周切线方向的速度,流体与圆柱体 这说明,流体只有沿着圆周切线方向的速度, 圆周切线方向的速度 没有分离现象,满足流体不能穿入和不能穿出的条件, 没有分离现象,满足流体不能穿入和不能穿出的条件,即圆 柱面的绕流条件。 柱面的绕流条件。
11
D = Fx = − ∫
2π
0
pr0 cosθ dθ
L = F柱表面压强表达式代入上式得: 将圆柱表面压强表达式代入上式得: 表面压强表达式代入上式得
2 2π 1 Γ 2 D = − ∫ p∞ + ρ v∞ − −2v∞ sinθ − r0 cosθ dθ = 0 0 2 2π r0
r0和 v∞ 不变的情况下,θ 分 只与 Γ 有关。 不变的情况下, 有关。
6
以下分三种情况讨论: 以下分三种情况讨论: 1、 当 Γ < 4πr0 v∞ 时, 、
sinθ < 1, sin(− θ ) = sin[- (π − θ )]
水力学 第四章 理想流体动力学和平面势流

§4-1 理想流体的运动微分方程—欧拉运动方程
6
3、欧拉运动微分方程和求解条件
运动微分方程组
u u u 1 p u x ux x u y x uz x x t x y z u y u y u y 1 p u y fy ux uy uz y t x y z 1 p u z u z u z u z fz ux uy uz z t x y z fx
§4-1 理想流体的运动微分方程—欧拉运动方程
14
4-1-2 葛罗米柯(又称兰姆)运动微分方程
矢量表示形式:
1 u2 u 2 2ω u f ρ p t
§4-1 理想流体的运动微分方程—欧拉运动方程
15
4-1-3 葛罗米柯运动微分方程的应用—伯努利方程 1、 伯努利方程的推导条件
2
对加速度在y及z的投影做同样处理,即可得到葛罗米柯运动 微分方程,如下:
1 p 1 u 2 u x fx 2ω y uz ωz u y ρ x 2 x t 1 p 1 u 2 u y fy 2ωz u x ωx uz ρ y 2 y t 1 p 1 u 2 uz fz 2ωx u y ω y u x ρ z 2 z t
1 上面三个式的矢量形式为 : f p du dt
上式为理想流体的运动微分方程,反映了在任意流体微元上单 位质量力、惯性力与压强的平衡关系。 适用范围:恒定流或非恒定流,可压缩流体或不可压缩流体。
§4-1 理想流体的运动微分方程—欧拉运动方程
4
2、欧拉运动微分方程
加速度表示式按欧拉运动描述展开为 du u u u dt t
6
3、欧拉运动微分方程和求解条件
运动微分方程组
u u u 1 p u x ux x u y x uz x x t x y z u y u y u y 1 p u y fy ux uy uz y t x y z 1 p u z u z u z u z fz ux uy uz z t x y z fx
§4-1 理想流体的运动微分方程—欧拉运动方程
14
4-1-2 葛罗米柯(又称兰姆)运动微分方程
矢量表示形式:
1 u2 u 2 2ω u f ρ p t
§4-1 理想流体的运动微分方程—欧拉运动方程
15
4-1-3 葛罗米柯运动微分方程的应用—伯努利方程 1、 伯努利方程的推导条件
2
对加速度在y及z的投影做同样处理,即可得到葛罗米柯运动 微分方程,如下:
1 p 1 u 2 u x fx 2ω y uz ωz u y ρ x 2 x t 1 p 1 u 2 u y fy 2ωz u x ωx uz ρ y 2 y t 1 p 1 u 2 uz fz 2ωx u y ω y u x ρ z 2 z t
1 上面三个式的矢量形式为 : f p du dt
上式为理想流体的运动微分方程,反映了在任意流体微元上单 位质量力、惯性力与压强的平衡关系。 适用范围:恒定流或非恒定流,可压缩流体或不可压缩流体。
§4-1 理想流体的运动微分方程—欧拉运动方程
4
2、欧拉运动微分方程
加速度表示式按欧拉运动描述展开为 du u u u dt t
清华大学流体力学课件-4-理想流体动力学.pdf

第四章 理想流体动力学
2017年春-本科生-流体力学
理想流体动力学
1
简介
理想流体是真实流体的一种近似模型,忽略粘性
0
Cv 0
m
Tij pij
理想流体(势流)
真实流体
2017年春-本科生-流体力学
理想流体动力学
2
基本内容
1. 理想流体运动的基本方程和初边值条件 2. 理想流体在势力场中运动的主要性质 3. 兰姆型方程和理想流体运动的几个积分 4. 理想不可压缩无旋流动问题的数学提法和主要性质 5. 理想不可压缩无旋流动速度势方程的基本解及叠加法 6. 不可压缩流体二维流动的流函数及其性质 7. 理想不可压缩流体平面无旋流动问题的复变函数方法
2 ) V (e
1 2
V
2)
f
V
1
TV q
qR
1
T
pijeie j Vkek pViei pV
2017年春-本科生-流体力学
理想流体动力学
4
§4.1 理想流体运动基本方程和初边值条件
V V
t
V V V 1 p f
t
t
Vj
x j
V j x j
Vi t
Vj
Vi x j
理想流体动力学
11
§4.1 理想流体运动基本方程和初边值条件
例:在原无界静止的理想匀质不可压缩流体中,有一圆球作均匀膨胀,
其物面方程为 R Rb (t)
无穷远处压力 p p ,不计质量力,
Rb (t)
求:球面上的压强分布。
R
V 0
V V V 1 p
t
t 0: V 0
R : V 0 p p R Rb (t) : VR Rb (t)
2017年春-本科生-流体力学
理想流体动力学
1
简介
理想流体是真实流体的一种近似模型,忽略粘性
0
Cv 0
m
Tij pij
理想流体(势流)
真实流体
2017年春-本科生-流体力学
理想流体动力学
2
基本内容
1. 理想流体运动的基本方程和初边值条件 2. 理想流体在势力场中运动的主要性质 3. 兰姆型方程和理想流体运动的几个积分 4. 理想不可压缩无旋流动问题的数学提法和主要性质 5. 理想不可压缩无旋流动速度势方程的基本解及叠加法 6. 不可压缩流体二维流动的流函数及其性质 7. 理想不可压缩流体平面无旋流动问题的复变函数方法
2 ) V (e
1 2
V
2)
f
V
1
TV q
qR
1
T
pijeie j Vkek pViei pV
2017年春-本科生-流体力学
理想流体动力学
4
§4.1 理想流体运动基本方程和初边值条件
V V
t
V V V 1 p f
t
t
Vj
x j
V j x j
Vi t
Vj
Vi x j
理想流体动力学
11
§4.1 理想流体运动基本方程和初边值条件
例:在原无界静止的理想匀质不可压缩流体中,有一圆球作均匀膨胀,
其物面方程为 R Rb (t)
无穷远处压力 p p ,不计质量力,
Rb (t)
求:球面上的压强分布。
R
V 0
V V V 1 p
t
t 0: V 0
R : V 0 p p R Rb (t) : VR Rb (t)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
特性1
证明:在流场中任取一流线
s
, y
则流线上任一点的速度与流
线相切。微元线段 矢量 d s 与
对应的速度矢量 v 之间的关系
式为
dx dy vx vy
流线微分方程
o
v s
ds dy
vy
dx
vx
x
v ydx vxdy 0 d 0
流函数值相等的点 可连成一条流线
证明了沿一条流线各点的流函数值相等。
q 2 1
特性3
证明:对于平面势流,有
z
1 ( v y 2 x
v x y
)
0
代入
x
v y
,
y
vx
得到 即
( ) ( ) 0
x x y y
2 2
x2 y2 0
例 3. 一平面恒定流动的流函数为 (x, y) 3x y
试求速度分布,写出通过 A(1,0)和 B(2, 3 ) 两点的流线方程,和两点之间连线的通过流量。
(
z
)
z
(
y
)]
0
类似可推出 y z 0
因此,存在速度势函数的流动必定无旋。
流动无旋的充分必要条件是流场有速度势函数存在。
特性3
等势面:速度势函数取相同值的点构成空间曲面, 即 Φ(x, y, z)=C
证明:在等势面上取一点O,并在该面上过O任
取一微元线段矢量 d L dxi dy j dz,k该点
特性2
设ψ1、ψ2是两条相邻流线,作其间一曲线AB,要 求证明通过AB两点间单位厚度的流量q=ψ2-ψ1。
证明: 取微元线段 d s ,过微元线段的速度为 v , 则单位厚度的微元流量dq的表达式为
dq v d s vxdy vydx d
通过线段AB的流量为
B
B
q
dq
A
d
A
B
A
s x
y
z
vx cos(s, x) v y cos(s, y) vz cos(s, z)
vs
势函数沿任意方向的导数值 等于该方向上的速度分量
特性2
证明:设对某一流动,存在势函数Φ(x, y, z),流动的
角速度分量
x
1 (vz 2 y
v y z
)
代入Φ(x, y, z),有
x
1[ 2 y
数Ψ(x, y)全微分的充分必要条件。
即 d v ydx vxdy
函数ψ的全微分为
d dx dy
x
y
比较两式,得到
x v y , y vx
函数Ψ(x, y)称为流函数。
流函数的特性
1. 沿同一流线流函数值为常数 2. 通过两条流线间单位厚度的流量等于两条流
线上的流函数的差值。 3. 在有势流动中流函数也是一调和函数
vx v y vz 0 x y z
对于有势流动
x v x , y v y , z v z
得到
2 2 2
x2 y 2 z 2 0
例1. 有一个速度大小为v(定值),沿x轴方向的均匀流动, 求它的速度势函数。
解: vx v v y vz 0
判断流动是否有势
x
1 ( vz 2 y
即 0
或 vz v y , vx vz , vx v y
y z z x y x
由数学分析知,上面三个微分方程式的存在正是
vxdx v ydy vzdz 成为某一函数Φ(x, y, z)
全微分的充分必要条件。
即 d v xdx v ydy v zdz
函数Φ的全微分为
d dx dy dz
解:
vx
y
1
vy 3
x
将A点坐标代入 (x, y) 3x y
得到 A 3 因此通过A点的流线方程为 3x y 3
同理得到 B 3
B点的流线方程依然为 3x y 3
y2
dx
x2
y
y2
dy
q
2
1 2
d(x2 y 2 x2 y2
)
q
2
ln
x2 y2
二、流函数
连续的平面流动存在流函数。应说明,空间三 维流动没有流函数
平面流动中,不可压缩流体的连续性方程为
vx v y 0 x y
或
vx v y x y
由数学分析知,上式正是 v ydx vxdy 成为某一函
速度势函数的特性
1. 势函数的方向导数等于速度在该方向上的投影 2. 存在势函数的流动一定是无旋流动 3. 等势面与流线正交 4. 不可压缩流体中势函数是调和函数
特性1
证明:任意曲线s上一点M(x, y, z)处速度分量分别
为vx、 vy 、 vz 。取势函数的方向导数
cos(s, x) cos(s, y) cos(s, z)
处速度 v vx i vy j vz k
v dL v xdx v ydy v zdz
dx dy dz
x
y
z
d
等势面上dΦ=0,得证。
特性4
调和函数: 满足拉普拉斯( Laplace )方程的函数。
Laplace
方程: 2 x2
2 y2
2 z 2
0
证明:不可压缩流体的连续性方程为
r:v q / 2 r (q 是正常数)。证明这一流动是有势
的,并求解势函数。
解:
vx
q cos 2 r
qx
2 r2
q
2
x x2 y2
vy
q sin 2 r
q
2
y r2
q
2
x2
y y2
z
1 ( v y 2 x
v x y
)
0
因此,流动无旋,即有势。
d
v xdx
v ydy
q
2
x2
x
v y z
)
0
z
1 ( v y 2 x
v x y
)
0 x
)
0
流动无旋,即有势, 有 d v xdx v ydy v zdz vdx
积分,得到 vx C
因常数C对Φ所代表的流场无影响,令C=0,
最后速度势函数为 vx
虚 线 为 等 势 线
例 2. 一平面恒定不可压缩流动的流线为通过原点的 向外发射的射线,速度大小 v 反比于这点到原心距离
x
y
z
比较两式,得到
x v x , y v y , z v z
函数Φ(x, y, z)称为速度势函数,无旋流动又称为有
势流动 。
当流动有势时,流体力学的问题将得到很大的简
化。不必直接求解三个速度分量,而只需要先求
出一个速度势函数Φ,从而可以得到速度分布vx、
vy 、 vz ,继而再 依据伯努利方程得到压强分布。
第七章 理想流体动力学
实际流体都粘性,在流体力学研究中,为 了简化问题,引进了理想流体这一假设的流体 模型,理想流体的粘度为0。
在实际分析中,如果流体粘度很小,且质点 间的相对速度又不大时,把这类流体看成是理 想流体。
第一节 速度势函数和流函数
一、速度势函数
在无旋流动中,每一点处的旋转角速度都为零,