通风机的实际特性曲线

通风机的实际特性曲线
通风机的实际特性曲线

第四节通风机的实际特性曲线

一、通风机的工作参数

表示通风机性能的主要参数是风压H、风量Q、风机轴功率N、效率η和转速n等。

(一)风机(实际)流量Q

风机的实际流量一般是指实际时间内通过风机入口空气的体积,亦称体积流量(无特殊说明时均指在标准状态下),单位为,或。

(二)风机(实际)全压H f与静压H s

通风机的全压H t是通风机对空气作功,消耗于每1m3空气的能量(N·m/m3或Pa),其值为风机出口风流的全压与入口风流全压之差。在忽略自然风压时,H t用以克服通风管网阻力h R和风机出口动能损失h v,即

H t=h R+h V, 4—4—1

克服管网通风阻力的风压称为通风机的静压H S,Pa

H S=h R=RQ24-4-2

因H t=H S+h V4-4-3

(三)通风机的功率

通风机的输出功率(又称空气功率)以全压计算时称全压功率N t,用下式计算:N t=H t Q×10-3 4-5-4

用风机静压计算输出功率,称为静压功率N S,即:

N S=H S Q×10—3 4-4-5

因此,风机的轴功率,即通风机的输入功率N(kW)

, 4-5-6

或 4-4-7

式中:ηt,ηS分别为风机折全压和静压效率。

设电动机的效率为ηm,传动效率为ηtr时,电动机的输入功率为N m,则

4-4-8

二、通风系统主要参数关系和风机房水柱计(压差计)示值含义

掌握矿井主要通风机与通风系统参数之间关系,对于矿井通风的科学管理至关重要。

为了指示主要通风机运转以及通风系统的状况,在风硐中靠近风机入口、风流稳定断面上安装测静压探头,通过胶管与风机房中水柱计或压差计(仪)相连接,测得所在断面上风流的相对静压h。在离心式通风机测压探头应安装在立闸门的外侧。水柱计或压差计的示值与通风机压力和矿井阻力之间存在什么关系?它对于通风管理有什么实际意义?下面就此进行讨论。

1、抽出式通风

1)水柱(压差)计示值与矿井通风阻力和风机静压之间关系

如图4-4-1,水柱计示值为4断面相对静压h4,h4(负压)=P4-P04(P4为4断面绝对压力,P04为与4断面同标高的大气压力)。

沿风流方向,对1、4两断面列伯努力方程:

h R14=(P1+h v1+ρm12gZ12)- (P4+h v4+ρm34gZ34)

式中:h R14—1至4断面通风阻力,Pa ;

P1、P4—分别为1、4断面压力,Pa;

h v1、h v4—分别为1、4断面动压,Pa;

图4-4-1 Z12、Z34—分别为12、34段高差,m;

ρm12、ρm34—分别为12、34段空气柱空气密度平均值,kg/m3;

因风流入口断面全压P t1等于大气压力P01,即

P1+h v1=P t1=P01,

又因1与4断面同标高,故1断面的同标高大气压P01’与4断面外大气压P04相等。又:ρm12gZ12’—ρm34gZ34=H N

故上式可写为

h R14=P04-P4-h v4+H N

h R14=|h4|-h v4+H N

即:|h4|=h R14+h v4-H N4-4-9

根据通风机静压与矿井阻力之间的关系可得

H S+H N=|h4|-h v4=h t44-4-10

式4-4-9和式4—4—10,反映了风机房水柱计测值h4与矿井通风系统阻力、通风机静压及自然风压之间的关系。通常h v4数值不大,某一段时间内变化较小,H N随季节

变化,一般矿井,其值不大,因此,|h4|基本上反映了矿井通风阻力大小和通风机静压大小。如果矿井的主要进回风道发生冒顶堵塞,则水柱计读数增大;如果控制通风系统的主要风门开启。风流短路,则水柱计读数减小,因此,它是通风管理的重要监测手段。

2)风机房水柱计示值与全压H t之间关系。

与上述类似地对4、5断面(扩散器出口)列伯努力方程,便可得水柱计示值与全压之间关系

H t =|h4|—h v4+h R d+h v5

即|h4|=H t+h v4-h R d-h v54-4-11

式中h R d——扩散器阻力,Pa ;

h v5——扩散器出口动压,Pa;

根据式4-4-11可得

H t=h R12+ h R d+h v4

H t+H N=h R14+ h R d+h v54-4-12

图4-4-2

2、压入式通风的系统

如图4-4-2,对1、2两断面列伯努力方程得:

h R12=(P1+h v1+ρm1gZ1)-(P2+h v2+ρm2gZ2)

因风井出口风流静压等于大气压,即P2=P02;

1、2断面同标高,其同标高的大气压相等,即P01-P02,

故P1-P2=P1-P01=h1

又ρm1gZ1-ρm2gZ2=H N

故上式可写为

h R12=h1+h V1-h v2+H N

所以风机房水柱计值:h1=h R12+h v2-h V1-H N

又H t=P t1-P t1’=P t1-P0=P1+h v1-P0=h1+h v1

H t+H N=h R12+h v24-4-13

由式4-4-12和式4-4-13可见,无论何种通风方式,通风动力都是克服风道的阻力和出口动能损失,不过抽出式通风的动能损失在扩散器出口,而压入式通风时出口动能损失在出风井口,两者数值上可能不等,但物理意义相同。

三、通风机的个体特性曲线

当风机以某一转速、在风阻R的管网上工作时、可测算出一组工作参数风压H、风量Q、功率N、和效率η,这就是该风机在管网风阻为R时的工况点。改变管网的风阻,便可得到另一组相应的工作参数,通过多次改变管网风阻,可得到一系列工况参数。将这些参数对应描绘在以Q为横坐标,以H、N和η为纵坐标的直角坐标系上,并用光滑曲线分别把同名参数点连结起来,即得H─Q、N─Q和η─Q曲线,这组曲线称为通风机在该转速条件下的个体特性曲线。有时为了使用方便,仅采用风机静压特性曲线(HS ─Q)。

为了减少风机的出口动压损失,抽出式通风时主要通机的出口均外接扩散器。通常把外接扩散器看作通风机的组成部分,总称之为通风机装置。通风机装置的全压Ht 为扩散器出口与风机入口风流的全压之差,与风机的全

压Ht 之关系为

4-4-14

式中:h d ━━扩散器阻力。

通风机装置静压Hsd 因扩散器的结构形式和规格

不同而有变化,严格地说

4-4-15

式中:h Vd ━─扩散器出口动压。

比较式4-4-10与式4-4-15可见,只有当h d +h Vd Hs ,即通风机装置阻力与其出口动能损失之和小于通风机出口动能损失时,通风机装置的静压才会因加扩散器而有所提高,即扩散器起到回收动能的作用。

图4

-4-3表示了Ht 、Htd 、Hs 和Hsd 之间的相互关系,由图可见,安装了设计合理的扩散器之后,虽然增加了扩散器阻力,使Htd ─Q曲线低于Ht ─Q曲线,但由于h d +h Vd h V ,则说明了扩散器设计不合理。

安装扩散器后回收的动压相对于风机全压来说很小,所以通常并不把通风机特性和通风机装置特性严加区别。

通风机厂提供的特性曲线往往是根据模型试验资料换算绘制的,一般是未考虑外接扩散器。而且有的厂方提供全压特性曲线,有的提供静压特性曲线,读者应能根据具体条件掌握它们的换算关系。

图4-4-4和图4-4-5分别为轴流式和离心式通风机的个体特性曲线示例。

图4-4-4轴流式个体特性曲线图4-4-5离心式通风机个体特性曲线轴流式通风机的风压特性曲线一般都有马鞍形驼峰存在。而且同一台通风机的驼峰区随叶片装置角度的增大而增大。驼峰点D以右的特性曲线为单调下降区段,是稳定工作段;点D以左是不稳定工作段,风机在该段工作,有时会引起风机风量、风压和电动机功率的急剧波动,甚至机体发生震动,发出不正常噪音,产生所谓喘振(或飞动)现象,严重时会破坏风机。离心式通风机风压曲线驼峰不明显,且随叶片后倾角度增大逐渐减小,其风压曲线工作段较轴流式通风机平缓;当管网风阻作相同量的变化时,其风量变化比轴流式通风机要大。

离心式通风机的轴功率N又随Q增加而增大,只有在接近风流短路时功率才略有下降。因而,为了保证安全启动,避免因启动负荷过大而烧坏电机,离心式通风机在启动时应将风硐中的闸门全闭,待其达到正常转速后再将闸门逐渐打开。当供风量超过需风量过大时,常常利用闸门加阻来减少工作风量,以节省电能。

轴流式通风机的叶片装置角不太大时,在稳定工作段内,功率N随Q增加而减小。所以轴流式通风机应在风阻最小时启动,以减少启动负荷。

在产品样本中,大、中型矿井轴流式通风机给出的大多是静压特性曲线;而离心式通风机大多是全压特性曲线。

对于叶片安装角度可调的轴流式通风机的特性曲线,通常以图4-7-2的形式给出,H─Q曲线只画出最大风压点右边单调下降部分,且把不同安装角度的特性曲线画在同一坐标上,效率曲线是以等效率曲线的形式给出。

四、无因次系数与类型特性曲线

目前风机种类较多,同一系列的产品有许多不同的叶轮直径,同一直径的产品又有不同的转速。如果仅仅用个体特性曲线表示各种通风机性能,就显得过于复杂。还有,

在设计大型风机时,首先必须进行模型实验。那么模型和实物之间应保持什么关系?如何把模型的性能参数换算成实物的性能参数?这些问题都要进行讨论。

(一)无因次系数

⒈通风机的相似条件

两个通风机相似是指气体在风机内流动过程相似,或者说它们之间在任一对应点的同名物理量之比保持常数,这些常数叫相似常数或比例系数。同一系列风机在相应工况点的流动是彼此相似的,几何相似是风机相似的必要条件,动力相似则是相似风机的充

要条件,满足动力相似的条件是雷诺数Re(=)和欧拉数E u=()分别相等。同系列风机在相似的工况点符合动力相似的充要条件。

2、无因次系数

无因次系数主要有:

(1)压力系数同系列风机在相似工况点的全压和静压系数均为一常数。可用下式表示:

, 4-4-16

或 4-4-17

式中和叫全压系数和静压系数。为压力系数,u为圆周速度。

(2)流量系数

由几何相似和运动相似可以推得

4-4-18

式中D、u、—分别表示两台相似风机的叶论外缘直径、圆周速度,同系列风机的流量系数相等。

(3)功率系数

风机轴功率计算公式中的H和Q分别用式4-4-17和式4-4-18代入得

4-4-19

同系列风机在相似工况点的效率相等,功率系数为常数。

、、三个参数都不含有因次,因此叫无因次系数。

(二)类型特性曲线

、、和η可用相似风机的模型试验获得,根据风机模型的几何尺寸、实验条件及实验时所得的工况参数Q、H、N和η。利用式4-4-17、4-4-18和4-4-19计算出

该系列风机的、、和η。然后以为横坐标,以、和η为纵坐标,绘出-、-和η-曲线,此曲线即为该系列风机的类型特性曲线,亦叫通风机的无因次特性曲线和抽象特性曲线。图4-4-6和力图4-4-7分别为4-72-11和G4-73-11型离心式通风机的类型曲线,2K60型类型风机的类型曲线如图4-7-2(a)、(b)所示。可根据类型曲线和风机直径、转速换算得到个体特性曲线。需要指出的是,对于同一系列风机,当几何尺寸(D)相差较大时,在加工和制造过程中很难保证流道表面相对粗糙度、叶片厚度以及机壳间隙等参数完全相似,为了避免因尺寸相差较大而造成误差,所以有些风机(4-72-11系列)的类型曲线有多条,可按不同直径尺寸而选用。

图4—4—6 图4—4—7

五、比例定律与通用特性曲线

1、比例定律

由式4-4-17、4-4-18和4-4-19可见,同类型风机在相似工况点的无因次系数、

、和η是相等的。它们的压力H、流量Q和功率N与其转速n、尺寸D和空气密度ρ成一定比例关系,这种比例关系叫比例定律。将转速u=πDn/60代入式4-4-17、4-4-18和4-4-19得

对于1、2两个相似风机而言,、、,所以其压力、风量和功率之间关系为:

4-4-20

4-4-21

4-4-22

各种情况下相似风机的换算公式如表4—4—1所示。

由比例定律知,同类型同直径风机的转速变化时,其相似工况点在等风阻曲线上变化。

表4-4—1 两台相似风机H、Q、和N的换算

压力

换算

风量

换算

功率

换算

η1=η2

效率换算

例题某矿使用主要通风机为4-72-11№20B离心式通风机,其特性曲线如图4-4-7所示,图上给出三种不同转速n的H t--Q曲线,四条等效率曲线。转速为n1=630r/min,风机工作风阻R=0.0547×9.81=0.53657N.s2/m8,工况点为M0(Q=58m3/s,H t=1805Pa),后来,风阻变为R’=0.7932 N.s2/m8,矿风量减小不能满足生产要求,拟采用调整转速方法保持风量Q=58 m3/s,求转速调至多少?

解因管网风阻已变,故应先将新风阻R’=0.7932 N.s2/m8的曲线绘制在图中,得其与n1=630r/min曲线的交点为M1,其风量Q1=51.5 m3/s。在此风阻下风量增至Q2=58 m3/s的转速n2,可按下式求得:

n2=n1 Q2/Q1=630×58/51.5=710r/min

即转速应调至n2=710r/min,可满足供风要求。

图4-4-8 4-72=11№20B离心式通风机特性曲线

2、通用特性曲线

为了便于使用,根据比例定律,把一个系列产品的性能参数,如压力H、风量Q、和转速n、直径D、功率N和效率η等相互关系同画在一个坐标图上,这种曲线叫通用特性曲线。图4-7-3为G4--73系列离心式通风机的对数坐标曲线,在对数坐标图中,风阻R曲线为直线,与Q轴夹角为63.°,与机号线平行,大大简化了作风阻曲线的步骤。

风机特性曲线

用以表示通风机的主要性能参数(如风量L、风压H、功率N及效率η)之间关系的曲线称为风机特性曲线或风机性能曲线。为了使用方便,将H—L曲线、N—L曲线、η—L曲线画在同一图上。下图为4—72 No5离心式通风机在转速2 900r/min时的特性曲线。 4—72No5离心式通风机特性曲线 在通风除尘系统工作的风机,即使在转速相同时,在不同阻力的系统中它所输送的风量也可能不相同。系统的阻力小时,要求风机的风压低,输送的风量就大;反之,系统阻力大,要求的风压高,输送的风量就小。因此,用一种工况下的风量和风压,来评定风机的性能是不够的。例如,风压为1 000Pa时,4—7 2No5风机可输送风量18 000m3/h;但当风压增到3000Pa时,输送的风量就只有1 000m3/h。为了全面评定风机的性能,就必须了解在各种工况下风机的风压和风量,以及功率、效率与风量的关系。这就是为什么要通过风机性能试验做出风机特性曲线的原因所在。

通风机制造工厂对生产的风机,根据实验预先做出其特性曲线,以供用户选择风机时参考。有些风机产品样本,不但列出特性曲线图,而是还提供性能表格。下表列出了4—72离心式通风机的部分性能数据。 从特性曲线图可以看出,在一定转速下,风机的效率随着风量的改变而变化,但其中必有一个最高效率点刁一。相应于最高效率下的风量、风压和轴功率称为风机的最佳工况,在选择风机时,应使其实际运转效率不低于0.9ηmax。此范围称为风机的经济使用范围。下表中列出的8个性能点(工况点),均在风机的经济使用范围内。 4—72 型离心式通风机性能表(摘录)

正确选择风机,是保证通风系统正常、经济运行的一个重要条件。所谓正确选择风机,主要是指根据被输送气体的性质和用途选择不同用途的风机;选择的风机要满足系统所需要的风量,同时风机的风压要能克服系统的阻力,而且在效率最高或经济使用范围内工作。具体选择方法和步骤如下: 1.根据被输送气体的性质,选用不同用途的风机。例如,输送清洁空气,或含尘气体流经风机时已经过净化,含尘浓度不超过150mg/m3时,可选择一般通风换气用的风机;输送腐蚀性气体,要选用防腐风机;输送易燃、易爆气体或含尘气体时,要选用防爆风机或排尘风机。但在选择具体的风机型号和规格时,还必须根据某种类型风机产品样本上的性能表或特性曲线图才能确定。

风机特性曲线

风机特性曲线? 用以表示通风机的主要性能参数(如风量L、风压H、功率N及效率η)之间关系的曲线称为风机特性曲线或风机性能曲线。为了使用方便,将H—L曲线、N—L曲线、η—L曲线画在同一图上。下图为4—72 No5离心式通风机在转速2 900r/min时的特性曲线。 4—72No5离心式通风机特性曲线 ? 在通风除尘系统工作的风机,即使在转速相同时,在不同阻力的系统中它所输送的风量也可能不相同。系统的阻力小时,要求风机的风压低,输送的风量就大;反之,系统阻力大,要求的风压高,输送的风量就小。因此,用一种工况下的风量和风压,来评定风机的性能是不够的。例如,风压为1 000Pa时,4—72No5风机可输送风量18 000m3/h;但当风压增到3000Pa时,输送的风量就只有1 000m3/h。为了全面评定风机的性能,就必须了解在各种工况下风机的风压和风量,以及功率、效率与风量的关系。这就是为什么要通过风机性能试验做出风机特性曲线的原因所在。 通风机制造工厂对生产的风机,根据实验预先做出其特性曲线,以供用户选择风机时参考。有些风机产品样本,不但列出特性曲线图,而是还提供性能表格。下表列出了4—72离心式通风机的部分性能数据。 从特性曲线图可以看出,在一定转速下,风机的效率随着风量的改变而变化,但其中必

有一个最高效率点刁一。相应于最高效率下的风量、风压和轴功率称为风机的最佳工况,在 。此范围称为风机的经济使用范围。下表选择风机时,应使其实际运转效率不低于0.9η max 中列出的8个性能点(工况点),均在风机的经济使用范围内。 ? 4—72 型离心式通风机性能表(摘录)

矿井通风设备选型

矿井通风设备选型 一、通风方式和通风系统 (一)通风方式 本矿井通风方法为机械抽出式。矿井采用中央并列式通风。 (二)通风系统 进风井为主斜井、副斜井,回风井为回风斜井。 投产期通风系统:主斜井、副斜井进风,回风斜井回风,新鲜风流从主斜井、和副斜井进入,经运输暗斜井、轨道暗斜井、运输大巷、轨道大巷、运输下山、轨道下山、运输石门、采面运输巷至10701采面,乏风经回风斜巷进入回风斜井,然后排至地面。 本矿按煤与瓦斯突出矿井进行设计。在风井场地设通风机,通风方式为并列式。 选用型高效节能防爆对旋轴流通风机;当矿井初期风量和负压较小时,可调节风机叶片安装角度和采用变频方式改变风机的转速来满足矿井通风要求。 反风方式,采用风机反转反风。 二、回风斜井通风设备选型 ㈠计依据: 容易时期风量:73m3/s;负压:860.6Pa 困难时期风量:73m3/s;负压:1174.6Pa 回风井的井口海拔标高为+1316m,当地大气密度ρ1=1.03kg/m3。 ㈡通风设备选型: 根据矿井通风资料,经多方案比较筛选后可供选择的方案列于表7-2-1。 表7-2-1 回风斜井通风机选型比较表

由表7-2-2可知GAF型轴流通风机,投资高、占地面积大、土建费用高、土建施工工期长。而FBCDZ风型风机具有投资低,占地面积小,土建费用低,安装、维护简单等优点。故推荐方案一。 经技术经济比较,回风井选用风机FBCDZ-8-No21B型,740 r/min,一台工作,一台备用。配套电机为防爆电动机(660V,132kW,740r/min),每台风机额定风量为48~107m3/s,额定风压为670~2600Pa。风机特性曲线参见图7-2-2。 根据本矿井前后期负压变化较大的特点,在调整好需要的叶片角度后,通过变频调速达到实际所需风量,可实现风机前后期均处于较佳的工况点运行。 风机订货前应由厂家针对本矿井风量、负压情况对风机选型进行校验,设计

河南理工 50个FBCDZ系列矿用通风机特性曲线

目录 1、概述 (3) 2、型号说明 (3) 3、结构说明 (3) 4、使用条件 (4) 5、技术数据 (4) 6、结构及安装和外形尺寸 (5) 7、订货指南 (5) 8、AFM系列风机性能在线监测控制系统 (5)

1、概述 FBCDZ(原BDK)系列高效节能矿用防爆对旋式主通风机是我公司在对近年来对旋主通风机使用情况广泛调查分析的基础上,结合我国国情,充分利用我公司的技术和生产优势,保留在用对旋主通风机的优点,对近年来矿井在用对旋主通风机存在的诸多问题,进行深入细致的研究分析,扬其长,避其短。充分发挥国有大型企业的优势和雄厚的技术力量,并与中国科学院北京科能能源与动力研究发展中心和北京科技大学风机专家相结合,研制生产出该系列对旋式主通风机。该系列风机气动性能优良、效率高、振动小、噪声低、反风量大、高效区域宽广,并采取了确保通风机安全、可靠运行的多项措施,研制的专用防爆电机,具有效率高、温升低、振动小、噪声低、轴承温升低、过载能力强等特点,从根本上解决了在用风机的缺陷,确保长期运行。 该系列通风机包括轮毂比为0.618的低中压系列、轮毂比为0.65的高压系列和轮毂比为0.618 Ⅱ系列低中压大风量系列,其电气防爆性能符合GB3836.1《爆炸性气体环境用电气设备第1部分:通用要求》和GB3836.2《爆炸性气体环境用电气设备第2部分:隔爆型“d”》的规定,防爆标志为ExdI。适用于大中型煤矿矿井做地面抽出或压入式主通风机。 该系列风机取得国家安全生产重庆矿用设备检测检验中心颁发的防爆合格证和安标国家矿用产品安全标志中心颁发的安全标志证书。风机叶片与保护筒内壁的配对金属材料经过国家安全生产重庆矿用设备检测检验中心检验并取得摩擦火花安全性检验合格证。该系列风机配套专用隔爆型电机,取得国家防爆电气产品质量监督检验中心的防爆合格证,其制动装置取得国家防爆电气产品质量监督检验中心的部件防爆合格证。 2、型号说明 FBCDZ通风机型号表示方法(举例说明): F B C D Z №28/ 2 × 400 装机功率,kW 配用电动机台数 机号,以叶轮直径的分米数表示 主要通风机 对旋通风机 抽出式 防爆型,防爆标志为ExdI 通风机 3、结构说明 3.1 该系列风机的气动设计,应用当代先进的叶轮机械三元流动理论和CAD设计技术,由中国科学院北京科能能源与动力研究发展中心专家精心设计叶轮叶片和风机流道,优化各种参数,减少损失,提高效率,确保风机在满足风量和风压的前提下在宽广的高效区运行,设计工况点最高静压效率达85%以上。 3.2 该系列风机主要由两台主机组成,两台主机由内外风筒、电机座和电机组成,每台电机轴伸端直接安装叶轮,两台主机的叶轮相对互为反向旋转,组成对旋结构。两级叶轮

风扇特性曲线实验

实验七扇风机特性曲线 7.1扇风机特性曲线 7.1.1目的 通过对扇风机特性曲线的实测,初步学会扇风机特性曲线实测方法,并进一步理解扇风机的性能。 7.1.2使用仪器 扇风机、风筒、皮托管、压差计、三用钳形表、气压计、湿度计。 7.1.3原理 扇风机特性曲线是在扇风机转速一定时,以风量为横坐标,分别以压差h,功率N以及效率η为纵坐标,而做出的h-Q、N-Q及η-Q三条曲线。 压差的温家宝方法应根据扇风机的工作方式而不同。 如图7-1所示的布置方式,h即为扇风机的全压差。根据h动即可示出风量。不断改变风向的风阻,分别测出各工作的点的压差、风量、电流、电压功率因数值,即可作图。 图7-1 扇风机特性曲线实测 当压入式通风时,其布置形式如图7-2

式中: 静h ——风筒内外的静压差; 22 2 2γg v ——风筒内的风流动压; 自h ——自然压差,对扇风机作特性曲线试验时取自h =0; h ——风筒阻力。 实际上扇风机的h-Q 曲线是扇风机在转速一定时,对风筒的不同风阻的工作点的连线,从上式可以看出,对风筒的工作风压是2 2 2 2γg v h - 静这一部分,即 h g v h =- 22 2 2γ静 这一部分称为有效静压,图18的布置方式,所示的h 即为有效静压,所以抽出式通风是以有效静压为纵坐标做出扇风机的h-Q 曲线

图。 7.1.4实验步骤、 根据扇风机的工作方式布置皮托管及压差计,在没有改变风机转速的条件下,用档板改变风筒风阻,分别测出无档板及每块档板使用 时的压差h,动压h动,电流A,电压V及功率因数? cos,并同时记录气温、气压,根据这些数据计算出各个工作点时的压差h,风量Q、实际功率N,效率η,并作图。 图7-3 扇风机特性曲线图η (毫米水柱)

风机性能曲线

风机性能曲线 2010-04-01 13:14:42| 分类:| 标签:|字号大中小订阅 风机特性曲线 作者:摘自《安全科学技术百科全书》发布日期:2009-8-13 23:02:39 访 问次数:360 用以表示通风机的主要性能参数(如风量L、风压H、功率N及效率η)之间关系的曲线称为风机特性曲线或风机性能曲线。为了使用方便,将H—L曲线、N—L曲线、η—L曲线画在同一图上。下图为4—72 No5离心式通风机在转速2 900r/min时的特性曲线。 4—72No5离心式通风机特性曲线 在通风除尘系统工作的风机,即使在转速相同时,在不同阻力的系统中它所输送的风量也可能不相同。系统的阻力小时,要求风机的风压低,输送的风量就大;反之,系统阻力大,要求的风压高,输送的风量就小。因此,用一种工况下的风量和风压,来评定风机的性能是不够的。例如,风压为1 000Pa时,4—72No5风机可输送风量18 000m3/h;但当风压增到3000Pa时,输送的风量就只有1 000m3/h。为了全面评定风机的性能,就必须了解在各种工况下风机的风压和风量,以及功率、效率与风量的关系。这就是为什么要通过风机性能试验做出风机特性曲线的原因所在。 通风机制造工厂对生产的风机,根据实验预先做出其特性曲线,以供用户选择风机时参考。有些风机产品样本,不但列出特性曲线图,而是还提供性能表格。下表列出了4—72离心式通风机的部分性能数据。

从特性曲线图可以看出,在一定转速下,风机的效率随着风量的改变而变化,但其中必有一个最高效率点刁一。相应于最高效率下的风量、风压和轴功率称为风机的最佳工况,在选择风机时,应使其实际运转效率不低于0.9ηmax。此范围称为风机的经济使用范围。下表中列出的8个性能点(工况点),均在风机的经济使用范围内。 4—72 型离心式通风机性能表(摘录)

通风机的主要性能参数

3 通风机的主要性能参数 1.3.1 通风机的流量 通风机的流量通常是指单位时间内流过通风机的气体容积, 表示。它的单位是m3/h、m3/min、m3 /S。 用q V 如无特殊说明,通风机的体积流量,特指通风机进口处的体积流量。 1.3.2 通风机的压力 1.1.通风机的动压 通风机出口截面上气体的动能所表征的压力称之为动压, 表示。即 用表示q dF C 22 PdF=ρ 2 2 2.2.通风机的静压 通风机的静压是指通风机的全压与通风机出口动压之差, 用P s F表示。即:P s F=P tF-P dF 3. 通风机的全压通风机的全压指通风机出口截面与通风机进口截 面的全压之差,用P tF表示。 1.3.3 通风机的功率 1.1.通风机的有效功率 通风机所输送的气体,在单位时间内从通风机中所获得的有效 能量,叫作通风机的全压有效功率,用P e(kW)表示。 2.通风机的内功率

计入流动损失和泄漏损失,单位时间里传给气体的有效功叫作 通风机的内功率用P in表示,即内功率等于有效功率P e加上通 风机的内部流动损失功率△P in。 3.3.风机的轴功率 单位时间内原动机传递给通风机轴的能量,叫做通风机的轴功 率P sh,它等于通风机的内功率P in加上轴承和传动装置的机械 损失功率△P me。 1.3.4 通风机的效率 1.1.通风机全压效率ηtF 等于通风机全压有效功率P etF与轴功率P sh之比,即 ηtF=P etF / P sh=P tF q v / 1000P sh 或ηtF=ηinηme 其中ηme机械效率,且ηme=Pin/Psh=P tF qv/1000ηin P sh 机械效率表征通风机轴承损失和传动损失的好坏,是通风机机械传动系统设计的主要指标,根据通风机的传动方式,表中列出了机械效率的选用值,供设计时参考。当风机转速不变而运行于低负荷工况时,因机械损失不变,故机械效率的选用值还将降低。 传动方式机械效率 2.通风机的静压效率 通风机的静压效率ηsF,等于通风机静压有效功率与通风机轴功率之

矿井通风机特性曲线

第四节通风机的实际特性曲线 第四节通风机的实际特性曲线 一、通风机的工作参数 表示通风机性能的主要参数是风压H、风量Q、风机轴功率N、效率 和转速n等。 (一)风机(实际)流量Q 风机的实际流量一般是指实际时间内通过风机入口空气的体积,亦称体积流量(无特殊说明时均指在标准状态下),单位为,或。 (二)风机(实际)全压H f与静压H s 通风机的全压H t是通风机对空气作功,消耗于每1m3空气的能量(N·m/m3或Pa),其值为风机出口风流的全压与入口风流全压之差。在忽略自然风压时,H t用以克服通风管网阻力h R和风机出口动能损失h v,即 H t=h R+h V, 4—4—1 克服管网通风阻力的风压称为通风机的静压H S,Pa H S=h R=RQ24-4-2 因此H t=H S+h V 4-4-3 (三)通风机的功率 通风机的输出功率(又称空气功率)以全压计算时称全压功率N t,用下式计算: N t=H t Q×10-3 4—5—4 用风机静压计算输出功率,称为静压功率N S,即 N S=H S Q×10—3 4-4-5

因此,风机的轴功率,即通风机的输入功率N(kW) , 4—5—6 或 4-4-7 式中ηt、ηS分别为风机折全压和静压效率。 设电动机的效率为ηm,传动效率为ηtr时,电动机的输入功率为N m,则 4-4-8 二、通风系统主要参数关系和风机房水柱计(压差计)示值含义 掌握矿井主要通风机与通风系统参数之间关系,对于矿井通风的科学管理至关重要。 为了指示主要通风机运转以及通风系统的状况,在风硐中靠近风机入口、风流稳定断面上安装测静压探头,通过胶管与风机房中水柱计或压差计(仪)相连接,测得所在断面上风流的相对静压h。在离心式通风机测压探头应安装在立闸门的外侧。水柱计或压差计的示值与通风机压力和矿井阻力之间存在什么关系?它对于通风管理有什么实际意义?下面就此进行讨论。 1、抽出式通风 1)水柱(压差)计示值与矿井通风阻力和风机静压之间关系 如图4-4-1,水柱计示值为4断面相对静压h4,h4(负压)=P4-P04(P4为4断面绝对压力,P04为与4断面同标高的大气压力)。 图4—4—1 沿风流方向,对1、4两断面列伯努力方程

轴流式风机性能曲线

轴流式风机的性能 摘要 轴流式风机在火力发电厂及当今社会中得到了非常广泛的运用。本文介绍了轴流式风机的工作原理、叶轮理论、结构型式、性能参数、性能曲线的测量、运行工况的确定及调节方面的知识,并通过实验结果分析了轴流式风机工作的特点及调节方法。 关键词:轴流式风机、性能、工况调节、测试报告

目录 1绪论 1.1风机的概述 (4) 1.2风机的分类 (4) 1.3轴流式风机的工作原理 (4) 2轴流式风机的叶轮理论 2.1概述 (4) 2.2轴流式风机的叶轮理论 (4) 2.3 速度三角形 (5) 2.4能量方程式 (6) 3轴流式风机的构造 3.1轴流式风机的基本形式 (6) 3.2轴流式风机的构造 (7) 4轴流式风机的性能曲线 4.1风机的性能能参数 (8) 4.2性能曲线 (10) 5轴流式风机的运行工况及调节 5.1轴流式风机的运行工况及确定 (11) 5.2轴流式风机的非稳定运行工况 (11) 5.2.1叶栅的旋转脱流 (12) 5.2.2风机的喘振 (12) 5.2.3风机并联工作的“抢风”现象 (13) 5.3轴流式风机的运行工况调节 (14) 5.3.1风机入口节流调节 (14) 5.3.2风机出口节流调节 (14) 5.3.3入口静叶调节 (14) 5.3.4动叶调节 (15) 5.3.5变速调节 (15) 6轴流风机性能测试实验报告 6.1实验目的 (15) 6.2实验装置与实验原理 (15) 6.2.1用比托静压管测定质量流量 6.2.2风机进口压力 6.2.3风机出口压力

6.2.4风机压力 6.2.5容积流量计算 6.2.6风机空气功率的计算 6.2.7风机效率的计算 6.3数据处理 (19) 7实验分析 (27) 总结 (28) 致谢词 (29) 参考文献 (30)

矿井主要通风机管理正式版

Through the joint creation of clear rules, the establishment of common values, strengthen the code of conduct in individual learning, realize the value contribution to the organization.矿井主要通风机管理正式 版

矿井主要通风机管理正式版 下载提示:此管理制度资料适用于通过共同创造,促进集体发展的明文规则,建立共同的价值观、培养团队精神、加强个人学习方面的行为准则,实现对自我,对组织的价值贡献。文档可以直接使用,也可根据实际需要修订后使用。 1、总则 第一条矿井主要通风机是保证煤矿安全生产的主要设备,为加强矿井主要通风机安全管理,确保主要通风机安全、可靠运行,依据《煤矿安全规程》(2011版)、《山西省煤矿安全质量标准化标准》、《矿山安全法》,结合公司实际情况,特制定本办法。 第二条矿井主要通风机是指担负整个矿井、矿井的一翼或一定区域的通风装置,主要包括有:主要通风机、风机的供(配)电设备、润滑装置、控制与监测、

调节风门、防爆门(盖)和风道观察孔等。 第三条本办法适用于石窟煤业地面主要通风机。 2、基础管理 第四条主要通风机房必须张挂的相关制度及图表,矿机电科将相关管理制度装订成册: 1、操作规程。 2、交接班制度。 3、设备维修保养制度。 4、巡回检查制度。 5、岗位责任制。 6、设备包机制度。 7、干部上岗检查制度。

8、要害场所管理制度。 9、消防管理制度。 10、反风操作系统图。 11、供电系统图。 12、巡回检查路线图表。 13、设备主要技术特征表。 电气控制原理图册应在机房内存档。 第五条矿机电科及机电队必须建立有主要通风机管理档案,包括以下内容:矿机电科建立的档案有: 1、主要通风机说明书。 2、主要通风机安装图。 3、设备技术特征。 4、机房的设备供电系统图 5、电气控制原理图。

一、矿井通风设计的内容和要求

一、矿井通风设计的内容与要求 1、矿井通风设计的内容 ? 确定矿井通风系统; ? 矿井风量计算和风量分配; ? 矿井通风阻力计算; ? 选择通风设备; ? 概算矿井通风费用。 2、矿井通风设计的要求 ? 将足够的新鲜空气有效地送到井下工作场所,保证生产和良好的劳动条件; ? 通风系统简单,风流稳定,易于管理,具有抗灾能力; ? 发生事故时,风流易于控制,人员便于撤出; ? 有符合规定的井下环境及安全监测系统或检测措施; ? 通风系统的基建投资省,营运费用低、综合经济效益好。 二、优选矿井通风系统 1、矿井通风系统的要求 1) 每一矿井必须有完整的独立通风系统。 2)进风井囗应按全年风向频率,必须布置在不受粉尘、煤尘、灰尘、有害气体和高温气体侵入的地方。 3)箕斗提升井或装有胶带输送机的井筒不应兼作进风井,如果兼作回风井使用,必须采取措施,满足安全的要求。 4)多风机通风系统,在满足风量按需分配的前提下,各主要通风机的工作风压应接近。5)每一个生产水平和每一采区,必须布置回风巷,实行分区通风。

6)井下爆破材料库必须有单独的新鲜风流,回风风流必须直接引入矿井的总回风巷或主要回风巷中。 7)井下充电室必须单独的新鲜风流通风,回风风流应引入回风巷。 2、确定矿井通风系统 根据矿井瓦斯涌出量、矿井设计生产能力、煤层赋存条件、表土层厚度、井田面积、地温、煤层自燃倾向性及兼顾中后期生产需要等条件,提出多个技术上可行的方案,通过优化或技术经济比较后确定矿井通风系统。 三、矿井风量计算 (一)、矿井风量计算原则 矿井需风量,按下列要求分别计算,并必须采取其中最大值。 (1)按井下同时工作最多人数计算,每人每分钟供给风量不得少于4m3; (2)按采煤、掘进、硐室及其他实际需要风量的总和进行计算。 (二)矿井需风量的计算 1、采煤工作面需风量的计算 采煤工作面的风量应该按下列因素分别计算,取其最大值。 (1)按瓦斯涌出量计算: 式中:Qwi——第i个采煤工作面需要风量,m3/min Qgwi——第i个采煤工作面瓦斯绝对涌出量,m3/min kgwi——第i个采煤工作面因瓦斯涌出不均匀的备用风量系数,通常机采工作面取kgwi=1.2~1.6 炮采工作面取kgwi=1.4~2.0,水采工作面取kgwi=2.0~3.0 (2)按工作面进风流温度计算:

通风机的实际特性曲线

第四节通风机的实际特性曲线 一、通风机的工作参数 表示通风机性能的主要参数是风压 H 、风量Q 风机轴功率N 、效率 和转速n 等。 (一)风机(实际)流量Q 风机的实际流量一般是指实际时间内通过风机入口空气的体积, 亦称体积流量(无 特殊说明时均指在标准状态下),单位为 u 丄一或■:' 'o (二) 风机(实际)全压H f 与静压H S 通风机的全压 H 是通风机对空气作功,消耗于每 1m 3空气的能量(N ?m/m 3或Pa ), 其值为风机出口风流的全压与入口风流全压之差。 在忽略自然风压时,H t 用以克服通风 管网阻力h R 和风机出口动能损失 h v ,即 H t =h R +h V , 4—4— 1 克服管网通风阻力的风压称为通风机的静压 H S , Pa H s =h R =RCf 4-4-2 因 H t =H s +h v 4-4-3 (三) 通风机的功率 通风机的输出功率(又称空气功率)以全压计算时称全压功率 N ,用下式计算: N=HQX 10-3 4-5-4 用风机静压计算输出功率,称为静压功率 2,即: N S =h S QX 10—3 4-4-5 因此,风机的轴功率,即通风机的输入功率 N (kW 4-5-6 式中:t , S 分别为风机折全压和静压效率。 % 1000% 4-4-7 lOOO Vi

设电动机的效率为m传动效率为tr时,电动机的输入功率为N,则 4-4-8

二、通风系统主要参数关系和风机房水柱计(压差计)示值含义 掌握矿井主要通风机与通风系统参数之间关系,对于矿井通风的科学管理至关重 要。 为了指示主要通风机运转以及通风系统的状况,在风硐中靠近风机入口、风流稳定 断面上安装测静压探头,通过胶管与风机房中水柱计或压差计(仪)相连接,测得所在 断面上风流的相对静压 h 。在离心式通风机测压探头应安装在立闸门的外侧。水柱计或 压差计的示值与通风机压力和矿井阻力之间存在什么关系?它对于 通风管理有什么实 际意义?下面就此进行讨论。 1抽出式通风 1)水柱(压差)计示值与矿井通风阻力和风机静压之间关系 如图4-4-1 ,水柱计示值为4断面相对静压h 4, h 4 (负压)=P 4-P O 4(P 4为4断面绝对 压力,P 04为与4断 面同标高的大气压力)。 沿风流方向,对1、4两断面列伯努力方程: h R1 4 = (P l +h v l + P ml 2 gZ 12)- (P 4 + h v4 + p m34 gZ 34) 式中:h R14 — 1至4断面通风阻力,Pa ; P 1、P 4 —分别为1、4断面压力,Pa ; 仏仆h v4 —分别为1、4断面动压,Pa ; Z 12、Z 34 —分别为12、34段高差,m ; 3 P m12、 p m34 —分别为12、34段空气柱空气密度平均值,kg/m ; 因风流入口断面全压P t1等于大气压力P 01 ,即 P 1 +h v1 =P t 1 =P o1, 又因1与4断面同标高,故1断面的同标高大气压P 01 '与4断面外大 气压 P 0 4 相等。又:p m1 2gZ 12' — p m34 gZ 34 故上式可写为 h R1 4=P o4-P 4-h v4 +H N h R1 4=|h 4|-h V 4 + H N 即:|h 4|=h R1 4+h v 4-H N 4-4-9 根据通风机静压与矿井阻力之间的关系可得 H s +H N =|h 4|-h v4=h t 4 4-4-10 式4-4-9 和式4—4— 10,反映了风机房水柱计测值 h 4与矿井通风系统阻力、通风 图 4-4- 1

矿井通风复习题(有答案)

矿井通风复习题 一、名词解释 1.空气的粘性 2.相对压力 3.摩擦阻力 4.等积孔 5.通风网络图 6.空气的静压 7.空气的动压 8.空气的位压 9.矿井气候条件 10.层流11.紊流12.工况点13.局部风量调节14.漏风 二、判断题 1.风表在使用一段时间后必须重新进行校正。(√)。 2.每一矿井的产量是以矿井的实际通风能力的大小而定的。(√)。 3.矿井通风的任务就是为了排除井下的有害气体。(×) 4.矿井必须建立测风制度,每7天进行1次全面测风。( ×) 5.矿井需风量按井下同时工作的最多人数计算,每人每分钟供风量不得少于30m3。(×)。 6. 1atm=101325Pa (√) 7.风流总是从全压大的地方流向全压小的地方。(×)。 8.压入式矿井是负压通风。(×)。 9.抽出式矿井是负压通风。(√)。 10.风阻是一个表征通风难易程度的指标。(√)。 11.等级孔是一个表征通风难易程度的指标。(√)。 12.等级孔的作用是用来调节矿井风量的。(×)。 13.小型矿井可以用2台或2台以上的局部通风机代替主通风机工作。(×)。 14.生产矿井现有的2套不同能力的主通风机,在满足生产要求的前提下,可以继续使用。(√)。 15.矿井主通风机每季度应进行一次反风演习。(×)。 16.采用增阻调节法时,会造成矿井总风量的减少,减少的大小与主通风机特性曲线的陡缓无关。(×)。 17.主要通风机房的水柱计读数大小就是矿井通风阻力。(×) 18.矿井自然风压可能帮助通风,也可能反对通风。(√) 19.矿井总风阻就是矿井通风总阻力。(×) 20. 轴流式通风机个体风压特性曲线上有一段不稳定的“马鞍形”驼峰。(√) 21.由于某种原因导致矿井主要通风机停止运转。这时可以采用自然通风的方式继续维持生产,等待主要通风机重新运转起来。(×) 22.中央边界式通风的风井位置是在井田倾斜方向的上部边界。(√)

矿井通风机

矿井通风机

1.概述 矿井通风是指将空气输入矿井下,以增加矿井中氧气的浓度并排除矿井中有害的气体。矿井通风的基本任务是:供给井下足够的新鲜空气,满足人员对氧气的需要;冲淡井下有毒有害气体和粉尘,保证安全生产;调节井下气候,创造良好的工作环境。为了使井下风流沿指定路线流动分配,就必须在某些巷道内建筑引导控制风流的构筑物即通风设施,它分为引导风流和隔断风流的设施。新建大型矿井通风系统以对角式、分区式为主,改扩建的生产矿井以混合式为主。 1.1 矿井通风的重要性 煤矿井下为什么要进行?不进行通风不行吗?经过实践证明,不进行通风是不行的。因为井下要生产就要有人,人没有氧气就不能生存。其次人们在井下生产过程中不断产生有毒有害气体,如:一氧化碳、二氧化碳、二氧化氮、二氧化硫、硫化氢、沼气等,如果不排除这些气体人们也无法生产。井下由于受地温等因素的影响需要对井下恶劣气候条件进行调节。矿井通风的基本任务是:(1)、供给井下足够的新鲜空气,满足人员对氧气的需要; (2)、冲淡井下有毒有害气体和粉尘,保证安全生产。 (3)、调节井下气候,创造良好的工作环境。 井下必须进行通风,不通风就不能保证安全和维持生产。故矿井通风是矿井生产环节中最基本的一环,它在矿井建设和生产期间始终占有非常重要的地位。 1.2 矿井通风的类型 矿井通风系统由影响矿井安全生产的主要因素所决定。根据相关因素把矿井通风系 统划分为不同类型。根据瓦斯、煤层自燃和高温等影响矿井生产安全的主要因素对矿井通风系统的要求,为了便于管理、设计和检查,把矿井通风系统分为一般型、降温型、防火型、排放瓦斯型、防火及降温型、排放瓦斯及降温型、排放瓦斯及防火型、排放瓦斯与防火及降温型几种,依次为1-8八个等级。

风机特性曲线97678

风机特性曲线 用以表示通风机的主要性能参数(如风量L、风压H、功率N及效率η)之间关系的曲线称为风机特性曲线或风机性能曲线。为了使用方便,将H—L曲线、N—L曲线、η—L曲线画在同一图上。下图为4—72 No5离心式通风机在转速2 900r/min时的特性曲线。 4—72No5离心式通风机特性曲线 在通风除尘系统工作的风机,即使在转速相同时,在不同阻力的系统中它所输送的风量也可能不相同。系统的阻力小时,要求风机的风压低,输送的风量就大;反之,系统阻力大,要求的风压高,输送的风量就小。因此,用一种工况下的风量和风压,来评定风机的性能是不够的。例如,风压为1 000Pa时,4—72No5风机可输送风量18 000m3/h;但当风压增到3000Pa时,输送的风量就只有1 000m3/h。为了全面评定风机的性能,就必须了解在各种工况下风机的风压和风量,以及功率、效率与风量的关系。这就是为什么要通过风机性能试验做出风机特性曲线的原因所在。 通风机制造工厂对生产的风机,根据实验预先做出其特性曲线,以供用户选择风机时参考。有些风机产品样本,不但列出特性曲线图,而是还提供性能表格。下表列出了4—72离心式通风机的部分性能数据。 从特性曲线图可以看出,在一定转速下,风机的效率随着风量的改变而变化,但其中必有一个最高效率点刁一。相应于最高效率下的风量、风压和轴功率称为风机的最佳工况,在选择风机时,应使其实际运转效率不低于0.9ηmax。此范围称为风机的经济使用范围。下表中列出的8个性能点(工况点),均在风机的经济使用范围内。 4—72 型离心式通风机性能表(摘录)

如有侵权请联系告知删除,感谢你们的配合!

离心式通风机的性能全参数

第二节离心式通风机的性能参数 第二章通风机 第二节离心式通风机的性能参数 离心式通风机有一定的参数表示它的性能和规格,为了合理地选择与使用风机,就必须分析了解这些参数,以及其相互间的关系。表示风机性能的主要参数有以下几个: 一、风量 通风机每单位时间所排送的空气体积,称为风量Q,又称送风量或流量,其单位为米3/秒或米3/时,工程上常用单 位是米3/时。 风机所产生的风量与风机叶轮直径、转速、叶片形式等有关,其三者之间的相互关系要用下式表示: 式中: Q——通风机的风量; D2——通风机叶轮的外径,米; V2——叶轮外周的圆周速度,米/秒 n——通风机的转速,转/分; ——流量系数,与风机型号有关。常用离心式风机的流 量系数见表:

风机的风量一般用实验方法测得。风量的大小与通风机的尺寸和转速成正比。在管道系统中,风量可以通过闸门或改变通风机的转速来调节。但通风机最大的转数不可超过性能选用表上规定的最高转数。以叶轮外周的圆周速度表示,压力在300-1500毫米水柱的风机,v2≤100米/秒,压力在300毫米水柱以下的风机v2≤70米/秒。 二、风压 通风机的出口气流全压与进口气流全压之差称为风机

的风压H,其单位为毫米水柱。风机所产生的风压与风机的叶轮直径、转速、空气密度及叶片形式有关,其关系可 用下式表示: H=ρH v22 或:H=0.000334HD22n2 式中:H—通风机全压,毫米水柱; ρ—空气的密度,千克/米3;大气压强在760毫米汞柱,气温为20℃时,ρ=1.2千克/米3; v2—叶轮外周的圆周速度,米/秒; H—全压系数,根据实验确定,一般如下: 后向式:H=0.4—0.6;径向式:H=0.6—0.8;前向式: H=0.8—1.1; D2—风机叶轮的外径,米; n—风机的转速,转/分。 风机的风压与转速的平方成正比,适当提高转速就能增大风压。在管道系统中,风压也可用调节闸门来改变。 三、功率 通风机在一定的风压下输送一定数量的空气时,需要消耗一定的能量,这个能量是由带动它的电机提供的。单位时间所消耗的能量称为功率N,功率的单位用千瓦来表示。 通风机的有效功率(N y千瓦)即: 式中:

河南理工-50个FBCDZ系列矿用通风机特性曲线资料讲解

FBCDZ系列煤矿地面用防爆抽出式对旋轴流通风机 产品样本 代号:0AP.138.048c 南阳防爆集团股份有限公司 2009年 06月20 日

目录 1、概述 (3) 2、型号说明 (3) 3、结构说明 (3) 4、使用条件 (4) 5、技术数据 (4) 6、结构及安装和外形尺寸 (5) 7、订货指南 (5) 8、AFM系列风机性能在线监测控制系统 (5)

1、概述 FBCDZ(原BDK)系列高效节能矿用防爆对旋式主通风机是我公司在对近年来对旋主通风机使用情况广泛调查分析的基础上,结合我国国情,充分利用我公司的技术和生产优势,保留在用对旋主通风机的优点,对近年来矿井在用对旋主通风机存在的诸多问题,进行深入细致的研究分析,扬其长,避其短。充分发挥国有大型企业的优势和雄厚的技术力量,并与中国科学院北京科能能源与动力研究发展中心和北京科技大学风机专家相结合,研制生产出该系列对旋式主通风机。该系列风机气动性能优良、效率高、振动小、噪声低、反风量大、高效区域宽广,并采取了确保通风机安全、可靠运行的多项措施,研制的专用防爆电机,具有效率高、温升低、振动小、噪声低、轴承温升低、过载能力强等特点,从根本上解决了在用风机的缺陷,确保长期运行。 该系列通风机包括轮毂比为0.618的低中压系列、轮毂比为0.65的高压系列和轮毂比为0.618 Ⅱ系列低中压大风量系列,其电气防爆性能符合GB3836.1《爆炸性气体环境用电气设备第1部分:通用要求》和GB3836.2《爆炸性气体环境用电气设备第2部分:隔爆型“d”》的规定,防爆标志为ExdI。适用于大中型煤矿矿井做地面抽出或压入式主通风机。 该系列风机取得国家安全生产重庆矿用设备检测检验中心颁发的防爆合格证和安标国家矿用产品安全标志中心颁发的安全标志证书。风机叶片与保护筒内壁的配对金属材料经过国家安全生产重庆矿用设备检测检验中心检验并取得摩擦火花安全性检验合格证。该系列风机配套专用隔爆型电机,取得国家防爆电气产品质量监督检验中心的防爆合格证,其制动装置取得国家防爆电气产品质量监督检验中心的部件防爆合格证。 2、型号说明 FBCDZ通风机型号表示方法(举例说明): F B C D Z №28/ 2 × 400 装机功率,kW 配用电动机台数 机号,以叶轮直径的分米数表示 主要通风机 对旋通风机 抽出式 防爆型,防爆标志为ExdI 通风机 3、结构说明 3.1 该系列风机的气动设计,应用当代先进的叶轮机械三元流动理论和CAD设计技术,由中国科学院北京科能能源与动力研究发展中心专家精心设计叶轮叶片和风机流道,优化各种参数,减少损失,提高效率,确保风机在满足风量和风压的前提下在宽广的高效区运行,设计工况点最高静压效率达85%以上。 3.2 该系列风机主要由两台主机组成,两台主机由内外风筒、电机座和电机组成,每台电机轴伸端直接安装叶轮,两台主机的叶轮相对互为反向旋转,组成对旋结构。两级叶轮既是工作轮又互为导叶,既避免了电机和叶轮之间传动装置的能量损失,又避免了普通轴流风机的中、后导叶的能量损失;同时,特殊设计的中空机翼型电机冷却外循环风道减少

相关文档
最新文档