双轮直立自平衡机器人Sway研究报告
两轮自平衡小车实习报告

实习报告:两轮自平衡小车设计与实现一、实习背景及目的随着科技的发展,机器人技术在各领域中的应用越来越广泛。
两轮自平衡小车作为一种具有自平衡能力的新型轮式车,能够在工业生产、安防系统、智能家居、物流网等领域发挥重要作用。
本次实习旨在学习和掌握两轮自平衡小车的设计原理和技术,培养实际动手能力和创新能力。
二、实习内容与过程1. 理论研究在实习开始阶段,我们对两轮自平衡小车的基本原理进行了深入研究。
通过查阅相关资料,了解了两轮自平衡小车的运动学模型、控制算法以及硬件系统设计等方面的知识。
2. 硬件设计根据实习要求,我们设计了两轮自平衡小车的硬件系统。
主要包括STM32单片机、陀螺仪、蓝牙模块、电机驱动模块、电源管理模块等。
在设计过程中,我们充分考虑了系统的稳定性和可靠性,选择了合适的硬件组件,并完成了各模块之间的电路连接。
3. 软件设计在软件设计阶段,我们采用了PID控制算法,实现了直立控制、速度控制和方向控制等功能。
通过编写程序,使得两轮自平衡小车能够在一定时间内自助站立并保持平衡。
同时,利用蓝牙模块实现了手机APP远程控制功能,方便用户对小车进行操作和控制。
4. 系统调试与优化在系统调试阶段,我们通过对小车的实际运行情况进行观察和分析,不断调整PID 参数,优化控制策略,提高了小车的平衡控制精度和稳定性。
同时,针对小车在实际运行中可能遇到的各种问题,我们采取了相应的措施,保证了系统的可靠性和安全性。
三、实习成果与总结通过本次实习,我们成功设计和实现了两轮自平衡小车。
小车具备了自平衡能力,能够在不同地形环境中灵活运动。
同时,通过手机APP远程控制功能,用户可以方便地对小车进行操作和控制。
总结:本次实习让我们深入了解了两轮自平衡小车的设计原理和技术,锻炼了实际动手能力和创新能力。
通过实习,我们掌握了PID控制算法在实际控制系统中的应用,学会了如何优化系统参数,提高了系统的控制精度和稳定性。
同时,我们也认识到在实际设计和实现过程中,需要充分考虑系统的可靠性和安全性,以满足实际应用需求。
两轮智能平衡小车研究思路和方法

两轮智能平衡小车研究思路和方法两轮智能平衡小车是一种应用于机器人领域的新兴技术。
该车可以在不借助外力的情况下,保持平衡状态并完成各种运动任务。
本文将介绍两轮智能平衡小车研究的思路和方法。
一、研究思路两轮智能平衡小车的研究思路是将传感器、控制器和电机组成一个可控制的系统。
系统监测小车的姿态和运动状态,并调整车身的倾斜角度和转速,以保持平衡状态。
具体思路如下:1. 对小车的电路进行设计和搭建,包括底层硬件协议和数据传输协议。
2. 选择和安装传感器,包括加速度计和陀螺仪。
通过这些传感器来获取小车的姿态和运动状态的信息。
3. 设计小车的控制器,包括将传感器获取的数据转换成控制信号的代码。
4. 设计和调试小车的电机驱动程序,以保证控制信号能够按照设定的方式正确地操作电机,并实现车身的平衡控制。
5. 完成小车的充电和充电管理系统。
二、研究方法两轮智能平衡小车的研究方法主要可以分为以下几个阶段:1. 车载装置安装:选择合适的传感器并将其安装在小车上。
同时,需要在小车上安装电池和充电系统。
2. 传感器校准和参数优化:通过收集和分析传感器的数据,可以校准传感器的误差,并对传感器的参数进行优化,以提高控制精度。
3. 控制器设计:开发适用于平衡车的控制器,并对控制器进行验证。
在设计控制器时,需要将传感器输出的数据进行滤波处理,并设置控制参数,以实现正确的运动控制。
4. 电机驱动程序设计和测试:为小车设计驱动程序,使其能够实现平稳的平衡控制,并能够实现必要的运动步态。
同时,需要进行严格的测试和验证,以确保小车在运动时能够保持平衡。
5. 性能测试:通过对小车进行不同场景的测试,可以评估平衡车系统的性能。
测试时需要考虑不同的地形和环境条件,以评估平衡车的实际应用情况。
三、总结两轮智能平衡小车研究是一个复杂的系统工程,需要涉及机械结构、电子技术、传感技术、控制系统等多个领域。
在研究中需要充分利用各种工具和方法,规划研究方向和目标,设计测试方案和方法,以实现高效的研究和开发。
两轮机器人实验报告

机电综合实验报告两轮机器人姓名:付文晖班级:车辆工程二班学号: 20110402216同组成员:张彬 20110402203平梦浩 20110402103 2014年12月目录一、实验目的.................................................. - 2 -二、实验设备.................................................. - 2 -三、实验内容.................................................. - 2 -四、实验原理.................................................. - 2 -4.1、实验平台——C51+AVR 控制板........................... - 2 -4.2、开发平台——Keil μVision2........................... - 4 -4.3、开发辅助工具——USBASP程序下载器软件................ - 5 -4.4、机器人定速巡航与日字行走............................. - 6 -4.5、机器人触须导航....................................... - 7 -4.6、机器人红外导航....................................... - 8 -五、实验过程及结果........................................... - 10 -5.1、定速巡航与日字行走.................................. - 10 -5.1.1、直线向前行走.................................. - 10 -5.1.2、向左转1/4圈.................................. - 10 -5.1.3、向右转1/4圈.................................. - 10 -5.1.4、向后退........................................ - 11 -5.1.5、日字行走...................................... - 11 -5.2、触须导航............................................ - 13 -5.2.1、实验准备...................................... - 13 -5.2.2、安装胡须...................................... - 13 -5.2.3、测试胡须...................................... - 14 -5.2.4、触须导航程序.................................. - 14 -5.3、红外导航............................................ - 17 -5.3.1、搭建IR发射和探测器对......................... - 17 -5.3.2、为何要使用三极管9013 ......................... - 18 -5.3.3、测试红外发射探测器............................ - 18 -5.2.4、红外导航程序.................................. - 19 -六、实验心得................................................. - 22 -一、实验目的1、掌握两轮机器人的工作方式、触觉开关及红外导航的工作原理。
两轮自平衡机器人的研究共3篇

两轮自平衡机器人的研究共3篇两轮自平衡机器人的研究1两轮自平衡机器人的研究近年来,随着人工智能技术的不断发展,机器人正逐渐成为人类生活中的重要组成部分。
而作为机器人中的一种,两轮自平衡机器人的研究也日趋成熟。
本文将对两轮自平衡机器人的研究现状、原理、应用等方面进行介绍。
一、两轮自平衡机器人的研究现状两轮自平衡机器人可以追溯到20世纪80年代,当时研究者Christopher C. H. Kwan在其博士论文中首次提出了实现两轮自平衡的方法。
随着控制技术、电机技术、计算机技术等方面的发展,两轮自平衡机器人的研究也越来越广泛。
目前,两轮自平衡机器人的研究主要涉及控制策略、动力学建模、轨迹规划等方面。
控制策略是两轮自平衡机器人研究中的核心问题,目前主要有PID控制、模糊控制、神经网络控制等方法。
其中,PID控制是最基本的控制方法之一,能够实现较好的稳定性和鲁棒性。
而模糊控制则可以处理非线性系统和模棱两可的问题,有较好的实用价值。
神经网络控制则是利用神经元之间相互连接的方式,模拟人类大脑进行控制,有很高的容错性和自适应性。
动力学建模是对机器人的运动学和动力学模型进行建立,可以为控制策略的设计提供基础。
在两轮自平衡机器人研究中,采用的动力学模型主要有倒立摆模型和悬挂模型。
倒立摆模型是将两轮机器人抽象成一个质点和一个竖直平衡的杆,通过对杆的转动来实现机器人的前后倾斜。
悬挂模型则是将两轮机器人视为一根绳子和一个质点,通过调整绳子的张力来实现机器人的前后倾斜。
轨迹规划主要是将机器人的控制信号转化成轨迹点的位置和速度,以确保机器人能够按照指定的轨迹进行运动。
在两轮自平衡机器人研究中,轨迹规划的方法主要包括PID控制目标规划、工具函数法、动态规划等。
二、两轮自平衡机器人的原理两轮自平衡机器人的原理主要基于倒立摆理论,即通过控制机器人前后倾斜的角度,使机器人能够保持平衡。
两轮自平衡机器人的结构一般包括电机、减速器、编码器、惯性测量单元等部件。
两轮自平衡机器人自适应模糊神经网络控制研究的开题报告

两轮自平衡机器人自适应模糊神经网络控制研究的开题报告一、选题的背景和意义近年来,随着科技的不断发展,人们的生活方式也发生了很大的变化。
在交通工具方面,以往人们出门多依赖步行、自行车、摩托车和公共汽车等交通工具,但是现在,随着科技的更新换代,越来越多的人开始使用自平衡车进行出行。
自平衡车的出现,不仅解决了人们出行的问题,同时也大大提高了出行的舒适度和安全性。
因此,研究自平衡车的控制方法和技术,对于人们生活的提升意义重大。
本文主要研究的是两轮自平衡机器人的控制问题。
在控制方面,传统的PID控制器虽然可以完成对两轮自平衡机器人的控制,但是其对于外界环境的适应性和鲁棒性较差。
因此,本文将针对两轮自平衡机器人,利用自适应模糊神经网络(ANFIS)进行控制,以期得到更优秀的控制效果。
二、研究内容和方法本文的研究内容主要包括以下三个方面:1. 两轮自平衡机器人的建模:通过分析两轮自平衡机器人的物理特性和动力学特性,建立数学模型。
2. 自适应模糊神经网络:本文将利用自适应模糊神经网络进行控制,以提高控制系统对于外界环境的适应性和鲁棒性。
3. 控制器设计与仿真:在MATLAB 软件环境下,对控制器进行设计,并通过仿真实验进行控制效果的验证。
三、研究进度安排本文的研究进度安排如下:1. 第一周:详细了解两轮自平衡机器人的物理特性和动力学特性。
2. 第二周:根据了解的两轮自平衡机器人的物理特性和动力学特性,建立两轮自平衡机器人的数学模型。
3. 第三周:学习自适应模糊神经网络的理论知识,并了解 MATLAB 中自适应模糊神经网络的实现方法。
4. 第四周:利用 MATLAB 软件环境下的神经网络工具箱进行模型仿真。
5. 第五周:分析仿真结果,进行控制器参数的调整,并对控制器进行进一步的优化。
6. 第六周:进行控制器的实验验证,并分析实验结果。
7. 第七周:撰写论文,并进行文章的修改和完善。
四、预期成果本文的预期成果主要包括以下几个方面:1. 两轮自平衡机器人的数学模型:通过对两轮自平衡机器人的物理特性和动力学特性进行分析,建立数学模型。
两轮机器人自平衡研究

一、自平衡电动车 二、两轮自平衡机器人 三、加速度计 四、陀螺仪 五、两轮机器人姿态检测 六、卡尔曼滤波 七、两轮自平衡机器人发展前景
一、自平衡车电动车
自平衡电动车是一种电力驱动、 具有自我平衡能力的交通工具. 在社会飞速发展的今天,交通 拥堵也成了最终现象,一款时 尚的电动车,让您享受穿梭于 闹市的轻松与快乐.自平衡电 动车代替自行车和电动车作为 交通工具是时尚潮流的发展. 自平衡电动车的兴起,即将引 发一场新的交通革命.
五、两轮机器人姿态检测
两轮自平衡机器人所有的运动控制方式都以平衡控 制为前提.平衡控制是两轮自平衡机器人运动的关键. 两轮自平衡机器人在平衡控制的基础上,又对机器人 的轨迹跟踪控制进行了研究.提出了预测控制的轨迹 跟踪控制方法,对非完整轮式移动机器人的轨迹跟踪 问题进行了研究.预测控制在系统模型的基础上采用 先预测后控制,滚动优化,反馈校正的方式进行控制, 对位姿误差与轨迹误差进行估计,实现了对预定轨迹 的准确跟踪.
抽样卡尔曼滤波器UKF
为了确定机器人的平衡的运动姿态,设计了多惯性传 感器三轴姿态检测系统来测量机器人的三个轴向的 偏转角度与角速度.针对机器人不同位姿状态的动态 特性和非线性程度,在考虑了姿态检测系统的误差的 基础上,通过对低成本的惯性传感器的误差补偿,提出 了利用Unscented卡尔曼滤波UKF算法设计了基于四 元数的姿态估计器,得到了机器人姿态的最优估计,提 高了机器人控制的精度,实现了机器人的平衡姿态控 制与局部导航定位.
1、加速度计基本部件
加速度计由检测质量也称敏感质量、支承、电位器、 弹簧、阻尼器和壳体组成.检测质量受支承的约束只 能沿一条轴线移动,这个轴常称为输入轴或敏感轴.如 下图所示:
2、加速度计基本原理
双轮自平衡机器人行走伺服控制算法研究

双轮自平衡机器人行走伺服控制算法研究孙亮,王嶷然,于建均,阮晓钢(北京工业大学人工智能与机器人研究所, 北京 100022)摘要:为了解决双轮自平衡机器人行走伺服控制问题,本文设计了一种基于mamdani型模糊推理规则的模糊控制器。
并且使用这种模糊控制器在双轮自平衡机器人硬件平台上完成了两个实验。
一是以恒定倾斜角行走为控制目标的行走伺服控制,二是以恒定速率行走为控制目标的行走伺服控制。
实验结果表明,本文设计的模糊控制器可以很好的解决双轮自平衡机器人行走伺服控制问题。
关键词:双轮自平衡机器人;行走伺服控制;模糊控制中图分类号:TP 文献标识码:AThe Motion Servo Control Algorithm Research on Equilibrate Robot(Institution of Artificial Intelligence and Robot, Beijing Polytechnic University, Beijing100022, China)SUN Liang, WANG Yi-ran, RUAN Xiao-gangAbstract: In this paper, the dual wheel equilibrate robot motion servo control is our concern. We design the controller which uses the fuzzy mamdani reasoning rule table. Based on the controller mentioned above, we focus on the constant tilt angle and constant motion speed control. From the results of the experiments, the fuzzy controller shows a good dynamic performance.Key words: Dual Wheel Equilibrate Robot; Motion Servo Control; Fuzzy Control1 引言移动机器人学是机器人学的一个重要分支,主要研究在复杂环境下机器人系统的实时控制问题。
两轮自平衡机器人的研究

两轮自平衡机器人的研究一、本文概述随着科技的不断发展,机器人技术已成为当今科技领域的研究热点之一。
其中,两轮自平衡机器人作为一种具有高度自主性和稳定性的机器人,其研究和应用受到了广泛关注。
本文旨在深入探讨两轮自平衡机器人的基本原理、技术特点、控制方法以及在实际应用中的挑战与前景。
本文将简要介绍两轮自平衡机器人的发展历程和现状,分析其在不同领域的应用价值。
接着,重点阐述两轮自平衡机器人的关键技术,包括传感器技术、控制算法、动力学建模等方面。
在此基础上,本文将探讨如何设计和实现一种稳定、高效的两轮自平衡机器人,并分析其在实际应用中可能遇到的问题和挑战。
本文还将对两轮自平衡机器人的未来发展趋势进行展望,探讨其在智能交通、物流运输、娱乐休闲等领域的应用前景。
通过本文的研究,旨在为相关领域的研究人员和爱好者提供有益的参考和启示,推动两轮自平衡机器人技术的进一步发展和应用。
二、两轮自平衡机器人基础理论两轮自平衡机器人,又被称为双轮自稳定车或自平衡电动车,是一种新型的个人交通工具。
其设计灵感来源于倒立摆的原理,通过复杂的电子系统和精密的机械结构,实现了无人驾驶下的动态平衡和稳定行走。
在理解两轮自平衡机器人的工作原理之前,我们首先需要了解几个核心的理论基础。
动力学模型:两轮自平衡机器人的动力学模型是理解其运动行为的基础。
它通常被简化为一个倒立摆模型,其中机器人被视为一个质点,通过两个轮子与地面接触。
这个模型需要考虑重力、摩擦力、电机扭矩等因素,以及机器人的姿态(如俯仰角和偏航角)和速度。
控制理论:为了保持平衡,两轮自平衡机器人需要实时调整其姿态和速度。
这通常通过控制理论来实现,特别是线性控制和非线性控制理论。
例如,PID控制(比例-积分-微分控制)被广泛用于调整机器人的姿态和速度,而模糊控制、神经网络控制等先进控制方法也被应用于提高机器人的稳定性和适应性。
传感器技术:传感器是两轮自平衡机器人感知环境和自身状态的关键。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
双轮直立自平衡机器人Sway研究报告本设计采用两块Cygnal公司推出的C8051F005单片机分别作为“双轮直立自平衡机器人”(以下命名为Sway)和人机交互上位机的控制核心。
车体倾斜角度检测采用AD公司推出的双轴加速度传感器ADXL202及反射式红外线距离传感器。
利用PWM技术动态控制两台直流电机的转速。
上位机与机器人间的数据通信采用迅通生产的PTR2000超小型超低功耗高速无线收发数传MODEM。
人机交互界面采用240*128图形液晶点阵、方向摇杆及按键。
基于这些完备而可靠的硬件设计,使用了一套独特的软件算法,实现了Sway的平衡控制与数据交换。
“双轮直立自平衡机器人Sway研究报告作者:哈尔滨工程大学尹亮摘要本设计采用两块Cygnal公司推出的C8051F005单片机分别作为“双轮直立自平衡机器人”(以下命名为Sway)和人机交互上位机的控制核心。
车体倾斜角度检测采用AD公司推出的双轴加速度传感器ADXL202及反射式红外线距离传感器。
利用PWM技术动态控制两台直流电机的转速。
上位机与机器人间的数据通信采用迅通生产的PTR2000超小型超低功耗高速无线收发数传MODEM。
人机交互界面采用240*128图形液晶点阵、方向摇杆及按键。
基于这些完备而可靠的硬件设计,使用了一套独特的软件算法,实现了Sway的平衡控制与数据交换。
本设计的主要特色:1.高速(25MIPS)低功耗的SOC单片机为各种复杂算法的实现提供了保障,丰富的片内外设为高速数据采集及PWM调制信号的生成提供了方便,片内温度传感器方便对温度的采集。
片内JTAG功能为程序的调试及对系统的现场编程提供了方便。
2.高效的H型PWM电路提高了电源的利用率,实现了电机的平滑变速。
3.双轴加速度传感器及光电传感器的使用提高了车体倾斜角度检测的精度,差分算法的应用提高了系统的抗干扰能力。
4.优化的软件算法,智能化的自动控制使车体运动准确平稳。
5.高速的无线数据传输给各种远程数据采集和智能控制提供了保障。
6.大屏幕液晶(蓝屏)显示及360度方向摇杆为人机交互提供了良好的界面。
一、硬件方案的选择与论证根据设计要求,系统可以划分为几个基本模块,如下图所示。
对各模块的实现,分别有以下一些不同的设计方案。
车体系统模块组成无线控制上位机模块组成1、MCU主控制器方案一:采用89S52单片机作为主控制器。
优点:价格低廉,程序资源丰富,技术比较成熟。
缺点:运算速度慢,很难担任复杂算法的计算工作;程序储存空间小,不能储存大规模程序代码;数字外设少,片内没有模数转换器,不能直接进行数据采集。
方案二:采用PHILIPS公司出品的LPC2119 ARM7内核处理器。
优点:处理速度快(指令速度可达60MIPS),可以担任大部分复杂算法的计算工作;片内外设非常丰富,可以进行实时数据采集,多种数据通信方式可供选择。
缺点:价格昂贵,对于已有51系列单片机开发经验的人员来说原有程序不兼容。
方案三:采用Cygnal公司推出的C8051F005单片机。
优点:具有与8051兼容的微控制器内核,与MCS-51指令集完全兼容,方便原有程序的移植。
指令速度大大提高(最高25MIPS),可以担任复杂算法的运算工作。
片内集成了一个12位100KSPS的多通道ADC子系统,2个电压输出DAC、2个电压比较器、片内电压基准,这为进行实时的数据采集提供了方便。
片内具有4个通用的16位定时器、一个具有5个捕捉/比较模块的可编程计数器/定时器阵列(PCA),这为生成PWM信号给电动机调速提供了方便,又不会过多占用CPU资源。
片内拥有2304B内部数据RAM,32KB FLASH储存器,可以在系统编程与全速非侵入式JTAG调试,这为生成大量程序代码和在线调试提供了保证。
基于上述理论分析,拟选择方案三。
2、倾角检测方案一:采用水银开关。
优点:价格便宜,货源广泛,原理简单。
缺点:输出开关量,不能线性调整。
震动易受到干扰,很难应用于高速高噪声场合。
方案二:采用光电接近传感器。
优点:价格便宜,输出线性度好,方便对其输出的数据进行处理与调整。
缺点:反射强度随着反射面材料或颜色的不同而改变,很难广泛适应不同的路面。
方案三:采用AD公司生产的双轴加速度传感器ADXL202。
优点:PWM输出,方便与单片机进行接口,线性输出,输出精度高,可以做高精度控制。
缺点:价格昂贵,算法复杂。
方案四:综合采用光电接近传感器与ADXL202。
优点:既克服了光电传感器对材料与颜色的挑剔,又克服了ADXL202的算法复杂。
基于上述考虑,拟采用方案四。
3、电机驱动调速模块方案一:采用电阻网络或数字电位器调整电动机的分压,从而达到调速的目的。
但是电阻网络只能实现有级调速,而数字电阻的元器件价格比较昂贵。
更主要的问题在于一般电动机的电阻很小,但电流很大;分压不仅会降低效率,而且实现很困难。
方案二:采用继电器对电动机的开或关进行控制,通过开关的切换对小车的速度进行调整。
这个方案的优点是电路较为简单,缺点是继电器的响应时间慢、机械结构易损坏、寿命较短、可靠性不高。
方案三:采用由达林顿管组成的H型PWM电路。
用单片机控制达林顿管使之工作在占空比可调的开关状态,精确调整电动机转速。
这种电路由于工作在管子的饱和截至模式下,效率非常高;H型电路保证了可以简单的实现转速和方向的控制;电子开关的速度很快,稳定性也极强,是一种广泛采用的PWM调速技术。
基于上述理论分析,拟选择方案三。
4、车轮检速及路程计算模块方案一:采用霍尔集成芯片。
该器件内部由三片霍尔金属板组成,当磁铁正对金属板时,由于霍尔效应,金属板发生横向导通,因此可以在车轮上安装磁片,而将霍尔集成芯片安装在固定轴上,通过对脉冲的计数进行车速测量。
方案二:受鼠标工作原理的启发,采用断续式光电开关。
由于该开关是沟槽结构,可以将其置于固定轴上,再在车轮上均匀的固定多个遮光条,让其恰好通过沟槽,产生一个个脉冲。
通过脉冲的计数,对速度进行测量。
以上两种都是比较可行的转速测量方案。
尤其是霍尔器件,在工业上得到广泛采用。
但是在本设计中,小车的车轮较小,方案一的磁片密集安装十分困难,容易产生相互干扰。
相反,方案二适用于精度较高的场合,可以在车轮上加较多的遮光条来满足脉冲计数的精度要求,因此拟采用方案二。
5、温度检测由于主控芯片C8051F005内部包括一个温度传感器连接到内部ADC的其中一路,因此省去了在外部挂设温度传感器的电路。
6、加速度检测采用AD公司生产的线性PWM输出加速度传感器ADXL202与主控制器的捕获比较模块接口,通过对ADXL202输出脉宽的测量精确检测车体水平加速度。
7、无线数据通信由于本设计需对车体进行指令的传送与数据的接收,因此需要高速的无线数据传输模块担任此工作,经过比较拟选择哈尔滨迅通科技推出的PTR2000超小型超低功耗高速无线收发数传MODEM。
该产品工作频率为国际通用的数传频段433MHz,FSK调制,抗干扰能力强,采用DDS+PLL频率合成技术,频率稳定性极好。
灵敏度高,达到-105dBm,最大发射功率+10dBm,低功耗,待机状态仅为8uA。
工作速率最高可达20Kbit/s(也可在较低速率下工作如9600bps),由于采用了低发射功率,高接收灵敏度的设计,因此使用无需申请许可证。
7、液晶显示液晶显示屏用于显示由Sway采集并无线传输回来的各种数据,由于数据种类很多(可以扩展)拟采用240128点阵液晶显示模块。
该液晶显示模块为并行传输,速度较快,蓝色背光美观大方。
8、方向输入方向输入采用现今流行的360度游戏遥杆用于远程控制小车的运动方向。
9、电源选择方案一:所有器件采用单一电源(6节AA电池)。
这样供电比较简单;但是由于电动机启动瞬间电流很大,而且PWM驱动的电动机电流波动较大,会造成电压不稳、有毛刺等干扰,严重时可能造成单片机系统掉点,缺点十分明显。
方案二:双电源供电。
将电动机驱动电源与单片机以及其周边电路电源完全隔离,利用光电耦合器传输信号。
这样做虽然不如单电源方便灵活,但可以将电机驱动所造成的干扰彻底消除,提高了系统稳定性。
我们认为本设计的稳定可靠性更为重要,故拟采用方案二。
二、程序语言的选择方案一:采用汇编语言编程。
优点:代码效率较高,节省程序储存空间,与硬件接口容易,调试方便。
缺点:当算法复杂时程序编写非常复杂,可读性差。
方案二:采用C语言作编程。
优点:逻辑符合思维习惯,算法应用灵活,计算功能强大,程序的可读性强,方便在不同的处理器间移植。
缺点:与硬件接口不良,占用资源较多。
由于该系统在控制方面涉及一些复杂算法,而使用的主控制器程序与数据储存空间较大,综合上述考虑,拟采用C语言作为编程工具,采用国际流行的Keil C编译生成程序代码。
三、作品的科学性与先进性目前现有的机器人或短距离运输工具都以四轮传动机构作为动力系统,其劣势在于系统的占地面积较大、转弯半径较大、行动不够灵活。
而我设计的系统可以两轮直立移动,这样就大大减小了占地面积,转弯半径非常小,移动轨迹非常灵活,在场地面积较小或要求灵活运输的场合十分适用。
另外与四轮车相比其驱动功率大大减小,为电池长时间供电提供了可能,这也为环保轻型车提供了一种新的思路。
另外,无线高速数据传输系统为把该系统应用于无人驾驶进行数据采集或现场勘测提供了有利条件。
四、市场前景分析该系统适用于对场地面积要求严格的场所进行人员的短距离运输,当人站在该车体上时仅靠身体的前倾或后仰就可以完成车体前进或后退的动作,并以前倾或后仰的程度来控制车体的移动速度。
当需要在人员难以接近的场所进行无人勘测与数据采集时,该车体可以灵活的出入各种环境采集重要的数据发送回来供科技人员研究。
本作品更可应用于智能玩具领域。
提高孩子们的动手能力和思考问题的能力,从而启发他们的创新意识。
作品图片欣赏(点击看大图):关于作品的讨论,请到:/phpbb2/viewtopic.php ?t=7348LAST_UPDATED2。