空间立体几何典型例题分析讲解

合集下载

高中数学立体几何与空间几何的应用题解析

高中数学立体几何与空间几何的应用题解析

高中数学立体几何与空间几何的应用题解析在高中数学学习中,我们会遇到立体几何与空间几何的应用题,这些题目涉及到我们日常生活中的实际问题,需要我们掌握相关的几何知识和解题方法。

本文将对一些常见的应用题进行解析,帮助读者更好地理解和应用数学知识。

题目一:求解一个体积问题一个长方体水箱的长、宽、高分别为3m、2m、4m,现在将该水箱装满水,请问需要多少升的水?解析:首先我们知道一个体积的计算公式是体积=底面积×高度。

根据题目给出的长方体水箱的长、宽、高,可以计算出水箱的底面积为3m×2m=6m²。

再根据题目给出的单位换算,1m³=1000L,可以将体积单位从立方米转换为升。

所以水箱的体积为6m²×4m=24m³=24000L。

因此,需要24000升的水才能将该水箱装满。

题目二:求解一个角度问题一个直角梯形棱镜的上底面和下底面的边长分别为3cm和6cm,两条斜边的夹角为60°,请问该棱镜的高是多少?解析:由题目可知,该直角梯形棱镜的上底面和下底面的边长分别为3cm和6cm,斜边的夹角为60°。

我们可以根据三角形的正弦定理求解该题。

正弦定理表达式为:a/sinA = b/sinB = c/sinC,其中a、b、c分别为三角形中相应边的长度,A、B、C为对应的角度。

根据题目信息,我们可以设该直角梯形棱镜的高为h。

根据正弦定理,得到3/sin30°= 6/sin60°= h/sin90°。

由于sin30°=1/2,sin60°=√3/2,sin90°=1,代入得到3/(1/2) = 6/(√3/2) = h/1。

通过计算可得,h=6cm,所以该棱镜的高是6cm。

题目三:求解一个面积问题一个正立方体油桶的侧面积为384cm²,求解该正立方体油桶的体积。

解析:由题目可知,该正立方体油桶的侧面积为384cm²。

高中立体几何典型题及解析

高中立体几何典型题及解析

高中立体几何典型500题及解析(二)(51~100题)51. 已知空间四边形ABCD 中,AB=BC=CD=DA=DB=AC,M 、N 分别为BC 、AD 的中点。

求:AM 及CN 所成的角的余弦值;解析:(1)连接DM,过N 作NE∥AM 交DM 于E ,则∠CNE 为AM 及CN 所成的角。

∵N 为AD 的中点, NE∥AM 省 ∴NE=21AM 且E 为MD 的中点。

设正四面体的棱长为1, 则NC=21·23= 43且ME=21MD=43 在Rt△MEC 中,CE 2=ME 2+CM 2=163+41=167∴cos ∠CNE=3243432167)43()43(222222-=⋅⋅-+=⋅⋅-+NECN CE NE CN ,又∵∠CNE ∈(0, 2π)∴异面直线AM 及CN 所成角的余弦值为32.注:1、本题的平移点是N ,按定义作出了异面直线中一条的平行线,然后先在△CEN 外计算CE 、CN 、EN 长,再回到△CEN 中求角。

2、作出的角可能是异面直线所成的角,也可能是它的邻补角,在直观图中无法判定,只有通过解三角形后,根据这个角的余弦的正、负值来判定这个角是锐角(也就是异面直线所成的角)或钝角(异面直线所成的角的邻补角)。

最后作答时,这个角的余弦值必须为正。

52. .如图所示,在空间四边形ABCD 中,点E 、F 分别是BC 、AD 上的点,已知AB=4,CD=20,EF=7, 31==EC BE FD AF 。

求异面直线AB 及CD 所成的角。

解析:在BD 上取一点G ,使得31=GD BG ,连结EG 、FG在ΔBCD 中,GDBG EC BE =,故EG//CD ,并且41==BC BE CD EG ,所以,EG=5;类似地,可证FG//AB ,且43==AD DF AB FG , 故FG=3,在ΔEFG 中,利用余弦定理可得 cos ∠FGE=215327532222222-=⋅⋅-+=⋅⋅-+GF EG EF GF EG ,故∠FGE=120°。

立体几何试题及解析

立体几何试题及解析

立体几何试题及解析第一题:求长方体的体积已知长方体的长为6cm,宽为4cm,高为3cm,求长方体的体积。

解析:长方体的体积公式为:体积 = 长 ×宽 ×高代入已知数据:体积 = 6cm × 4cm × 3cm = 72cm³所以长方体的体积为72立方厘米。

第二题:求正方体的表面积已知正方体的边长为5cm,求正方体的表面积。

解析:正方体的表面积公式为:表面积 = 6 ×边长²代入已知数据:表面积 = 6 × (5cm)² = 6 × 25cm² = 150cm²所以正方体的表面积为150平方厘米。

第三题:求圆柱体的体积已知圆柱体的底面半径为2cm,高度为8cm,求圆柱体的体积。

解析:圆柱体的体积公式为:体积= π × 半径² ×高度代入已知数据:体积= 3.14 × (2cm)² × 8cm ≈ 100.48cm³所以圆柱体的体积约为100.48立方厘米。

第四题:求球体的表面积已知球体的半径为3cm,求球体的表面积。

解析:球体的表面积公式为:表面积= 4π × 半径²代入已知数据:表面积= 4 × 3.14 × (3cm)² ≈ 113.04cm²所以球体的表面积约为113.04平方厘米。

总结:在几何学中,立体几何是其中的一个重要部分。

通过对不同类型立体的题目进行解析,可以加深对其体积、表面积等概念的理解。

掌握了基本的立体几何公式和计算方法,能够更好地解决与立体几何相关的问题。

在实际生活中,立体几何的应用广泛,例如建筑、工程、制造等领域。

因此,对立体几何的学习和理解具有重要的意义。

高中数学高考复习《空间几何体的三视图》经典例题解析附习题答案

高中数学高考复习《空间几何体的三视图》经典例题解析附习题答案

3 32正视图侧视图俯视图图1空间几何体的三视图1..一个空间几何体得三视图如图所示,则该几何体的表面积为(A )48 (B)32+8(C) 48+8(D) 80【答案】 C【命题意图】本题考查三视图的识别以及空间多面体表面积的求法.【解析】由三视图可知几何体是底面是等腰梯形的直棱柱.底面等腰梯形的上底为2,下底为4,高为4,。

故S 表【解题指导】:三视图还原很关键,每一个数据都要标注准确。

2.设图1是某几何体的三视图,则该几何体的体积为A.1229 B.1829 C. 429 D. 1836答案:B解析:由三视图可以还原为一个底面为边长是3的正方形,高为2的长方体以及一个直径为3的球组成的简单几何体,其体积等于233)23(3431829。

故选 B评析:本小题主要考查球与长方体组成的简单几何体的三视图以及几何体的体积计算.3.如图l —3.某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则该几何体的体积为()b5E2RGbCAPA.63 B.93 C.123 D.183【解析】 B.由题得三视图对应的直观图是如图所示的直四棱柱,.ABCD EA 平面3931232hS VABCD平行四边形。

所以选 B4.某几何体的三视图如图所示,则它的体积是(A )283(B )83(C )82(D )23【答案】A【解析】:由三视图可知该几何体为立方体与圆锥,立方体棱长为2,圆锥底面半径为1、高为2,所以体积为3212123283故选A5.某四面体的三视图如图所示,该四面体四个面的面积中,最大的是HGFEDCBA 3123A .8B .62C .10 D .82【答案】 C6.一个正三棱柱的侧棱长和底面边长相等,体积为32,它的三视图中的俯视图如右图所示,左视图是一个矩形,则这个矩形的面积是____________.p1EanqFDPw答案:2323234aa ,解得解析:设正三棱柱的侧棱长和底面边长为a ,则由a=2,正三棱柱的左视图与底面一边垂直的截面大小相同,故该矩形的面积是322232.DXDiTa9E3d7.一个几何体的三视图如图所示(单位:m ),则这个几何体的体积为__________ 3m 【答案】6【解析】由题意知,该几何体为一个组合体,其下面是一个长方体(长为3m,宽为2m,高为1m),上面有一个圆锥(底面半径为1,高为3),所以其体积为1321363V V 长方体圆锥.8. 下图是长和宽分别相等的两个矩形.给定下列三个命题:①存在三棱柱,其正(主)视图、俯视图如下图;②存在四棱柱,其正(主)视图、俯视图如下图;③存在圆柱,其正(主)视图、俯视图如下图.其中真命题的个数是(A)3 (B)2 (C)1 (D)0 【答案】 A【解析】对于①,可以是放倒的三棱柱;容易判断②③可以.9.若某几何体的三视图如图所示,则这个几何体的直观图可以是第一节10.若一个底面是正三角形的三棱柱的正视图如图所示,则其侧面积...等于()A.3 B.2 C.23 D.6【命题立意】本题考查三棱柱的三视图与直观图、表面积。

高中立体几何典型题及解析

高中立体几何典型题及解析

高中立体几何典型500题及解析(二)(51~100题)51. 已知空间四边形ABCD 中,AB=BC=CD=DA=DB=AC,M 、N 分别为BC 、AD 的中点。

求:AM 及CN 所成的角的余弦值;解析:(1)连接DM,过N 作NE∥AM 交DM 于E ,则∠CNE 为AM 及CN 所成的角。

∵N 为AD 的中点, NE∥AM 省 ∴NE=21AM 且E 为MD 的中点。

设正四面体的棱长为1, 则NC=21·23= 43且ME=21MD=43 在Rt△MEC 中,CE 2=ME 2+CM 2=163+41=167∴cos ∠CNE=3243432167)43()43(222222-=⋅⋅-+=⋅⋅-+NECN CE NE CN ,又∵∠CNE ∈(0, 2π)∴异面直线AM 及CN 所成角的余弦值为32.注:1、本题的平移点是N ,按定义作出了异面直线中一条的平行线,然后先在△CEN 外计算CE 、CN 、EN 长,再回到△CEN 中求角。

2、作出的角可能是异面直线所成的角,也可能是它的邻补角,在直观图中无法判定,只有通过解三角形后,根据这个角的余弦的正、负值来判定这个角是锐角(也就是异面直线所成的角)或钝角(异面直线所成的角的邻补角)。

最后作答时,这个角的余弦值必须为正。

52. .如图所示,在空间四边形ABCD 中,点E 、F 分别是BC 、AD 上的点,已知AB=4,CD=20,EF=7, 。

求异面直线AB 及CD 所成的角。

解析:在BD 上取一点G ,使得,连结EG 、FG 在ΔBCD 中,,故EG//CD ,并且, 所以,EG=5;类似地,可证FG//AB ,且, 故FG=3,在ΔEFG 中,利用余弦定理可得 cos ∠FGE=215327532222222-=⋅⋅-+=⋅⋅-+GF EG EF GF EG ,故∠FGE=120°。

另一方面,由前所得EG//CD ,FG//AB ,所以EG 及FG 所成的锐角等于AB 及CD 所成的角,于是AB 及CD 所成的角等于60°。

立体几何难题解析附有答案详解

立体几何难题解析附有答案详解

立体几何难题解析(附有答案详解)一、解答题1.如图1,直角梯形ABCD 中,//,90AB CD ABC ∠=︒,42==AB CD ,2=BC .//AE BC 交CD 于点E ,点G ,H 分别在线段DA ,DE 上,且//GH AE .将图1中的AED ∆沿AE 翻折,使平面ADE ⊥平面ABCE (如图2所示),连结BD 、CD ,AC 、BE .HEGDCBA图1图2ABCG EHD(Ⅰ)求证:平面⊥DAC 平面DEB ;(Ⅱ)当三棱锥GHE B -的体积最大时,求直线BG 与平面BCD 所成角的正弦值.2.如图,在直三棱柱111ABC A B C -中,点D E 、分别在边11BC B C 、上,1CD B E AC ==,60ACD ∠︒=.求证:(1)BE 平面1AC D ;(2)平面1ADC ⊥平面11BCC B .3.如图,在直角梯形CD AB 中,D//C A B ,DC 90∠A = ,AE ⊥平面CD AB ,F//CD E ,1C CD F D 12B ==AE =E =A =.(1)求证:C //E 平面F AB ;(2)在直线C B 上是否存在点M ,使二面角D E -M -A 的大小为6π?若存在,求出C M 的长;若不存在,说明理由.4.如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,底面ABCD 为直角梯形,90CDA BAD ∠=∠= ,1AD DC ==,2AB =,E 、F 分别为PD 、PB 的中点.(1)求证:平面PCB ⊥平面PAC ;(2)若平面CEF 与底面ABCD 所成的锐二面角为4π,求PA 的长.5.如图,两个相同的正四棱锥底面重合组成一个八面体,可放入棱长为2的正方体中,重合的底面与正方体的某一个面平行,各顶点均在正方体的表面上,将满足上述条件的八面体称为正方体的“正子体”.(1)若正子体的六个顶点分别是正方体各面的中心,求该八面体的表面积.(2)此正子体的表面积S 是否为定值?若是,求出该定值;若不是,求出表面积的取值范围.6.如图1,已知四边形ABCD 满足//AD BC ,12BA AD DC BC a ====,E 是BC 的中点,将BAE 沿着AE 翻折成1B AE △,形成四棱锥1B AECD -,F 为1B D 的中点,M 为AE 的中点,如图2所示.(1)求证:面1B DM ⊥面1B AE ;(2)当平面1B AE 与平面1B DC 所成角的余弦值为5时,求1B D 的长度;(3)当面1B AE ⊥面AECD 时,求平面1ADB 与平面1ECB 所成角的正弦值.7.在棱长均为2的正三棱柱111ABC A B C -中,E 为11B C 的中点.过AE 的截面与棱1BB ,11A C 分别交于点F ,G.(1)若F 为1BB 的中点,求三棱柱被截面AGEF 分成上下两部分的体积比12V V ;(2)若四棱雉1A AGEF -求截面AGEF 与底面ABC 所成二面角的正弦值;(3)设截面AFEG 的面积为0S ,AEG ∆面积为1S ,AEF 面积为2S ,当点F 在棱1BB 上变动时,求2012S S S的取值范围.8.如图,在四棱锥B ACDE -中,平面ABC ⊥平面ACDE ,ABC 是等边三角形,在直角梯形ACDE 中,//AE CD ,AE AC ⊥,1AE =,2AC CD ==,P 是棱BD 的中点.(1)求证:EP ⊥平面BCD ;(2)设点M 在线段AC 上,若平面PEM 与平面EAB求MP 的长.9.如图,ABCD是块矩形硬纸板,其中2AB AD ==E 为DC 中点,将它沿AE 折成直二面角D AE B --.(1)求证:AD ⊥平面BDE ;(2)如果()0AH HB λλ=> ,求二面角H AD E --的余弦值.10.如图1,在边长为2的正方形ABCD 中,P 为CD 中点,分别将△PAD,△PBC 沿PA,PB 所在直线折叠,使点C 与点D 重合于点O,如图2.在三棱锥P-OAB 中,E 为PB 中点.(Ⅰ)求证:PO⊥AB;(II)求直线BP 与平面POA 所成角的正弦值;(Ⅲ)求二面角P-AO-E 的大小.11.如图,在四棱锥P −ABCD 中,PA⊥平面Q 在PB 上,且满足PQ∶QB=1∶3,求直线CQ 与平面PAC 所成角的正弦值.12.已知四棱锥中平面,点在棱上,且,底面为直角梯形,分别是的中点.(1)求证://平面;(2)求截面与底面所成二面角的大小.13.如图,已知四边形ABCD由Rt ABC∆拼接而成,其中∆和Rt BCDBAC BCD∠=∠=︒,3090∆沿着BC折起.=,BC=ABC∠=︒,AB ACDBC(1)若AD=,求异面直线AB与CD所成角的余弦值;(2)当四面体ABCD的表面积的最大时,求二面角A BC D--的余弦值.14.如图,ABCD与ADEF是两个边长为1的正方形,它们所在的平面互相垂直.(1)求异面直线AE 与BD 所成角的大小;(2)在线段BD 上取点M ,在线段AE 上取点N ,且BMx BD=,EN y EA =,试用x ,y 来表示线段MN 的长度;(3)在(2)的条件下,求MN 长度的最小值,并判断当MN 最短时,MN 是否是异面直线AE 与BD 的公垂线段?15.(本题满分14分)如图所示,正方形ABCD 所在的平面与等腰ABE ∆所在的平面互相垂直,其中顶120BAE ∠= ,4AE AB ==,F 为线段AE 的中点.(1)若H 是线段BD 上的中点,求证://FH 平面CDE ;(2)若H 是线段BD 上的一个动点,设直线FH 与平面ABCD 所成角的大小为θ,求tan θ的最大值.16.如图所示,正方体ABCD A B C D -''''的棱长为1,E F 、分别是棱AA CC ''、的中点,过直线EF 的平面分别与棱BB DD ''、交于M N 、,设[]01BM x x =∈,,,求:(1)求EF 与面A B BA ''所成的角的大小;(2)求四棱锥C MENF '-的体积()V h x =,并讨论它的单调性;(3)若点P 是正方体棱上一点,试证:满足'2PA PC +=成立的点的个数为6.17.如图,在斜三棱柱111ABC A B C -中,AC BC =,D 为AB 的中点,1D 为11A B 的中点,平面111A B C ⊥平面11ABB A ,异面直线1BC 与1AB 互相垂直.(1)求证:平面1//A DC 平面11BD C ;(2)若1CC 与平面11ABB A 的距离为x ,116AC AB ==,三棱锥1AACD -的体积为y ,试写出y 关于x 的函数关系式;(3)在(2)的条件下,当1CC 与平面11ABB A 的距离为多少时,三棱锥1A ACD -的体积取得最大值?并求出最大值.18.如图,四棱锥P ABCD -的底面为菱形且∠ABC=120°,PA ⊥底面ABCD,AB=1,PA E 为PC 的中点.(1)求直线DE 与平面PAC 所成角的大小;(2)求二面角E-AD-C 平面角的正切值;(3)在线段PC 上是否存在一点M ,使PC ⊥平面MBD 成立.如果存在,求出MC 的长;如果不存在,请说明理由参考答案1.(Ⅰ)见解析;(Ⅱ)BG 与平面BCD所成角的正弦值为6.【解析】(Ⅰ)由已知CD AB //,︒=∠90ABC ,42==AB CD 及BC AE //交CD 于点E .得到四边形ABCE 是边长为2的正方形.BE AC ⊥,AE DE ⊥.再据平面ADE ABCE ⊥平面,平面ADE ABCE AE ⋂=平面,得到DE ABCE ⊥平面,DE AC ⊥,AC DBE ⊥平面,得证.(Ⅱ)由(Ⅰ)知DE ABCE ⊥平面,EC AE ⊥,以E 为原点,ED EC EA ,,的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系.)0,0,2(A ,)0,2,2(B ,(0,2,0)C ,)2,0,0(D 设x EH =,则x DH GH -==2(20<<x )由CE AB //,得到DAE AB 面⊥,从而2)]2(21[3131⨯-=⋅=∆-x x AB S V GHE GHE B ]1)1([31)2(3122+--=+-=x x x ,根据1=x 时,三棱锥GHE B -体积最大,此时,H 为ED 中点.G 也是AD 的中点,求得)1,0,1(G ,)1,2,1(--=BG .设),,(z y x n =是面BCD 的法向量.由⎪⎩⎪⎨⎧=-=-⋅=⋅=-=-⋅=⋅022)2,2,0(),,(02)0,0,2(),,(z y z y x DC n x z y x BC n ,令1=y ,得)1,1,0(=n ,设BG 与面BCD 所成角为θ,由||sin ||||BG n BG n θ⋅=即得.试题解析:(Ⅰ)∵CD AB //,︒=∠90ABC ,42==AB CD 又BC AE //交CD 于点E .∴四边形ABCE 是边长为2的正方形∴BE AC ⊥,AE DE ⊥.又∵平面ADE ABCE ⊥平面平面ADE ABCE AE = 平面∴DE ABCE⊥平面∵AC ABCE ⊂平面,∴DE AC ⊥又E BE DE = ∴AC DBE ⊥平面∵AC DAC ⊂平面∴平面DAC DEB⊥平面(Ⅱ)由(Ⅰ)知DE ABCE ⊥平面,ECAE ⊥以E 为原点,ED EC EA ,,的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系.则)0,0,2(A ,)0,2,2(B ,(0,2,0)C ,)2,0,0(D 设x EH =,则x DH GH -==2(20<<x )∵CE AB //,∴DAE AB 面⊥∴2)]2(21[3131⨯-=⋅=∆-x x AB S V GHE GHE B ]1)1([31)2(3122+--=+-=x x x ∵20<<x ,∴1=x 时,三棱锥GHE B -体积最大,此时,H 为ED 中点.∵AE GH //,∴G 也是AD 的中点,∴)1,0,1(G ,)1,2,1(--=BG .设),,(z y x n =是面BCD 的法向量.则(,,)(2,0,0)20(,,)(0,2,2)220n BC x y z x n DC x y z y z ⎧⋅=⋅-=-=⎪⎨⋅=⋅-=-=⎪⎩ 令1=y ,得)1,1,0(=n 设BG 与面BCD 所成角为θ则||sin 6||||BG n BG n θ⋅===∴BG 与平面BCD所成角的正弦值为6.2.(1)见详解;(2)见详解.【分析】(1)通过1BE C D 来证明BE 平面1AC D ;(2)通过AD ⊥平面11BCC B 来证明平面1ADC ⊥平面11BCC B .【详解】证明:(1)由三棱柱111ABC A B C -是直三棱柱,得11BC B C .因为点D E 、分别在边11BC B C 、上,1CD B E =,所以1BD C E =,1BD C E .所以四边形1BDC E 是平行四形,所以1BE C D 因为1C D ⊂平面1AC D ,BE ⊄平面1AC D 所以BE 平面1AC D .(2)由三棱柱111ABC A B C -是直三棱柱,得1CC ⊥平面ABC ,因为AD ⊂平面ABC ,所以1AD CC ⊥,在ACD ∆中,由12CD AC =,60ACD ∠︒=,得32AD AC ==,所以222AD CD AC +=,所以90ADC ∠︒=,即:AD BC ⊥,因为BC ⊂平面11BCC B ,1CC ⊂平面11BCC B ,1BC CC C = ,所以AD ⊥平面11BCC B ,因为AD ⊂平面1ADC ,所以平面1ADC ⊥平面11BCC B .3.(1)详见解析(2)C 3M =【解析】(1)证明线面平行,一般利用线面平行判定定理进行论证,即从平几出发,寻找线线平行:根据题意先将图形补全,再利用平行四边形得线线平行(2)研究二面角,一般方法为利用空间向量:先建立坐标系,利用坐标求二面角两个平面的法向量,因为AE ⊥平面D AM ,所以AE 为平面D AM 的一个法向量,而平面D EM 的一个法向量,则需联立方程组解出,再利用向量数量积求两法向量的夹角的余弦值,最后根据二面角与法向量夹角相等或互补关系,列等量关系确定点M ,同时根据向量的模求出C M 的长.解:(1)如图,作FG//EA ,G//F A E ,连接G E 交F A 于H ,连接BH ,G B ,F//CD E 且F CD E =,∴G//CD A ,即点G 在平面CD AB 内.由AE ⊥平面CD AB ,知G AE ⊥A ,∴四边形FG AE 为正方形,四边形CD G A 为平行四边形,∴H 为G E 的中点,B 为CG 的中点,∴//C BH E .BH ⊂平面F AB ,C E ⊄平面F AB ,∴C //E 平面F AB .(4分)(2)法一:如图,以A 为原点,G A 为x 轴,D A 为y 轴,AE 为z 轴,建立空间直角坐标系xyz A -.则()0,0,0A ,()0,0,1E ,()D 0,2,0,设()01,,0y M ,∴()D 0,2,1E =- ,()0D 1,2,0y M =-,设平面D EM 的一个法向量为(),,n x y z = ,则()0D 20D 20n y z n x y y ⎧⋅E =-=⎪⎨⋅M =+-=⎪⎩,令1y =,得2z =,02x y =-,∴()02,1,2n y =-.(10分)又 AE ⊥平面D AM ,∴()0,0,1AE =为平面D AM 的一个法向量,∴cos ,cos62n πAE ==,解得023y =±,∴在直线C B 上存在点M ,且33C 2233⎛M =-±= ⎝⎭.方法二:作D S A⊥M ,则SA ,由等面积法,得D 3M =,∴C 3M =.【分析】(1)本题首先可根据题意求出AC 、BC 的长度,然后根据222AC BC AB +=得出BC AC ⊥,再然后根据PA ⊥底面ABCD 得出PA BC ⊥,即可得出BC ⊥平面PAC ,最后根据BC ⊂平面PCB 即可证得平面PCB ⊥平面PAC ;(2)本题首先可结合图像构造空间直角坐标系,然后设PA a =,写出平面ABCD的法向量1n u r 以及平面CEF 的法向量2n u u r,最后根据平面CEF 与底面ABCD 所成的锐二面角为4π即可求出PA 的长.【详解】(1)因为1AD DC ==,2AB =,90CDA BAD ∠=∠=,所以AC BC ==因为222AC BC AB +=,所以BC AC ⊥,因为PA ⊥底面ABCD ,BC ⊂平面ABCD ,所以PA BC ⊥,因为AC PA A ⋂=,所以BC ⊥平面PAC ,因为BC ⊂平面PCB ,所以平面PCB ⊥平面PAC .(2)如图,以A 为坐标原点,分别以AD 、AB 、AP 所在直线为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,设(0)PA a a =>,则()0,2,0B =,()1,1,0C ,()1,0,0D ,()0,0,P a ,因为E 、F 分别为PD 、PB 的中点,所以1,0,22a E ⎛⎫ ⎪⎝⎭,0,1,2a F ⎛⎫ ⎪⎝⎭,1,1,22a CE ⎛⎫=-- ⎪⎝⎭ ,1,0,2a CF ⎛⎫=- ⎪⎝⎭ ,易知平面ABCD 的一个法向量1(0,0,1)n =,设平面CEF 的法向量为2(,,)n x y z =,则220,0,CE n CF n ⎧⋅=⎪⎨⋅=⎪⎩ ,即10,220,2az x y az x ⎧--+=⎪⎪⎨⎪-+=⎪⎩,不妨取4z =,则2x a =,y a =,即2(2,,4)a a n=,因为平面CEF 与底面ABCD 所成的锐二面角为4π,所以121212cos,nnn nnn⋅=⋅解得a=,即PA【点睛】利用空间向量解决立体几何问题,关键是依托图形建立空间直角坐标系,将相关向量用坐标表示,通过向量运算判断或证明空间元素的位置关系及探究空间角、空间距离问题.建立空间直角坐标系的三种方法:(1)以几何体中共顶点且互相垂直的三条棱所在的直线作为坐标轴建系;(2)利用线面垂直关系找到三条互相垂直的直线建系;(3)利用面面垂直关系找到三条互相垂直的直线建系.5.(1).【分析】(1)根据题意,正子体的所有棱都是正方体相邻两个面中心的连线,则正子体每个面都是正三角形,进而求出表面积;(2)设平面ABCD截正方体所得截面为A B C D'''',设(01)AA x x'=≤≤,进而算出ADE的面积,从而算出正子体的表面积即可判断.【详解】(1)依题意,正子体任一棱都是正方体相邻两个面中心的连线,所以正子体所有棱的长均相等.因为AB=所以242ABES=⨯,故该八面体的表面积8=.(2)正子体的表面积S不是定值.如图1,设平面ABCD截正方体所得截面为A B C D'''',且A B C D''''的中心为O,过点O作OG A B''⊥,垂足为G.设(01)AA x x '=≤≤,则1AG x =-,222222(1)1123AE DE AO OE x x x ==+=-++=-+,()2222(2)224AD x x x x =-+=-+.设AD 的中点为H ,如图2,则()22212122AD AH x x ⎛⎫==-+ ⎪⎝⎭,()22221222EH AE AH x x =-=-+,所以()()()2222211122422442ADE S AD EH x x x x ⎡⎤⎡⎤=⋅=-+-+⎢⎥⎣⎦⎣⎦ ()()2221322242x x x x =-+-+.因为01x ≤≤,所以2120x x -≤-≤,则()()2223132222442x x x x ≤-+-+≤,ADE S ≤≤ S ≤≤,所以此正子体的表面积S 的取值范围为.6.(1)证明见解析;(2)5a ;(3)45.【分析】(1)要证面1B DM ⊥面1B AE ,只需证AE ⊥面1B DM 即可;(2)根据已知条件可知,1MB D ∠即为面1B AE 与面1B DC 所成角的平面角,进而可得1B D 的长度;(3)建立适当的空间直角坐标系进行求解即可.【详解】(1)证明:因为12BA AD DC BC a ====,E 是BC 的中点,所以AD CE a ==,又因为//AD BC ,所以四边形AECD 为菱形,所以ABE △为正三角形,又因为M 为AE 的中点,所以1B M AE ⊥,DM AE ⊥,又因为1B M DM M ⋂=,所以AE ⊥面1B DM ,又因为AE ⊆面1B AE ,所以面1B DM ⊥面1B AE ,(2)由(1)知:DM AE ⊥,1B M AE ⊥,又因为//AE CD ,所以1B M CD ⊥,CD DM ⊥,所以CD ⊥面1B DM ,所以面1B DC ⊥面1B DM ,又因为面1B DM ⊥面1B AE ,所以1MB D ∠即为面1B AE 与面1B DC所成角的平面角,即1cos 5MB D ∠=,在1MB D △中,1B M =,DM =,由余弦定理得:22211111cos 25B M B D DM MB D B M B D +-∠=⋅,解得:15B D =.(3)因为面1B AE ⊥面AECD ,1B M AE ⊥,所以1B M ⊥面AECD ,所以以M 为坐标原点,以向量ME,MD ,1MB 的方向为x 轴,y 轴,z 轴的正方向建立如图所示的空间直角坐标系,由题可得:,0,02aA ⎛⎫- ⎪⎝⎭,1B ⎛⎫⎪ ⎪⎝⎭,0,,02D ⎛⎫⎪ ⎪⎝⎭,,0,02aE ⎛⎫⎪⎝⎭,,,02C a ⎛⎫⎪ ⎪⎝⎭,则有:1,0,22a B A ⎛⎫=-- ⎪ ⎪⎝⎭,10,,22B D ⎛⎫=- ⎪ ⎪⎝⎭,1,0,22a B E ⎛⎫=- ⎪ ⎪⎝⎭ ,133,22B C a a a ⎛⎫= ⎪ ⎪⎝⎭,设平面1ADB 与平面1ECB 的法向量分别为()1111,,x n y z =,()2222,,n x y z = ,由111100n B A n B D ⎧⋅=⎪⎨⋅=⎪⎩,得11110220a x z y z ⎧--=⎪⎪=,令11z =,则1x =11y =,所以()1n =,由212100n B E n B C ⎧⋅=⎪⎨⋅=⎪⎩,得222220220ax z ax y z ⎧-=⎪⎪⎨⎪+=⎪⎩,令21z =,则1x =21y =-,所以)21,1n =-,设平面1ADB 与平面1ECB 所成角的平面角为θ,则:12123cos 5n n n n θ⋅==⋅ 所以4sin 5θ=.7.(1)121323V V =;(2)45;(3)94,2⎡⎤⎢⎣⎦.【分析】(1)连结EF ,并延长分别交1CC ,CB 于点M ,N ,连结AM 交11A C 于点G ,连结AN ,GE ,利用比例关系确定G 为11A C 靠近1C 的三等分点,然后先求出棱柱的体积,连结1A E ,1A F ,由11111A EFB G AA E F AA E V V V V ---=++和21V V V =-进行求解,即可得到答案;(2)求出点G 到平面1A AE 的距离,得到点G 为11A C 靠近1C 的四等分点,通过面面垂直的性质定理可得1AGA ∠即为截面AGEF 与底面ABC 所成的二面角,在三角形中利用边角关系求解即可;(3)设1GC m =,则[0m ∈,1],先求出12S S 的关系以及取值范围,然后将2012S S S 转化为1S ,2S 表示,求解取值范围即可.【详解】解:(1)连接EF ,并延长分别交1CC ,CB 延长线于点M ,N ,连接AM 交11A C 于点G ,连接AN ,GE .易得11113GC MC C E AC MC CN ===.故G 为11A C 靠近1C 的三等分点.11MC =,123GC =.下面求三棱柱被截面分成两部分的体积比.三棱柱111ABC A B C -的体积2224V =⨯=连接1A E ,1A F .由1//BB 平面1A AE 知,1F AA E V -为定值.11121323F AA E V -=⨯⨯=.11111A EFB G AA E F AA E V V V V ---=++1111211232323=⨯⨯⨯⨯⨯+=21V V V =-=121323V V =.(2)由111A AGEF G AA E F AA E V V V ---=+及1F AA E V -=1G AA E V -=又1113G AA E AA E V S h -=⨯⨯△,所以34h =.即点G 到1A E 的距离为34,G 为11A C 靠近1C 的四等分点.因为平面111//A B C 平面ABC ,所以截面AGEF 与平面ABC 所成角即为截面AGEF 与平面111A B C 所成角,在1GC E △中,112GC =,11C E =,故1EG GC ⊥.又因为平面11ACC A ⊥平面111A B C ,且平面11ACC A 平面11111A B C AC =,所以EG ⊥平面11ACC A .则1AGA ∠即为截面AGEF 与底面ABC 所成的二面角.在1Rt AGA △中,132A G =,12AA =,52AG =.故114sin 5AA A GA AG ∠==.因此,截面AGEF 与平面ABC 所成二面角的正弦值为45.(3)设1GC m =,则[]0,1m ∈,2MG mGA m=-.设MGE 的面积为S ,所以12S m S m=-.又因为21S S S =+,所以1222S mS -=.且1221,122S m S -⎡⎤=∈⎢⎥⎣⎦.令12S t S =则1,12t ⎡⎤∈⎢⎥⎣⎦故()21201212122212S S SS S S S S S S S +==++.令12S t S =则1,12t ⎡⎤∈⎢⎥⎣⎦,所以()12g t t t =++在1,12t ⎡⎤∈⎢⎥⎣⎦上单调递减,所以()()min 14g t g ==,()max 1922g t g ⎛⎫== ⎪⎝⎭,所以()94,2g t ⎡⎤∈⎢⎥⎣⎦,所以20121221924,2S S S S S S S ⎡⎤=++∈⎢⎥⎣⎦8.(1)证明见解析;(2)2M P =.【分析】(1)取BC 的中点Q ,连接PQ 、AQ ,由线面垂直判定定理可证AQ ⊥面BCD ,即可得证;(2)以Q 为原点建立坐标系,利用向量法建立关系可求出.【详解】(1)证明:如图,取BC 的中点Q ,连接PQ 、AQ ,因为ABC 是等边三角形,所以AQ BC ⊥,又平面ABC ⊥平面ACDE ,AE AC ⊥,平面ABC 平面ACDE =AC ,所以AE ⊥面ABC ,又AQ ⊂面ABC ,所以AE AQ ⊥,又//AE CD ,所以CD AQ ⊥,又CD BC C ⋂=,所以AQ ⊥面BCD ,因为2BP PD =,又P 是棱BD 的中点,所以112PQ DC ==,//PQ DC ,又//AE CD ,1AE =,所以//AE PQ ,AE PQ =,即四边形AEPQ 是一个平行四边形,所以//EP AQ ,所以EP ⊥平面BCD ;(2)由(1)得PQ ⊥平面ABC ,所以以点Q 为坐标原点,建立如图所示的空间直角坐标系,则()0,0,0Q ,)A ,()0,1,0B ,)E ,()0,0,1P ,设平面EAB 的法向量为()111,,m x y z =,由()111+00m AB y m m AE z ⎧⋅==⎪⇒=⎨⋅==⎪⎩,因为点M 在线段AC上,设其坐标为),0M t -,其中01t ≤≤,所以(),,1EM t =--,()EP = 设平面PEM 的法向量为()222,,n x y z =,由()222200,1,0n EM ty z n t n EP ⎧⋅=--=⎪⇒=-⎨⋅==⎪⎩,由题意,设平面PEM 与平面EAB 所成的锐二面角为θ,则1cos 2m n t m n θ⋅=⇒=-⋅或12t =,因为01t ≤≤,所以1,02M ⎫-⎪⎪⎝⎭,所以M P =.【点睛】向量法求二面角的步骤:建、设、求、算、取.1、建:建立空间直角坐标系.以三条互相垂直的垂线的交点为原点,没有三垂线时需做辅助线;建立右手直角坐标系,让尽量多的点落在坐标轴上。

数学习题立体几何题目讲解

数学习题立体几何题目讲解

数学习题立体几何题目讲解【数学习题立体几何题目讲解】数学中的立体几何是一个涉及到三维空间中的图形、体积、表面积等概念的重要分支。

掌握立体几何的知识对于我们解决实际问题、培养逻辑思维能力具有重要意义。

本文将就数学习题中的立体几何题目进行详细讲解,帮助读者理解并掌握相关知识。

一、平面与立体的关系在立体几何中,平面是一个基本的概念。

平面是无限多个点的集合,它可以与立体进行相交。

下面以一个具体的立体几何题目为例,讲解平面与立体的关系:题目:已知一个等腰三角柱,底面的底边长为6cm,高为8cm,侧面积为60cm²。

求该等腰三角柱的体积。

解析:首先,根据题目中的描述,我们可以得知等腰三角柱的底边长为6cm,高为8cm。

然后,题目给出了该等腰三角柱的侧面积为60cm²。

由于等腰三角柱的底面和侧面是连接在一起的,因此可以构成一个立体图形。

我们可以设侧面的形状为一个等腰三角形,两个直角边的长度分别为a和b。

根据等腰三角形的性质,我们可以得到等腰三角形的面积公式为:S = 1/2 * 底边 * 高。

代入题目中给出的数据,可以得到等腰三角形的面积为:S = 1/2 * 6 * 8 = 24cm²。

由于等腰三角柱的侧面积为60cm²,而侧面的形状是一个等腰三角形,所以两个等腰三角形的面积之和等于60cm²。

设等腰三角形的底边为a,高为b,可以得到方程:24 + 24 + a * b = 60。

解方程可得:a * b = 12。

由于等腰三角柱的高为8,可以得到体积的公式为:V = 底面积 * 高。

代入题目中给出的数据,可以得到等腰三角柱的体积为:V = 6 * 8 = 48cm³。

因此,该等腰三角柱的体积为48cm³。

二、立体的体积计算在解决立体几何题目时,计算体积是一个常见的问题。

下面以一个具体的例子进行讲解:题目:一个正方体的体积为27cm³,求该正方体的边长。

空间几何体的结构特征例题和知识点总结

空间几何体的结构特征例题和知识点总结

空间几何体的结构特征例题和知识点总结在我们的日常生活中,随处可见各种各样的空间几何体,比如建筑物的形状、日常用品的外形等。

了解空间几何体的结构特征,不仅能够帮助我们更好地认识周围的世界,也是学习数学的重要基础。

接下来,让我们通过一些例题和知识点的总结,深入探讨空间几何体的奥秘。

一、棱柱棱柱是由两个互相平行的平面,以及其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行的多面体。

例 1:一个三棱柱有几个面?几条棱?几个顶点?解:三棱柱有 5 个面(2 个底面和 3 个侧面),9 条棱,6 个顶点。

棱柱的性质:1、侧棱都相等,侧面都是平行四边形。

2、两个底面与平行于底面的截面是全等的多边形。

3、过不相邻的两条侧棱的截面是平行四边形。

二、棱锥棱锥是由一个底面是多边形,其余各面是有一个公共顶点的三角形所围成的多面体。

例 2:一个四棱锥有几个面?几条棱?几个顶点?解:四棱锥有 5 个面(1 个底面和 4 个侧面),8 条棱,5 个顶点。

棱锥的性质:1、侧面都是三角形。

2、平行于底面的截面与底面相似,其面积比等于对应高的平方比。

三、棱台棱台是用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分。

例 3:正四棱台的上、下底面边长分别为 2 和 4,高为 2,求侧棱长。

解:设正四棱台的侧面梯形的高为\(h\),根据勾股定理可得:\\begin{align}h&=\sqrt{2^2 +\left(\dfrac{4 2}{2}\right)^2}\\&=\sqrt{4 + 1}\\&=\sqrt{5}\end{align}\侧棱长为\(\sqrt{5}\)。

棱台的性质:1、上下底面是相似多边形。

2、各侧棱延长后交于一点。

四、圆柱圆柱是以矩形的一边所在直线为轴旋转,其余三边旋转所成的曲面所围成的几何体。

例 4:已知圆柱的底面半径为 3,高为 5,求圆柱的侧面积和体积。

解:圆柱的侧面积\(S = 2\pi rh = 2\pi×3×5 = 30\pi\)圆柱的体积\(V =\pi r^2h =\pi×3^2×5 = 45\pi\)圆柱的性质:1、圆柱的轴截面是矩形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第II卷(非选择题)
请点击修改第II卷的文字说明
评卷人
得分
二、填空题(题型注释)
32.一个空间几何体的三视图(单位: )如图所示,则该几何体的体积为_______ .
33.一个四面体所有棱长都为 ,四个顶点在同一球面上,则此球表面积为。
34.如图,平面四边形 中, , ,将其沿对角线 折成四面体 ,使平面 平面 ,若四面体 顶点在同一个球面上,则该球的体积为.
35.如图,一个空间几何体的正视图、侧视图、俯视图均为全等的等腰直角三角形,且直角三角形的直角边长为1,那么这个几何体的体积为____________cm3.
36.三个球的半径之比为1∶2∶3,则最大球的体积是其他两个球的体积之和的____倍
37.湖结冰时,一个球漂在其上,取出后(未弄破冰),冰面上留下了一个直径为24cm,深为8cm的空穴,则该球的半径为
空间立体几何
考试围:xxx;考试时间:100分钟;命题人:xxx
注意事项:
1.答题前填写好自己的、班级、考号等信息
2.请将答案正确填写在答题卡上
第I卷(选择题)
请点击修改第I卷的文字说明
评卷人
得分
一、选择题(题型注释)
1.如图,已知球O是棱长为1的正方体ABCB-A1B1C1D1的切球,则平面ACD1截球O的截面面积为( )
13.一个表面积为36π的球外切于一圆柱,则圆柱的表面积为( )
A、45πB、27π
C、36πD、54π
14.如图,半球有一接正方体,则这个半球体积与正方体的体积之比为( )
A、 B、 C、 D、
15.两个球的体积之比是 ,那么这两个球的表面积之比是( )
A、 B、 C、 D、
16.甲球与某立方体的各个面都相切,乙球与这个立方体的各条棱都相切,丙球过这个立方体的所有顶点,则甲、乙、丙三球的半径的平方之比为( )
41.有6根细木棒,其中较长的两根分别为 , ,其余4根均为 ,用它们搭成三棱锥,则其中两条较长的棱所在的直线所成的角的余弦值为.
A. B. C. D.
23.中心角为135°的扇形,其面积为B,其围成的圆锥的全面积为A,则A:B为( )
A.11:8B.3:8C.8:3D.13:8
24.与正方体各面都相切的球,它的表面积与正方体的表面积之比为( )
A. B. C. D.
25.直径为10cm的一个大金属球,熔化后铸成若干个直径为2cm的小球,如果不计损耗,可铸成这样的小球的个数为( )
A. B. C. D.
8.已知球的表面积为20 ,球面上有A、B、C三点,如果AB=AC=2,BC=2 ,则球心 到平面ABC的距离为( )
A.1B. C. D.2
9.设四面体的四个面的面积分别为S1,S2,S3,S4,它们的最大值为S,记 ,
则有( )
A.2< ≤4B.3< ≤4C.2.5< ≤4.5D.3.5< ≤5.5
A. B. C.4D.8
5.一个棱锥的三视图如图,则该棱锥的全面积(单位:c )为( )
(A)48+12 (B)48+.一个几何体的三视图如图所示,则该几何体的体积为()
A.2B.1C. D.
7.已知正方形 的边长为4,点 位边 的中点,沿 折叠成一个三棱锥 (使 重合于点 ),则三棱锥 的外接球表面积为
A、 12πB、 16πC、 πD、 π
20.在长方体 ,底面是边长为 的正方形,高为 ,则点 到截面 的距离为( )
A. B. C. D.
21.直三棱柱 中,各侧棱和底面的边长均为 ,点 是 上任意一点,连接 ,则三棱锥 的体积为( )
A. B. C. D.
22.已知各顶点都在一个球面上的正四棱柱(其底面是正方形,且侧棱垂直于底面)高为 ,体积为 ,则这个球的表面积是( )
10.若一个三角形,采用斜二测画法作出其直观图,其直观图面积是原三角形面积的
A 倍 B 倍 C 2倍 D 倍
11.在 中, (如下图),若将 绕直线 旋转一周,则所形成的旋转体的体积是
A. B. C. D.
12.在三棱锥 中, 底面 , , , , ,,则点 到平面 的距离是( )
A. B. C. D.
A、1∶2∶3B、1∶ ∶ C、1∶ ∶ D、1∶2 ∶3
17.若球的大圆面积扩大为原来的3倍,则它的体积扩大为原来的( )倍
A、 3 B、 9 C、 27 D、 3
18.球接正方体的表面积与球的表面积的比为( )
A、 2: B、 3: C、 4: D、 6:
19.球的体积是 π,则此球的表面积是( )
A.5B.15C.25D.125
26.一个球与它的外切圆柱、外切等边圆锥(圆锥的轴截面为正三角形)的体积之比( )
A.2:3:5B.2:3:4C.3:5:8D.4:6:9
27.两个球体积之和为12π,且这两个球大圆周长之和为6π,那么这两球半径之差是( )
A. B.1C.2D.3
28.直三棱柱各侧棱和底面边长均为a,点D是CC′上任意一点,连结A′B,BD,A′D,AD,则三棱锥A—A′BD的体积( )
(A) (B) (C) ( D)
2.一个几何体的三视图如图所示,且其侧视图是一个等边三角形,则这个几何的体积为( )
(A) (B)
(C) (D)
3.某几何体的三视图及尺寸如图示,则该几何体的表面积为()
A. B. C. D.
4.某简单几何体的三视图如图所示,其正视图.侧视图.俯视图均为直角三角形,面积分别是1,2,4,则这个几何体的体积为( )
A. B. C. D.
29.将一个边长为a的正方体,切成27个全等的小正方体,则表面积增加了( )
A. B.12a2C.18a2D.24a2
30.球的体积与其表面积的数值相等,则球的半径等于( )
A. B.1C.2D.3
31.若正棱锥底面边长与侧棱长相等,则该棱锥一定不是( )
A.三棱锥B.四棱锥C.五棱锥D.六棱锥
38.如图,一个底面半径为R的圆柱形量杯中装有适量的水、若放入一个半径为r的实心铁球,水面高度恰好升高r,则
39.把一个大的金属球表面涂漆,需油漆2.4kg,若把这个金属球熔化,制成64个半径相等的小金属球(设损耗为零),将这些小金属球表面涂漆,需用油漆。
40.球O的一个小圆O/的面积为25 ,O到此小圆截面的距离是12,则这个球的表面积为。
相关文档
最新文档