两轮自平衡机器人
两轮自平衡机器人系统设计的开题报告

两轮自平衡机器人系统设计的开题报告一、选题背景和意义随着人们生活水平的提升和科技发展的不断推进,人们对于出行工具的需求也越来越高。
在城市中,出租车、地铁、公交和步行等方式已经无法满足人们的需求。
近年来,两轮自平衡机器人开始逐渐引起人们的关注,其速度快、灵活多变,可控性好,适用范围广,受到了越来越多人的青睐。
并且,在纯电动出行的趋势下,两轮自平衡机器人也成为了出行工具市场的主流之一。
本文将针对两轮自平衡机器人的设计,开展相关研究,从而提高其技术水平和实用性,为广大用户提供更好的出行工具选择。
二、研究内容和技术方案1.目标功能本研究的主要目标是设计并实现一款性能稳定、指令响应迅速的两轮自平衡机器人系统,以满足用户的需求。
2. 硬件设备为了实现两轮自平衡机器人系统的目标,需要精心挑选硬件设备。
本文使用的硬件设备如下:(1)电机:使用高品质的无刷直流电机,提高其转动效率和能量利用效率。
(2)传感器:系统内部集成一系列的传感器,包括陀螺仪、加速度计、地磁仪等传感器,这些传感器能够对机器人状态进行实时监测,从而保证机器人的稳定性。
(3)控制芯片:控制芯片是机器人系统的核心部件,采用高效率、高稳定性、高性能的控制芯片可以更有效地实现系统控制。
(4)电池:使用优质电池,可以大大延长机器人的使用时间和续航里程。
3. 系统设计两轮自平衡机器人的系统设计主要包括机器人控制系统、机械结构设计和电源管理系统等。
(1)机器人控制系统:机器人的控制系统需要实时监测机器人状态,并根据实时数据进行调整。
控制系统具有高精度、快速响应、可靠稳定等特点。
对于控制系统,可以采用PID控制算法,该算法比较成熟,能够有效地控制机器人。
在系统设计过程中,还需要进行参数优化和控制算法调整,以提高机器人的控制性能。
(2)机械结构设计:机械结构设计主要包括重心设计、扭矩和转动力矩分析等内容。
机械结构设计需要具有坚固耐用、稳定性好、抗震性能强等特点,同时还需要考虑机器人的人性化设计,更好地服务于用户。
两轮自平衡智能机器人的设计与制作

Course Education Research
课程的学时一般都是在 48 到 64 个学时之间遥由于工程管理在工 程项目施工组织方面上学习到的专业知识比房地产经营与估价
的学生要多一些袁因此他们的学时就相对少一些遥 那么在对于房 地产经营与估价的学生而言袁 他们就要充分补充在施工组织尧建 筑工程基础等方面的基础知识袁这样有助于学生了解工程项目管 理的系统管理方式袁进而更好地对房地产项目进行经营管理遥
三尧从实践教学及课程项目设计的角度上分析 目前的高职的教育方式就是提倡学生能自主学习袁 通过实 践教学增强学生的专业素养和专业技术遥而叶工程项目管理曳这个 课程的各个章节内容相对比较独立袁任务联系也不紧密袁因此在 教学的过程中存在一定的难度袁所以要进行分项目的案例教学模 式遥 那么这样的情况下可以采用多媒体的教学模式袁 利用信息 技术的资源和力量袁以模块案例教学的形式教学遥 并在课上多点 组织学生的互动袁让学生以小组的形式完成一些案例的分析和管 理袁提高学生的参与度和增强学生的学习积极性袁以培养学生的 独立思考能力和独自解决问题的习惯和能力遥学校应该以不同难 度的项目对学生进行综合训练袁让学生能学会主动去学习袁自己 解决困难袁积极思考超前学习遥 那么在以后工作的过程中遇到的 麻烦和困难就不会无从下手遥 四尧课程建设方面的几点意见 第一袁考核方案的改革 大部分的高职都存在考核方案有漏洞和缺点的问题袁 那么 为了改善学校的管理和教学袁 学校都会在这些问题上进行改革遥
. All Rights Res两erv轮ed自. 平衡智能机器人的设计与制作
田啸宇 陈 扬 张 婷
渊上海工程技术大学工程实训中心 上海 201620冤
揖摘要铱本文主要介绍了两轮自平衡机器人的设计系统方案遥 该方案以 K60 系列单片机作为系统控制处理器袁采用陀螺仪尧加速
两轮自平衡小车的设计毕业设计(论文)

本科毕业设计(论文)题目两轮自平衡小车的设计毕业设计(论文)原创性声明和使用授权说明原创性声明本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。
尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。
对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。
作者签名:日期:指导教师签名:日期:使用授权说明本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。
作者签名:日期:学位论文原创性声明本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。
除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。
对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。
本人完全意识到本声明的法律后果由本人承担。
作者签名:日期:年月日学位论文版权使用授权书本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。
本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。
涉密论文按学校规定处理。
作者签名:日期:年月日导师签名:日期:年月日注意事项1.设计(论文)的内容包括:1)封面(按教务处制定的标准封面格式制作)2)原创性声明3)中文摘要(300字左右)、关键词4)外文摘要、关键词5)目次页(附件不统一编入)6)论文主体部分:引言(或绪论)、正文、结论7)参考文献8)致谢9)附录(对论文支持必要时)2.论文字数要求:理工类设计(论文)正文字数不少于1万字(不包括图纸、程序清单等),文科类论文正文字数不少于1.2万字。
基于单片机的两轮自平衡车控制系统设计

基于单片机的两轮自平衡车控制系统设计摘要两轮自平衡车是一种高度不稳定的两轮机器人,就像传统的倒立摆一样,本质不稳定是两轮小车的特性,必须施加有效的控制手段才能使其稳定;本文提出了一种两轮自平衡小车的设计方案,采用重力加速度陀螺仪传感器MPU-6050检测小车姿态,使用互补滤波完成陀螺仪数据与加速度计数据的数据融合;系统选用STC公司的8位单片机STC12C5A60S2为主控制器,根据从传感器中获取的数据,经过PID 算法处理后,输出控制信号至电机驱动芯片TB6612FNG,以控制小车的两个电机,来使小车保持平衡状态;整个系统制作完成后,小车可以在无人干预的条件下实现自主平衡,并且在引入适量干扰的情况下小车能够自主调整并迅速恢复至稳定状态;通过蓝牙,还可以控制小车前进,后退,左右转;关键词:两轮自平衡小车加速度计陀螺仪数据融合滤波 PID算法Design of Control System of Two-Wheel Self-Balance Vehicle based onMicrocontrollerAbstractTwo-wheel self-balance vehicle is a kind of highly unstable two-wheel robot. The characteristic of two-wheel vehicle is the nature of the instability as traditional inverted pendulum, and effective control must be exerted if we need to make it stable. This paper presents a design scheme of two-wheel self-balance vehicle. We need using gravity accelerometergyroscope sensor MPU6050 for the inclination angle of vehicle, and using complementary filter for the data fusion of gyroscope and accelerometer. We choose an 8-bit microcontroller named STC12C5A60S2 from STC Company as main controller of the control system. The main controller output control signal, which is based on the data from the sensors, to the motor drive chip named TB6612FNG for controlling two motors of vehicle, and keeping the vehicle in balance. After the completion of the control system, the vehicle can achieve autonomous balance under the conditions of unmanned intervention, the vehicle can adjust automatically and restored to a stable state quickly in the case of giving appropriate interference as well. In addition, we can control the vehicle forward, backward and turn around. Key words: Two-Wheel Self-Balance Vehicle; Accelerometer; Gyroscope; Data fusion;Complementary filter; PID algorithm1 绪论自平衡小车的研究背景近几年来,随着电子技术的发展与进步,移动机器人的研究不断深入,成为目前机器人研究领域的一个重要组成部分,并且其应用领域日益广泛,其所需适应的环境和执行的任务也更复杂,这就对移动机器人提出了更高的要求;比如,户外移动机器人需要在凹凸不平的地面上行走,有时机器人所需要运行的地方比较狭窄等;如何解决机器人在这些环境中运行的问题,已成为现实应用中所需要面对的一个问题;两轮自平衡小车就是在这些的需求下所产生的;这种机器人相对于其他移动机器人的最显着特点是:采用了两轮共轴、各自独立驱动的方式工作,车身重心位于车轮轴上方,通过车轮的前后滚动来保持车身的动态平衡,并可以在直立平衡状态下完成前进、后退、左右转等任务;正是由于其特殊的构造,两轮自平衡小车适应地形变化的能力较强,且运动灵活,可以胜任一些复杂环境中的工作;两轮自平衡车自面世以来,一直受到世界各国机器人爱好者和研究者的关注,这不仅是因为两轮自平衡车具有独特的外形和结构,更重要的是因为其自身的本质不稳定性和非线性使它成为很好的验证控制理论和控制方法的平台,具有很高的研究价值;早在1987年,日本电信大学教授山藤一雄就提出了两轮自平衡机器人的概念;这个基本的概念就是用数字处理器来侦测平衡的改变,然后以平行的双轮来保持机器的平稳;本世纪初;美国发明家狄恩·卡门与他的DEKA公司研发出了可以用于载人的两轮自平衡车,并命名为赛格威,投入市场后,引发了自平衡车的流行;由于两轮自平衡车有着活动灵活,环境无害等优点,其被广泛应用于各类高规格社会活动中,目前该车已用于奥运会、世博会、机场、火车站等大型场合;自平衡小车研究意义由于两轮自平衡小车具有结构特殊、体积小、运动灵活、适应地形变化能力强、能够方便的实现零半径回转、适合在拥挤和危险的空间内活动、可以胜任一些复杂环境里的工作;因此两轮自平衡车有着广泛的应用前景,其典型应用包括代步工具、通勤车、空间探索、危险品运输、高科技玩具、控制理论测试平台等方面;目前自平衡车的应用如自平衡的代步车正在流行开来;因此两轮自平衡车的研究很有意义;论文的主要内容本论文主要叙述了基于单片机的两轮自平衡车控制系统的设计与实现的整个过程;主要内容为两轮自平衡小车的平衡原理,直立控制,蓝牙控制;整个内容分为六章,包括绪论、课题任务与关键技术、系统原理概述、系统硬件设计、系统软件设计和系统的机械安装及调试;第一章主要讲解了课题的研究背景及意义,国内外研究现状;第二章主要讲解了设计的主要任务与所需的关键技术;第三章主要讲解了两轮自平衡小车控制系统的直立控制原理,转向控制原理;第四章主要讲解了系统的硬件设计,介绍了自平衡小车控制系统的硬件构成,主控芯片STC12C5A60S2的结构及组成,以及稳压电源模块,倾角测量模块,直流电机驱动模块,蓝牙控制模块和两轮测速模块的设计;第五章主要讲解了软件设计的算法功能与框架,主要描述了控制系统的程序实现以及PID算法的使用;第六章主要讲解了系统的调试与参数整定;最后总结与展望,总结本设计的各个模块,并对两轮自平衡小车的优化方向进行简要的阐述;2 课题任务与关键技术主要任务本文研究并设计了一种基于单片机的两轮自平衡小车控制系统,实现了两轮小车的自主直立控制与蓝牙控制功能;系统采用STC12C5A60S2单片机作为核心控制单元,通过增加各种传感器,设计相应电路并编写相应程序完成平衡控制与蓝牙控制;系统需要利用加速度计和陀螺仪获得车体的倾角和角速度,并对数据进行互补滤波融合;通过编码器获得两轮的速度信息;根据获得的数据信息对速度和倾角进行闭环控制;加入蓝牙通信控制,将所有输出数据进行叠加,输出至驱动芯片,实现对小车的控制;关键技术系统设计两轮自平衡车的系统设计包括:车身机械结构设计,硬件系统设计和软件系统设计;在机械结构上必须保持小车重心的稳定性,才能避免控制系统过于复杂;硬件系统必须包含自平衡车所需的所有电子系统与电气设备;软件系统则负责车身平衡控制与目标效果的实现;数学建模模型的建立有助于控制器的设计,以及控制系统各项参数的大概确定;模型的建立主要使用牛顿力学定律;姿态检测两轮自平衡车是一个本质不平衡的系统,控制系统对小车的精确控制依赖于姿态检测系统对车身姿态及运动状态的精确检测;目前,一般采用由陀螺仪和加速度计等惯性传感器组成的姿态检测系统对车身倾角进行实时、准确的检测;但是由于惯性传感器自身固有的特性,随着温度、震动等外界变化,会产生不同程度的噪声与漂移,因此必须采用一些滤波算法,对加速度计和陀螺仪所采集的数据进行融合,使测量角度更加真实稳定;控制算法两轮自平衡车所实现的平衡是一种动态的平衡;在遇到外界干扰时,需要通过控制算法来快速将小车恢复至平衡状态;传统的PID算法在各类工业场合有着广泛的应用,完全可以满足本控制系统的要求,因此本控制系统设计采用PID控制算法;3 系统原理分析控制系统任务分解根据系统要求,小车必须能够在没有外界干预的情况下依靠两个同轴安装的车轮保持平衡,并完成前进,后退,左右转等动作;相对于四轮车,控制系统的任务更为复杂,为了能解决该问题,首先将复杂的问题分解成简单的几个问题进行讨论;对系统要求进行分析,可知维持小车直立,并在受到外界干扰后迅速恢复稳态,完全依赖于一对直流电机对车轮的驱动;因此本控制系统的设计可以从对电机的控制着手,控制电机的转速以及转向来实现对小车的控制;小车的控制任务可以分解成以下三个基本任务:(1)控制小车直立:通过控制两个电机的转向保持小车的直立状态;(2)控制小车车速:通过控制两个电机的转速实现车速控制;(3)控制小车转向:通过控制两个电机的转速差实现转向控制;以上三个任务都是通过控制小车两个车轮的驱动电机完成的;直流电机的控制最终取决于电机两端输入的电压大小,将电机近似认为处于线性状态,因此上述三个基本任务可以等效成三种不同控制目标的电压,将这三种电压进行叠加后,便可以得到最终所需的电压,并将其施加在电机上以达到所追求的控制效果;在这三个任务中,保持小车平衡是关键,三个任务执行的优先级为:平衡控制>速度控制>转向控制;由于小车同时受到三种控制的影响,从平衡控制角度来看,其他两个控制就成为了它的干扰;因此对小车速度、方向的控制应该尽量保持平滑,以减少对平衡控制的干扰;上述三种控制各自独立进行,它们各自假设其他两个控制都已经达到稳定;比如控制小车加速和减速的时候,平衡控制一直在起作用,它会自动改变小车的倾角,使小车实现加速和减速;控制原理生活中有很多直立控制的例子,例如一个正常人可以经过简单的练习,让一根直木棒在水平的掌心中保持直立;这需要两个条件:一是托着木棒的手掌可以移动;二是眼睛可以观察到木棒的倾斜角和倾斜趋势角加速度;可以通过手掌的移动抵消木棒的倾斜角度和趋势,从而保持木棒的直立;这两个条件缺一不可,这就是控制中的负反馈机制;单,因为小车有两个车轮着地,因此车体只会在一个平面内发生倾斜;控制车轮转动便可抵消倾斜的趋势从而保持车体直立;数学模型二轮自平衡小车在建模时可以将其简化为倒立摆,便于进行受力分析并建立其数学模型,从而更好的设计控制系统;图 单摆模型与倒立摆模型通过对单摆模型的观察可知,当物体离开平衡位置后会受到重力与线的合作用力,驱使重物回复至平衡位置,并进行周期运动,由于空气阻力的存在,单摆最终会停在平衡位置;可以得出,单摆保持平衡的条件有两点:(1) 受到与位移方向相反的回复力作用;(2) 受到和运动速度相反的阻尼力作用;如果没有阻尼力的作用,单摆会在平衡位置左右晃动无法停止,如果阻尼力过小,单摆会在平衡位置震荡,如果阻尼力过大,则单摆的回复时间将变长,因此存在一个临界阻尼系数,使得单摆停止在平衡位置所需时间最短;车体垂直,车车体向前倾车体向后倾斜,图 通过车轮控制车体平衡倒立摆在偏离平衡位置时,受到的合力与位移方向相同,因此倒立摆不能像单摆一样稳定在垂直位置,并且会加速偏离平衡位置直至倒下;为了让倒立摆能像单摆一样平衡在稳定位置,只能通过增加额外受力使回复力与位移方向相反;控制车轮做加速运动,以小车作为参考系,重心受到一个额外的惯性力,与车轮加速度大小相同,方向相反;因此倒立摆所受到的回复力为F =mgsinθ−macosθ 3-1根据控制系统的特性,角θ需要控制在很小的范围内,并且假设控制车轮加速度与角θ成正比,比例系数为k 1,因此上式可近似处理为F =mgθ−mk 1θ 3-2此时,只要k 1>g ,回复力的方向便和位移方向相反,此时小车可以恢复到平衡位置;为使小车能在平衡位置尽快的稳定下来,还需要有阻尼力,阻尼力与角速度方向相反,大小成正比;式3-2可变为 F =mgθ−mk 1θ−mk 2θ′ 图 小车受力分析mgsinθ−macosθmgθ m3-3式中,k1,k2均为比例系数,θ为小车倾角,θ′为角速度;只要满足k1>g,k2>0,便可以将小车维持在直立状态;k2是小车回到垂直位置的阻尼系数,选取合适的阻尼系数可以保证小车可以尽快稳定在垂直位置;因此为了控制小车稳定,需要精确的测量小车倾角θ的大小和角速度θ′的大小,并以此控制车轮的加速度;4 系统硬件设计本控制系统主要由以下几个模块组成:STC12C5A60S2单片机最小系统、电源管理模块、车身姿态感应模块、电机驱动模块、速度检测模块、蓝牙模块,各模块关系图如下所示:图硬件设计总体框图STC12C5A60S2单片机介绍本控制系统采用STC12C5A60S2单片机作为控制核心;该单片机是深圳宏晶科技有限公司的典型单片机产品,采用了增强型8051内核,片内集成了60KB程序Flash、1KB数据FlashEEPROM、1280字节RAM、2个16位定时/计数器、44根I/O口线、两个全双工异步串行口UART、高速同步通信端口SPI、8通道10位ADC、2通道PWM/可编程计数器阵列/捕获/比较单元PWM/PCA/CCU、MAX810专用复位电路和硬件看门狗等资源;STC12C5A60S2具有在系统可编程ISP功能和在系统调试ISD功能,可以省去价格较高的专门编程器,开发环境的搭建非常容易,并且该单片机所有指令和标准的8051内核完全兼容,具有良好的兼容性和很强的数据处理能力;STC12C5A60S2系列单片机的内部结构框图如下所示,该单片机中包含中央处理器CPU、程序存储器Flash、数据存储器SRAM、定时/计数器、UART 串口、串口2、I/O接口、高速A/D转换、SPI接口、PCA、看门狗及片内R/C振荡器和外部晶体振荡电路等模块;STC12C5A60S2单片机几乎包含了数据采集和控制中所需的所有单元模块,可称得上一个片上系统;图 STC12C5A60S2系列内部结构框图图单片机最小系统电源管理模块电源管理模块为整个硬件电路提供所需的电源,其稳定性是整个硬件电路可靠运行的基础;为了减少各个模块之间的相互干扰,电源模块由若干相互独立的稳压电路模块组成;整个系统由三节的18650锂电池串联供电;选择LM2596S作为稳压芯片,整个系统的供电模块如下图所示;图系统供电模块示意图LM2596S开关电压调节器是降压型电源管理单片集成电路,能够输出3A的驱动电流,同时具有很好的线性和负载调节特性;该器件内部集成频率补偿和固定频率发生器,开关频率为150KHz,与低频开关调节器相比较,可以使用更小规格的滤波元件;该器件还有其他一些特点:在特定的输入电压和输出载荷的条件下,输出电压的误差可以保证在±4%的范围内,振荡频率误差在±15%的范围内;可以用仅80uA的待机电流;可实现外部断电;具有自我保护电路;该器件完全可以满足系统需要;稳压电路原理图如下图所示;图稳压电路原理图车身姿态感应模块在第三章原理分析中可知,为了控制小车稳定,需要精确的测量小车倾角θ的大小和角速度θ′的大小,并以此控制车轮的加速度,以此消除小车的倾角;因此小车倾角以及倾角的角速度的测量成为了控制小车直立的关键;测量小车倾角和角速度可以通过加速度传感器和陀螺仪实现;本控制系统的设计使用了整合性6轴运动处理组件,相较于多组件方案,免除了组合陀螺仪与加速器时的轴间差的问题,减少了大量的封装空间;MPU6050对陀螺仪和加速度计分别用了三个16位的ADC,将其测量的模拟量转化为可输出的数字量,和所有设备寄存器之间的通信采用400kHz 的I2C 接口;为了精确跟踪快速和慢速的运动,传感器的测量范围都是用户可控的,陀螺仪的可测范围为±250,±500,±1000,±2000°/秒dps,加速度计可测范围为±2,±4,±8,±16g;量程越大,测量精度越低;MPU6050实物及坐标轴示意图如下图所示;加速度计MPU6050的加速度计部分可以测量出各轴方向上的加速度,并经过AD 转换后可输出数字信号;加速度检测的基本原理如下图所示;++++X++X图 MPU6050实物图与对应坐标轴示意图 加速度检测的基本原理通过微机械加工技术在硅片上加工形成了一个机械悬臂;它与相邻的电极形成了两个电容;由于加速度使得机械悬臂与两个电极之间的距离发生了变化,从而改变了两个电容的参数;通过集成的开关电容放大电路测量电容参数的变化,形成了与加速度成正比的电压输出;只需要测量出一个轴上的加速度,便可计算出小车的倾角;如下图所示,设小车前进方向是小车直立时MPU6050的Y 轴正向;当小车前倾时,小车重心在Y 轴上所受的力便是重力在Y 轴上的分力,为mgsinθ,因此MPU6050在Y 轴上所获得的加速度为 gsinθ;似乎只需要获得加速度数据就可以获得小车的倾角,但在实际小车的运行过程中,由于小车本身的运动所产生的加速度会产生很大的干扰信号叠加在上述测量信号上,使得输出信号无法准确的反映小车的倾角,如下图所示;小车运动所产生的振动加速度使得输出电压在实际倾角电压附近波动,可以使用低通滤波将其过滤,但也会使得信号无法实时反映小车的倾角变化,从而影响对小车的控制,使得小车无法保持平衡;图 小车受力分析图 加速度计信号波动陀螺仪陀螺仪可以用来测量物体的旋转角速度,它利用了旋转坐标系中的物体会受到克里利奥力的原理,在器件中利用压电陶瓷做成振动单元;当器件旋转时会改变振动频率从而反映出物体旋转的角速度;将MPU6050安装在小车上时,可以测量出小车倾斜的角速度,将角速度信号进行积分便可得到小车的倾角;如下图所示;由于陀螺仪输出的是车模的角速度,不会受到车体振动的影响,因此该信号中的噪声很小,小车的倾角数据又是由所测角速度积分得来,进一步使信号变得平滑,从而使得角度信号更加稳定;但是在实际情况中,测量所得的角速度信号存在微小的误差,经过积分运算之后,会形成累计误差,并会随着时间的延长逐步增加,最终导致电路饱和,无法形成正确的角度信号;如下图所示;测t图 小车的角速度和角图 角度积分漂如上所述,加速度计对加速度很敏感,所获得的数据会由于小车的运动产生高频噪声;而陀螺仪所测得的数据受到车体振动影响很少,但是随着时间延长,容易存在积分漂移;因此可以使用互补滤波,使得这两个传感器正好能弥补相互的缺点;简而言之,互补滤波就是在短时间内采用陀螺仪得到的角度作为最优,定时对加速度转化而来的角度进行取平均值处理来校正陀螺仪所得到的角度;具体实现方法如下图所示;利用加速度计所获得的角度信息θg 与陀螺仪积分后的角度θ进行比较,将比较的误差信号经过比例T g 放大之后与陀螺仪输出的角速度信号叠加之后再进行积分;从上图的框图可以看出,对于加速度计给定的角度θg ,经过比例、积分环节之后产生的角度θ必然最终等于θg ;由于加速度计获得的角度信息不会存在积累误差,所以最终将输出角度θ中的积累误差消除了;加速度计所产生的角度信息θg 中会叠加很强的噪声信号;为了避免该噪声信号对于角度θ的影响,比例系数T g 应该非常小;这样,加速度的噪声图 互补滤波原理框图信号经过比例、积分后,在输出角度信息中就会变得很小;由于存在积分环节,所以无论T g多小,最终输出角度θ必然与加速度计测量的角度θg相等,但是这个调节过程会随着T g的减小而延长;为了避免输出角度θ跟着θg过长,可以采取以下两个方面的措施:(1)仔细调整陀螺仪的放大电路,使得它的零点偏置尽量接近于设定值,并且稳定;(2)在控制电路和程序运行的开始,尽量保持小车处于直立状态,这样一开始就使得输出角度θ和θg相等;此后,加速度计的输出只是消除积分的偏移,输出角度不会出现很大的偏差;电机驱动模块本控制系统采用了TB6612FNG作为直流电机驱动器件,该器件具有很高的集成度,同时能提供足够的输出能力,运行性能和能耗方面也具有优势,因此在集成化、小型化的电机控制系统中,它可以作为理想的电机驱动器件;TB6612FNG是东芝半导体公司生产的一款直流电机驱动器件,它具有大电流MOSFET-H桥结构,双通道电路输出,可同时驱动2个电机;该器件每通道输出最高的连续驱动电流,启动峰值电流达2A/连续脉冲/单脉冲;4种电机控制模式:正转/反转/制动/停止;PWM支持频率高达100kHz;待机状态;片内低压检测电路与热停机保护电路;工作温度:-20~85℃;SSOP24小型贴片封装;如上图所示,TB6612FNG 的主要引脚功能:AIN1/AIN2、BIN1/BIN2、PWMA/PWMB 为控制信号输入端;AO1/AO2、BO1/BO2为2路电机控制输出端;STBY 为正常工作/待机状态控制引脚;VM~15V 和VCC~分别为电机驱动电压输入和逻辑电平输入端;TB6612FNG 是基于MOSFET 的H 桥集成电路,其效率高于晶体管H 桥驱动器,并且外围电路简单,只需外接电源滤波电容就可以直接驱动电机,利于减小系统尺寸;对于PWM 信号,它支持高达100kHz 的频率;TB6612FNG 在本控制系统中的电路连接如下图所示;如上图所示,AIN1/AIN2,BIN1/BIN2以及STBY 连接直单片机的普通I/O 口,STBY 控制器件的工作状态,AIN1/AIN2和BIN1/BIN2的输入决定电机的正反转;单片机的PCA 模块产生PWM 输出作为电机转速的控制手段,连接至TB6612FNG 的PWMA/PWMB;电路采用耐压值25V 的10uF 电解电容和的电容进行电源滤波,使用功率MOSFET 对VM 和VCC 提供电源反接保护;TB6612FNG 图 TB6612FNG 芯片功能示意图图 TB6612FNG 电路连接示意图的逻辑真值表如下图所示;表1 TB6612FNG逻辑真值表输入输出H H H/L H L L制动L H H H L H反转L H L H L L制动H L H H H L正转H L L H L L制动L L H H OFF停止H/L H/L H/L L OFF待机速度检测模块本系统采用安华高公司的L15D11型光电编码器作为车速检测元件,其精度达到车轮每旋转一周,旋转编码器产生448个脉冲,可满足控制精度的要求;图光电编码器由于光电管器件直接输出数字脉冲信号,因此可以直接将这些脉冲信号连接到单片机的计数器或外部中断端口;编码器每个光电管输出两个脉冲信号,它们波形相同,相位相差90°;如果电机正转,第二个脉冲落后90°;如果电机反转,第二个脉冲超前90°;可以通过这个关系判断电机是否正反转,但是在实际电路中,只检测一路脉冲信号,通过该信号得到电机。
双轮平衡车的控制系统硬件设计方案小车机器人论文

摘要双轮自平衡车是一个高度不稳定两轮机器人,是一种多变量、非线性、绝对不稳定的系统,需要在完成平衡控制的同时实现直立行走等任务因其既有理论意义又有实用价值,双轮自平衡小车的研究在最近十年引起了大量机器人技术实验室的广泛关注。
本文主要介绍了双轮平衡车的控制系统硬件设计方案。
此方案采用ATmega328 作为核心控制器,在此基础上增加了各种接口电路板组成整个硬件系统,包括单片机最小系统,姿态检测模块,直流驱动电机控制模块,电源管理模块,测速编码模块,串口调试等模块。
对于姿态检测系统而言,单独使用陀螺仪或者加速度计,都不能提供有效而可靠的信息来保证车体的平衡。
所以采用一种简易互补滤波方法来融合陀螺仪和加速度计的输出信号,补偿陀螺仪的漂移误差和加速度计的动态误差,得到一个更优的倾角近似值。
本文先阐述了系统方案原理,再分别就各模块工作原理进行详细的介绍与分析,最终完成车模的制作和电路原理图以及1PCB 板的绘制。
最后根据调试情况对整个系统做了修改,基本达到设计要求。
关键词双轮自平衡车模块设计传感器AbstractTwo-wheeled self-balanced car is a highly unstable robots, it is a system with Multivariable, nonlinear and absolute instability, it needs to complete the balance control tasks such as walking upright because of both theoretical significance and practical value. Two-wheeled self-balanced car in the last decade has aroused widespread concern in the robotics laboratory.This paper describes the control system hardware design of the wheel balanced car.This program uses ATmega328 as the core controller,base on this increase of various interface circuit board to building the hardware system. Peripheral circuits including the smallest single-chip system, the gesture detection module, the DC drive motor control module, power management module, velocity encoding module and serial debugging module. For the posture monitoring system,the information solely depends on the gyroscope or the accelerometer couldn’t make sure the balance of vehide.So the signals from the gyroscope and accelerometer were integrated by a simple method of complementary filtering for an optimal angle to compensate the gyroscope drift error and the accelerometer dynamic error.This article first describes the principle of the system program,then described in detail each module how to working out, the final completion of car models produced and circuit schematics and the PCB drawing.In the end, according to debug the situation on the whole system changes, the hardware system basically reached the design requirements.Keywords two-wheeled self-balanced car modular design sensor目录前言 (1)第1章绪论 (2)1.1 设计的依据与意义 (2)1.2 国内外同类设计的概况综述 (3)1.3 设计要求与内容 (3)第2章总体硬件方案设计 (5)2.1 总体分析 (5)2.2 总体方案设计 (5)2.3 方案框图 (7)第3章单元模块设计 (8)3.1 姿态检测模块 (8)3.2 单片机控制单元模块电路 (14)3.3 电机驱动模块 (19)3.4 串行通信模块 (21)3.5 电源管理模块 (24)结论 (26)参考文献 (27)致谢 (28)附录 (29)前言自平衡车自动平衡运作原理主要是建立在一种被称为“动态稳定”(DynamicStabilization)的基本原理上,也就是车辆本身的自动平衡能力。
两轮自平衡机器人的LQR和PID实验

用以在线学习两足机器人的平衡控制的CTRNN和BPTT算法的即时实现:站立姿态实验摘要:为了学习机器人控制规则,本文描述了CTRNN算法和BPTT算法的即时实现实验的结果。
实验的目的是为了控制一个两足步行机器人模型在站立姿态下保持平衡。
机器人通过神经控制器控制其关节运动来补偿外界扰动的影响。
在机器人的即时电子单元中嵌入程序算法。
同时,文中详细介绍了在线学习的实现。
最后,实验结果的学习行为和控制性能证明了所提方法的可行性和效率。
1、介绍随着技术的发展,人们得以将来自人体或动物形体的启发应用于机器人制作。
因此,最新的仿人机器人是一种集成了高端机械技术与电子技术的复杂系统。
这些机器人具有完整的感知系统,能够进行人机交互,且能够在人们的日常生活环境中运动。
如何控制机器人在行走或站立时的平衡是控制仿人机器人的一大难题。
解决这一问题的一种方法是根据零力矩点理论设计控制器;另一种方法是利用仿生控制器,即具备适应能力,且能够通过训练获得所需反应的方法。
为了能够了解如何“正确”控制机器人保持平衡,利用诸如神经网络等仿生架构是一个很有希望的途径。
为此,人们在过去提出了几个基于神经元控制器的设想。
其中,Albus(1975)在1975年提出的小脑模型关节控制器(CMAC)设想在控制腿式机器人领域仍为人们所研究。
近期的研究主要涉及CMAC的建模及其泛化性能(Horvath&Szabo,2007),或是CMAC与其他诸如模糊逻辑(Su,Lee&Wang,2006),计算力矩控制(Lin&Chen,2007)等的联系。
CMAC 已被应用于控制两足步行机器人的平衡(Kun&Miller,1996)、鲁棒动态行走仿真(Lin&Chen,2007)及两足步行机器人实验(Sabourin&Bruneau,2005)等领域。
多年以来,循环神经网络(即动态神经网络)在复杂系统的控制领域被广泛研究(Marcua,Köppen-Seligerb,&Stücher,2008;Song&Tahk,2001)。
两轮平衡机器人系统控制方法探究

两轮平衡机器人系统控制方法探究作者:***来源:《今日自动化》2022年第03期[摘要]两轮平衡机器人的工作原理类似于倒立摆,控制器在自平衡和稳定中起着至关重要的作用。
文章介绍了一种两轮平衡机器人的设计。
文章的重点是使用线性二次调节器(LQR)控制器来控制两轮平衡机器人。
通过6轴传感器来进行互补滤波得到姿态信息,通过编码器得到机器人的速度信息。
两轮平衡机器人的控制采用LQR控制器,其中包含调节电机速度和旋转方向。
LQR控制建模基于线性运动方程,其中的运动学和电气参数通过实验确定。
实验结果表明,LQR控制器能够很好地将两轮机器人保持在平衡状态。
[关键词]两轮平衡机器人;LQR控制器;互补滤波[中图分类号]TP242 [文献标志码]A [文章编号]2095–6487(2022)03–00–03Research on Control Method of Two-Wheel Balancing Robot SystemWang Yu[Abstract]The working principle of a two-wheeled balancing robot is similar to an inverted pendulum, and the controller plays a crucial role in self-balancing and stability. This paper presents the design of a two-wheeled balancing robot. The focus of the article is the use of a Linear Quadratic Regulator (LQR) controller to control a two-wheeled balancing robot. The attitude information is obtained by complementary filtering through the 6-axis sensor, and the speed information of the robot is obtained through the encoder. The control of the two-wheeled balancing robot adopts the LQR controller, which includes adjusting the motor speed and rotation direction. The LQR control modeling is based on linear equations of motion, where the kinematics and electrical parameters are determined experimentally. The experimental results show that the LQR controller can keep the two-wheeled robot in a balanced state well.[Keywords]two-wheeled balancing robot; LQR controller; complementary filtering如今,幫助人类工作的机器人技术发展迅速,出现了多种不同尺寸、形状和运动的机器人。
两轮自平衡机器人的LQR实时平衡控制

r o b o t w a s u p r i g h t d i f f e r e n t i a t e s f r o m t r a d i t i o n l a o f r ms f o r o b o t i c s .I n o r d e r t o b l a a n c e t h e s y s t e m, t h e L Q R c o n t r o l l e r
文章编号 : 1 0 0 1 — 9 9 4 4 ( 2 0 1 3 ) 0 5 — 0 0 0 5 — 0 5
两轮 自平衡 机 器 人 的 L Q R 实 时 平衡 控 制
张金 学 . 掌 明
( 淮海工学院 电子工程学院, 连 云港 2 2 2 0 0 5 )
摘要 : 两轮 平衡 机 器人 已经 成 为 能 够 为 日常机 器人 提 供 未 来运 动 方 式 的 一 个 研 究 领 域 。两
h a s b e e n d e s i g n e d u t i l i s i n g t h e d y n a mi c s mo d e l d e v e l o p e d f o r t h e b la a n c i n g r o b o t i n t h i s p a p e r . Th e p a p e r e x a mi n e s
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动 电 机 部 分 VIN 采 用 +12V 直 流 电 池 供 电 , 同 时 模 块 上 安 装 了 LM7805 稳压器对 vin 的输入进行稳压,逻辑部分 VCC 采用+5V 供电, 机 器 人 运 行 时 通 过 单 片 机 向 该 模 块 1、2、3、4 脚 输 入 控 制 信 息 来 控 制 机器人电机的转速,其原理图如图 3 所示。
科教前哨
Science & Technology Vision
科技视界
科技·探索·争鸣
两轮自平衡机器人
龚 瑞 袁维君 曾依莹 (西华大学电气与电子信息学院,四川 成都 610039)
【摘 要】针对于现在流行的两轮自平衡车 ,设计了一个与其原理相似的研究性两轮自平衡机器人系统。 该系统以瑞萨 RL78/G13 单片机 为主控制器,通过 MPU6050 陀螺仪采集加速度和角速度数据,采用软件滤波和四元素融合算法得到机器人姿态,最后利用 PID 控制算法计算 电机的 PWM 值以控制电机的合理转动,使机器人保持平衡和运行。
速度通过霍尔传感器测量,小磁铁固定在转盘上,转盘与电机轴 相连,同步转动,小磁铁通过霍尔传感器时,霍尔传感器产生一个相应
作 者 简 介 :龚 瑞 (1994.09.30 — ),男 ,汉 族 ,四 川 成 都 人 ,目 前 在 西 华 大 学 就 读 本 科 ,主 要 研 究 电 力 系 统 及 自 动 化 方 向 。
x,y,z 方向的分量(由此确定了旋转轴)。
四元数到欧拉角的转换
(13)
! " arctan 和 arcsin 的 结 果 是
-
π 2
,
π 2
,这并不能覆盖所有朝向(对
! " 于 θ 角
-π 2
,π 2
的 取 值 范 围 已 经 满 足 ), 因 此 需 要 用 atan2 来 代 替
arctan。
其中,Kp 为比例系数;T1 为积分时间常数;TD 为微分时间常数。 采 用 积 分 分 离 式 PID,当 被 控 量 与 设 定 值 偏 差 较 大 时 ,取 消 积 分
作用;当被控量接近给定值时,引入积分控制,以消除静差,提高精度。
代码如下:
float PID_realize(float Set_Speed,float Actual_Speed)
抽取代表性的蛋制品实验让学生进行实际操作, 占总成绩的 40%,在 考 核 的 过 程 中 有 专 门 的 教 师 进 行 一 对 一 审 核 ,监 考 教 师 从 学 生的操作方法、实验步骤、细节处理等多个角度进行评定打分,确保可 以实现对学生技能的综合考核。 3.3 平时考核
平时考核主要由上课出勤率、实验设计、实验过程中的表现和实 验报告完成情况决定,占总成绩的 20%。
3 完善考核制度
课程考核采用“学习过程+学习成果”的考评模式,通过知识、技 能、职业素养给学生综合评定 。 具体考核方式为理论考核 、专业技能考 核和平时考核。 3.1 理论考核
理论考核的方式采用传统的 笔 试 方 式 ,占 总 成 绩 的 40%,考 试 内 容分为基础知识和综合应用能力两大类。 题型布置多样化,难易题的 比例分配合理,充分考核学生对知识的理解和掌握能力。 3.2 专业技能考核
电源电路采用 5V 线性直流稳压电路。 由于 RL78 单片机电源电 压 1.6V-5.5V,因此采用 5V 电源电路供电。LM7805 集成稳压器是常用 的固定输出电压+5V 的集成稳压器,最大输出电流为 1.5A。 它的内部 含有限流保护、过热保护和过压保护电路,采用了噪声低、温度漂移小 的基准源,工作稳定可靠。
Science & Technology Vision 科技视界 93
科技·探索·争鸣
Science & Technology Vision
科技视界
科教前哨
图 3 直流电机驱动原理图
的脉冲,计算出两个连续脉冲的间隔时间,就可以计算出被测转速。 直 流 电 机 驱 动 电 路 采 用 了 L298N 双 H 桥 直 流 电 机 驱 动 芯 片 ,驱
高校科技
Science & Technology Vision
科技视界
科技·探索·争鸣
示,并在演示过程中指出学生在实践过程中应注意的问题,使复杂抽 象的理论问题简单化、具体化。 例如通过演示发酵蛋品饮料的发酵过 程,使学生对饮料的发酵控制能够产生深刻的认识,并在学生实践过 程中进行录像, 实践结束后通过演示和学生实践的录像进行对比,使 学生自己发现实践过程的问题并找出解决问题的正确方法,提高了教 学效果。 2.2.4 充分利用整合校外资源
运动处理传感器采用 MPU6050,它是全 球 首 例 9 轴 传 感 器 ,集 成 3 轴 MEMS 陀螺仪,3 轴 MEMS 加速度计, 以及一个可扩展 的 数 字 运 动 处 理 器 DMP,可 用 IIC 接 口 连 接 一 个 第 三 方 数 字 传 感 器 ,比 如 磁 力 计。 MPU6050 对陀螺仪和加速度计分别用了三个 16 位的 ADC,将其 测量的模拟量转化为可输出的数字量。 为了精确跟踪快速和慢速的 运 动 ,传 感 器 的 测 量 范 围 都 是 用 户 可 控 的 ,陀 螺 仪 可 测 范 围 为±250, ±500 ,±1000 ,±2000°/ 秒 (dps ), 加 速 度 计 可 测 范 围 为 ±2 ,±4 ,±8 ,±16g。
【关 键 词 】两 轮 平 衡 机 器 人 ;单 片 机 ;陀 螺 仪 ;四 元 数 融 合 ;PID
0 引言
2 平衡机器人力学模型
两轮自平衡机器人作为一种本征不稳定轮式移动机器人,具有多 变量、非线性、强耦合和参数不确定等特点,这使得它成为验证各种控 制算法的理想平台。 同时它运动灵活、结构简单,适于在狭小的空间工 作,有着广泛的应用前景。 两轮自平衡机器人能够完成多轮机器人无 法完成的复杂运动及操作,特别适用于工作环境变化大、任务复杂的 场合。 开展两轮自平衡机器人的研究对于提高我国在该领域的科研水 平、扩展机器人的应用背景等具有重要的理论及现实意义。
(8)
通过旋转轴和绕该轴旋转的角度可以构造一个四元数:
w=cos(α/2)
(9)
x=sin(α/2)cos(βx)
(10)
x=sin(α/2)cos(βy)
(11)
x=sin(α/2)cos(βz)
பைடு நூலகம்
(12)
其 中 ,α 是 绕 旋 转 轴 旋 转 的 角 度 ,cos(βx),cos(βy),cos(βz)为 旋 转 轴 在
(1)
·θ·RLJRL=GL+HTLR
(2)
其中,xRL 为水平位移;MRL 为左车轮质量;HL 为车身施加于车轮的
水 平 作 用 力 ;HTL 为 地 面 对 车 轮 的 水 平 作 用 力 ;θRL 为 左 轮 相 对 于 垂 直
分量的倾角;JRL 为左轮相对于 Z 轴转动惯量;GL 为左轮电机产生的扭
蛋制品加工技术在高职院校食品加工专业教学中占有重要地位。 随着教育观念和教学手段的发展,蛋制品加工技术课程在教学方式和 考核内容上都有了很大的进步。 但由于我国蛋制品加工技术尚不成 熟,在课程改革中仍有一些漏洞和难题 ,仍然需要不断的研究探索 。 因 此,发展蛋制品加工技术,坚持课程改革,更新和完善课程内容,对蛋
1 系统总体结构
两轮自平衡机器人主要由车身和左右两个驱动轮组成,两个驱动 轮的轴线位于同一条直线上,但由各自的电机独立驱动。 机器人倾斜 角度由姿态传感器检测, 速度检测系统由霍尔传感器和编码器组成, 为控制系统提供反馈信号。 两轮自平衡机器人平衡控制的基本思想 是:当测量倾斜角度的传感器检测到体产生倾斜时,控制系统根据测 得的倾角产生一个相应的力矩,通过控制电机驱动两个车轮向车身要 倒下的方向运动,以保持机器人自身的动态平衡。 系统主要由以下几 个模块组成:瑞萨 RL78/G13 单片机最小系统、电源模 块 硬 、姿 态 检 测 模块、电机驱动模块、速度检测模块,如图 1 所示。
4 系统软件设计
根据系统要求,需要完成的总体软件设计包括:单片机初始化,姿 态信息采集,速度检测,直流电机 PID 控制算法,系统软件流程如图 4 所示。
漂移十分严重。
四元数定义,即由四个元构成的数。 四元数既可以看作是四维空
间中的一个向量,又可看作一个超复数。
q=[w x y z]T
(7)
q 2=w2+x2+y2+z2=1
(15)
图 4 软件设计流程图
所谓姿态更新是指将运载体上惯性单元的输出,实时转换成运载 体的姿态。 这里的姿态通常指机体坐标系相对于导航坐标系的角位 置。
四元数算法通过加速度和角速度值融合计算得到航向角、俯仰角 和横滚角。 四元数算法计算量小,且算法简单,易于操作,是比较实用 的工程方法。 但其对有限转动引起的不可交换误差的补偿程度不够, 所以只适用于低动态运载体的姿态解算,对于高动态运载体,其算法
为了获得平衡机器人的平衡方程,需要分析其力学结构,平衡机
器人的主要构成是车身和左右两个车轮,影响平衡的参数有:重心、质
量、转动惯量、半径。 建立力学模型,如图 2 所示。
假设平衡机器人为刚体,左右两轮完全对称,并且忽略车轮与地