第七章 矩阵分解
矩阵分解及其应用

《线性代数与矩阵分析》课程小论文矩阵分解及其应用学生姓名:******专业:*******学号:*******指导教师:********2015年12月Little Paper about the Course of "Linear Algebra and MatrixAnalysis"Matrix Decomposition and its ApplicationCandidate:******Major:*********StudentID:******Supervisor:******12,2015中文摘要将特定类型的矩阵拆解为几个矩阵的乘机称为矩阵的分解。
本文主要介绍几种矩阵的分解方法,它们分别是矩阵的等价分解、三角分解、谱分解、奇异值分解和 Fitting 分解等。
矩阵的分解理论和方法是矩阵分析中重要的部分,在求解矩阵的特征值、解线性方程组以及实际工程中有着广泛的运用。
因此,本文将介绍矩阵等价分解、三角分解、奇异值分解的理论运用以及三角分解的工程运用。
关键词:等价分解,三角分解,奇异值分解,运用AbstractMany particular types of matrix are split into the product of a matrix of several matrices, which is called decomposition of matrix. In this paper, we introduce some methods of matrix decomposition, which are equivalent decomposition, triangular decomposition, spectral decomposition, singular value decomposition, Fitting decomposition and so on. The decomposition theory and method of matrix is an important part of matrix analysis, which is widely used in solving the characteristic value, solving linear equations and the practical engineering. In this paper, we will introduce the theory of matrix equivalence decomposition, triangular decomposition, singular value decomposition and the engineering application of triangular decomposition.Key words:Equivalent Decomposition, Triangular Decomposition, Singular Value Decomposition, Application目录中文摘要 (1)ABSTRACT (1)1 绪论 (1)2 矩阵分解的常用方法 (1)2.1矩阵的等价分解 (1)2.2矩阵的三角分解 (2)2.2.1 矩阵的三角分解 (2)2.2.2 矩阵的正三角分解 (2)2.3矩阵的谱分解 (5)2.3.1 单纯形矩阵的谱分解 (5)2.3.2 正规矩阵与酉对角化 (6)2.3.3 正规矩阵的谱分解 (6)2.4矩阵的奇异值分解 (7)2.4.1 矩阵的奇异值分解(SVD分解) (7)2.5矩阵的FITTING分解 (7)3矩阵分解的理论应用 (8)3.1矩阵等价分解的理论应用 (8)3.2矩阵三角分解的理论应用 (8)3.3矩阵奇异值分解的理论应用 (9)4 矩阵分解在递推系统辨识中的应用 (10)4.1递推系统辨识中的困难 (10)4.1.1 病态问题 (10)4.1.2 效率和计算量问题 (10)4.2QR分解的实现方法 (11)4.2.1 GIVENS变换 (13)4.3递推算法 (13)5 结论 (18)6 参考文献 (18)1 绪论矩阵的分解是将一个矩阵分解为较为简单的或具有某种特性的若干矩阵的乘积,这是矩阵理论及其应用中比较常见的方法。
矩阵的分解

矩阵的分解矩阵的分解是一种数学方法,它把复杂的矩阵拆分成几个简单的子矩阵,以便能更好地理解和解决特定矩阵问题。
矩阵分解也可以用来提高现有计算机算法的效率。
它是一种重要的数学工具,常用于机器学习,信号处理,图像处理,信息论,控制工程,统计学,优化,数值分析,科学计算等。
矩阵分解可以把大的矩阵分解成小的子矩阵,以便更容易理解特定的矩阵问题。
典型的矩阵分解方法包括LU 分解,QR分解,SVD分解,Cholesky分解,Schur分解,病态分解,矩阵分解等。
LU分解是将一个矩阵分解成一个下三角矩阵和一个上三角矩阵的过程。
这种分解可以用于解决特定的线性方程组,以及求解矩阵的逆。
一般来说,LU分解具有非常高的计算效率,而且它不需要很多内存来存储矩阵。
QR分解是把一个矩阵分解成一个正交矩阵和一个上三角矩阵的过程。
这种分解可以用来求解矩阵的特征值和特征向量,以及求解线性方程组。
QR分解是一种非常有用的分解形式,因为它可以使用稠密矩阵和稀疏矩阵的快速算法。
SVD(奇异值分解)是将一个矩阵分解成两个正交矩阵和一个对角矩阵的过程。
SVD分解可以用来解决矩阵的秩、特征值、特征向量以及正交正则化问题。
一般来说,SVD 分解是一种非常有效的矩阵分解方法,并且它可以用来提高现有的计算机算法的效率。
Cholesky分解是一种分解矩阵的方法,它可以将一个对称正定矩阵分解成一个下三角矩阵和一个上三角矩阵的乘积。
Cholesky分解可以用来解决线性方程组、估计最小二乘解、求解矩阵的特征值等。
Cholesky分解的计算效率很高,并且它可以用来提高现有的计算机算法的效率。
Schur分解则是将一个实矩阵分解成一个可逆矩阵和一个上三角矩阵的乘积。
Schur分解可以用来解决矩阵的特征值和特征向量问题,以及求解线性方程组。
Schur分解也可以用来提高现有计算机算法的效率。
病态分解是将一个矩阵分解成一个低秩的正交矩阵和一个正定矩阵的乘积的过程。
矩阵分解——精选推荐

矩阵分解矩阵分解矩阵分解是将矩阵拆解为数个矩阵的乘积,可分为三⾓分解、满秩分解、QR分解、Jordan分解和SVD(奇异值)分解等,常见的有三种.矩阵的三⾓分解、正交三⾓分解、满秩分解将矩阵分解为形式⽐较简单或性质⽐较熟悉的⼀些矩阵的乘积,这些分解式能够明显地反映出原矩阵的许多数值特征,如矩阵的秩、⾏列式、特征值及奇异值等. 另⼀⽅⾯, 构造分解式的⽅法和过程也能够为某些数值计算⽅法的建⽴提供了理论依据. 接下来就讨论⼀下矩阵的三⾓分解.1 矩阵的三⾓分解1.1 矩阵的三⾓分解基本概念与定理定义1.1[]5设m n∈和上三⾓矩L C?A C?∈,如果存在下三⾓矩阵m n阵n m∈, 使得A=LU, 则称A可作三⾓分解或LU分解.U C?定义1.2设A为对称正定矩阵, D为⾏列式不为零的任意对⾓矩阵,则T=成⽴:A A=, U为⼀个单位上三⾓矩阵, 且有A LDU1) 如果L是单位下三⾓矩阵, D是对⾓矩阵, U是单位上三⾓矩阵, 则称分解D=为LD U分解.A L U2) 如果L=LD是下三⾓矩阵, ⽽U是单位上三⾓矩阵, 则称三⾓分解A LUCrout分解;= 为克劳特()3) 如果U DU是单位下三⾓矩阵, U 为上三⾓矩阵, 则称三⾓=分解A LUDoolittle分解;= 为杜利特()U --=== , 称为不带平⽅根的乔累斯基()Cholesky 分解;5) 如果12L D L = , 12D U U= , 则1122A LD U LD D U LU=== , 由于T UL = , 则T A LL= , 称为带平⽅根的乔累斯基()Cholesky 分解. 定理 1.1 n阶⾮奇异矩阵A可作三⾓分解的充要条件是k 0A ≠()1,2,,1k n =- ,这⾥A k为A 的k 阶顺序主⼦阵, 以下同.证明必要性. 设⾮奇异矩阵A 有三⾓分解A L U=, 将其写成分块形式k12k122122212222A L 0U =A A 0U kA U L L这⾥A k ,k L 和k U 分别为A, L和U 的k 阶顺序主⼦阵. ⾸先由0⽽L 0k ≠,U 0k ≠; 因此A =L U0kkk ≠()1,2,,1k n =-.充分性. 对阶数n 作数学归纳法. 当n=1时, 1A =(11a )=(1)(11a ),结论成⽴. 设对n k =结论成⽴, 即k =k k A L U , 其中k L 和k U 分别是下三⾓矩阵和上三⾓矩阵. 若k 0A ≠,则由kA =L k k U 易知L k 和k U 可逆. 现证当1n k =+时结论也成⽴, 事实上-1k k k k1TT 1T 1-1k+1,1k 1,1k k k A c 0c A =10c kkk T kk k k k k L U L r a r U a r U L +--+++??= ? ?-.由归纳法原理知A 可作三⾓分解.定理 1.1 给出了⾮奇异矩阵可作三⾓分解的充要条件, 由于不满⾜定理1.1的条件, 所以它不能作三⾓分解. 但110000110011211011202A ?????????? ?===.上例表明对于奇异矩阵,它还能作三⾓分解未必要满⾜定理1.1的条件.⾸先指出,⼀个⽅阵的三⾓分解不是唯⼀的, 从上⾯定义来看,杜利特分解与克劳特分解就是两种不同的三⾓分解,其实,⽅阵的三⾓分解有⽆穷多, 这是因为如果D 是⾏列式不为零的任意对⾓矩阵, 有1()()A LU C D D U LU-== ,其中,LU 也分别是下、上三⾓矩阵, 从⽽A LU = 也使A 的⼀个三⾓分解. 因D 的任意性, 所以三⾓分解不唯⼀. 这就是A 的分解式不唯⼀性问题, 需规范化三⾓分解.定理 1.2 (LD U 基本定理)设A 为n 阶⽅阵,则A 可以唯⼀地分解为A =LD U(1.1)的充分必要条件是A 的前1n -个顺序主⼦式k 0A ≠()1,2,,1k n =- .其中L,U分别是单位下、上三⾓矩阵, D是对⾓矩阵D=diag ()12,,,n d d d ,1k k k A d A -=()1,2,,kn = , 01A =.证明充分性. 若k 0A ≠()1,2,,1k n =- , 则由定理1.1, 即实现⼀个杜利特分解A LU= , 其中L 为单位下三⾓矩阵, U 为上三⾓矩阵,记1112122==()()()()()()1111112122222n n n nn a a a a a a ??=()n A , 因为()u 0i ii ii a ≡≠()1,2,,1i n =- .下⾯分两种情况讨论:1) 若A ⾮奇异,由式(1)有n ?=()()() 121122n nn a a a =A ≠, 所以()n nn nna u =≠,这时令()()()()121122diag n nn D a a a = , 则() ()()1121122111,,,n nn D diag a a a -??= ?.LD D U LDU -=== (1.2)是A 的⼀个LD U 分解.2)若A 奇异,则()u 0i iiii a ≡=,此时令()()()12111221,1(,,,,0)n n n D diag a a a ---= ,()()()()121n-111221,1,,,n n n D diag a a a ---= , α=()1n1u,,,Tn u n - ,则10n T UU α-??≡ =1111110=DU 0001n n n n T T U D U D α------,因此不论哪种情况, 只要k0A ≠()1,2,,1k n =- , 总存在⼀个LD U分解式(1.1),1a kk k kk k A d A -==()1,2,,1kn =- ,01A =.均⾮奇异.若还存在另⼀个LD U 分解111A L D U =, 这⾥1L ,1D , 1U 也⾮奇异,于是有111L D U L D U =(1.3)上式两端左乘以11L -以及右乘以1U -和1D -, 得111111L L D U U D---=, (1.4)但式(1.4)左端是单位下三⾓矩阵, 右端是单位上三⾓矩阵, 所以都应该是单位阵, 因此1LL I-=,1111D U UDI--=,即1L L =,111--=. 由后⼀个等式类似地可得11U UI-=,11D D I-=,即有1U U=,1D D=.2) 若A 奇异, 则式(1.3)可写成分块形式1111100001000110001T T T T T L D U L D U ααββ= ? ? ? ? ? ???????????, 其中1L, 1L 是1n -阶单位下三⾓阵; U , 1U 是1n -阶上三⾓阵; D,1D 是1n -阶对⾓阵; α, 1α,β, 1β是1n -维列向量. 由此得出111111=D U D DUD ααββαββα???? ? ???, 其中1L, 1D , 1U 和L ,D, U均⾮奇异, 类似于前⾯的推理, 可得1L =L ,1D =D , 1U =U ,1=αα,T T1=ββ.必要性. 假定A 有⼀个唯⼀的LD U 分解, 写成分块的形式便是1111A 00=0101n n n n T T nn n x D L U ya d αβ----,(1.5)其中1n L -,1D n -, 1n U -, 1n A -分别是L,A的1n -阶顺序主⼦矩阵;x , y, α,β为1n -维列向量. 由式(1.5)有下⾯的矩阵⽅程:1111n n n n A L D U ----=, (1.6)11TTn n yD U β--=,(1.7)11n n x L D α--=, (1.8)1Tnn n na D d βα-=+. (1.9)否则, 若10n A -=, 则由式(1.6)有111110n n n n n A L D U D -----===.于是有1110n n n L D D ---==, 即11n n L D --奇异. 那么对于⾮其次线性⽅程组(1.8)有⽆穷多⾮零解, 不妨设有α', 使11n n L D x α--'=, ⽽α'=α.同理, 因11n n D U --奇异, ()1111TTT n n n n L D U D ----=也奇异,故有ββ'≠, 使11TTn n U D yβ--=, 或11TTn n D U yn nn n d a D βα-'''=-, 则有1111000101n n n n T T nn nA x D L U y a d αβ----'= ? ? ? ?'',这与A 的LD U 分解的唯⼀性⽭盾, 因此10n A -≠.考察1n -阶顺序主⼦矩阵1n A -由式(1.6)写成分块形式, 同样有2222n n n n A L D U ----=. 由于10n D -≠, 所以20n D -≠, 可得222220n n n n n A L D U D -----==≠, 从⽽20n A -≠. 依此类推可得0k A ≠()1,2,,1k n =- .综上所述, 定理证明完毕.推论 1[]3 设A 是n 阶⽅阵, 则A 可惟⼀进⾏杜利特分解的充分必要条件是A 的前1n -个顺序主⼦式11110k k k kka a A a a =≠,1,2,,1k n =- , 其中L 为单位上三⾓矩阵, 即有11121212223132121111n nnn n n n n u u u l u u l l A u l l l -=并且若A 为⾮奇异矩阵, 则充要条件可换为: A的各阶顺序主⼦式全不为零, 即:0k A ≠,1,2,,k n = .推论 2[]3 n 阶⽅阵A 可惟⼀地进⾏克劳特分解111212122212111n nn n nnl u u ll u A LUl l l==的充要条件为11110k k k kka a A a a =≠, 1,2,,1k n =- .若A 为奇异矩阵, 则0nn l =, 若A 为⾮奇异矩阵, 则充要条件也可换为0k A ≠, 1,2,,k n = .定理 1.3[]3 设A 为对称正定矩阵, 则A 可惟⼀地分解为T A LDL =, 其中L 为下三⾓矩阵, D 为对⾓矩阵, 且对⾓元素是L 对⾓线元素的倒数. 即2212n n nnl l l L l l l ?? ?=, 1122111nn l l D l ?? ? ? ? ?=. 其中11/j ijij ik jk kkk l a l l l -==-∑,1,2,,ni = , 1,2,,j i = .。
线性代数中的矩阵分解方法

线性代数中的矩阵分解方法矩阵分解方法是线性代数中的关键概念之一,它通过将一个矩阵分解为多个简化的矩阵形式,从而简化计算和分析。
在本文中,我们将介绍线性代数中常见的矩阵分解方法,并讨论它们的应用和优势。
一、LU分解LU分解是将一个方阵分解为一个下三角矩阵L和一个上三角矩阵U的过程。
通过LU分解,我们可以方便地求解线性方程组,计算逆矩阵等操作。
LU分解的过程可以通过高斯消元法来实现,如下所示:[ A ] = [ L ] [ U ]其中,[ A ]是需要分解的方阵,[ L ]是下三角矩阵,[ U ]是上三角矩阵。
二、QR分解QR分解是将一个矩阵分解为一个正交矩阵Q和一个上三角矩阵R 的过程。
QR分解广泛应用于最小二乘拟合、信号处理和图像处理等领域。
QR分解的过程可以通过Gram-Schmidt正交化方法来实现,如下所示:[ A ] = [ Q ] [ R ]其中,[ A ]是需要分解的矩阵,[ Q ]是正交矩阵,[ R ]是上三角矩阵。
三、奇异值分解(SVD)奇异值分解是将一个矩阵分解为一个正交矩阵U、一个对角矩阵Σ和一个正交矩阵V的过程。
SVD广泛应用于图像压缩、降噪和数据降维等领域。
奇异值分解的过程可以通过特征值分解和奇异值分解算法来实现,如下所示:[ A ] = [ U ] [ Σ ] [ V ]^T其中,[ A ]是需要分解的矩阵,[ U ]是正交矩阵,[ Σ ]是对角矩阵,[ V ]是正交矩阵。
四、特征值分解特征值分解是将一个方阵分解为一个特征向量矩阵P和一个特征值对角矩阵D的过程。
特征值分解广泛应用于谱分析、动力系统和量子力学等领域。
特征值分解的过程可以通过求解特征值和特征向量来实现,如下所示:[ A ] = [ P ] [ D ] [ P ]^(-1)其中,[ A ]是需要分解的方阵,[ P ]是特征向量矩阵,[ D ]是特征值对角矩阵。
五、Cholesky分解Cholesky分解是将一个对称正定矩阵分解为一个下三角矩阵L和其转置矩阵的乘积的过程。
机器学习知识:机器学习中的矩阵分解方法

机器学习知识:机器学习中的矩阵分解方法矩阵分解方法是机器学习中的一种重要算法,它可以将高维数据降维,使得数据更易于处理和理解。
本文将介绍矩阵分解的概念、应用场景和常见方法等相关知识,帮助读者了解机器学习中的矩阵分解技术。
一、什么是矩阵分解矩阵分解是将一个大型稠密矩阵分解成为多个小的稀疏矩阵的过程,可以有效降低数据规模,简化计算复杂度。
矩阵分解在很多领域都得到了广泛的应用,尤其是在推荐系统、自然语言处理和图像处理等领域。
二、矩阵分解的应用场景推荐系统是矩阵分解的一个重要应用场景。
推荐系统的目的是为用户提供他们可能感兴趣的产品或者服务,从而提高用户的购买率和满意度。
在推荐系统中,每个用户和每个产品都可以看作是矩阵中的一个元素,因此可以通过矩阵分解来预测用户对产品的喜好程度,从而进行个性化推荐。
自然语言处理也是另一个重要的应用领域。
人类语言具有很高的复杂性,不同的语言之间也存在着很大的差异。
因此,在自然语言处理中往往需要对单词进行编码,以便机器可以更好地处理它们。
这些编码可以在一个矩阵中进行表示,然后通过矩阵分解来提取文本信息。
三、矩阵分解的常见方法1、SVD分解SVD分解是矩阵分解中最常见的方法之一。
它将一个较大的矩阵分解为三个较小的矩阵,并可以有效降维。
其中,第一个矩阵代表数据的样本,第二个矩阵代表数据的属性,第三个矩阵则是特征值矩阵。
2、PCA分解PCA分解是另一个常见的矩阵分解方法。
它通过协方差矩阵的特征值和特征向量来降维。
在这个过程中,PCA会找到最大的方差并将数据投影到具有最大方差的维度上。
这样可以有效地减少数据的维度,从而简化数据的处理。
3、NMF分解NMF分解是另一种常见的矩阵分解方法,它可以对非负数据进行有效的降维和特征提取。
NMF分解中,矩阵中的每一个元素都必须是非负的。
这样可以更好地处理各种类型的非负数据,例如图像中的像素值和声音中的频率等。
四、矩阵分解的优缺点优点:1、降低数据维度,减少特征数量,提高模型效率和预测准确度。
图形学变换矩阵的分解

图形学变换矩阵的分解最近有⼀个需求是已知⼀个变换矩阵,如何根据该矩阵获取它的位移、旋转和缩放参数?这个问题当初书⾥没直接讲,但是可以通过已有的知识推导出来。
⾸先我们知道,图形学中的变换⼀般有三种:缩放、旋转和位移,它们均可以⽤4*4的⽅阵予以表达。
⽐如缩放矩阵的形式如下:\(\LARGE \begin{bmatrix} sx & 0 & 0 & 0 \\ 0 & sy & 0 & 0 \\ 0 & 0 & sz & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}\)位移矩阵的形式如下:\(\LARGE \begin{bmatrix} 1 & 0 & 0 & tx \\ 0 & 1 & 0 & ty \\ 0 & 0 & 1 & tz \\ 0 & 0 & 0 & 1 \end{bmatrix}\)旋转矩阵则⽐较复杂,绕着uvw轴(两两正交且长度为1)转θ的矩阵如下:其实还有⼀种理解⽅法:在三维空间中对⼀个物体旋转可以理解为有⼀个不同于世界坐标系的坐标系,将该坐标系下的某个点转换到世界坐标系下。
那么构建出的这个转换矩阵就是:\(\LARGE \begin{bmatrix} u_x & v_x & w_x \\ u_y & v_y & w_y \\ u_z & v_z & w_z \end{bmatrix}\)该矩阵其实就是旋转矩阵,其中u,v,w是这个坐标系的坐标轴。
我们⼜知道,在图形学中,可以通过矩阵相乘的⽅式来将各种变换操作叠加,常见的就是SRT,也就是将缩放、旋转、平移三个矩阵乘在⼀起组合为新矩阵,⽤以表达⼀个物体总的变换。
那么,假设我们已知⼀个SRT矩阵,⼜该如何分解出其中的S、R和T呢?其实仔细想⼀下也是⽐较简单的,⾸先平移的部分始终位于矩阵的最后⼀列,可直接取出:接下来,该矩阵的3*3部分是SR矩阵相乘的结果,我们⼜该如何进⼀步提取呢?回想⼀下,三维旋转矩阵本⾝需要满⾜正交矩阵的性质,也就是它的每⼀⾏和每⼀列长度均要为1,我们可以从这⼀点⼊⼿,计算出该矩阵SR部分每⼀⾏的长度,它就⼀定是x、y、z轴的缩放!然后再将SR部分的每⼀⾏除以sx、sy、sz就可以得到R矩阵了!。
矩阵分解法

矩阵分解法
矩阵分解法是一种被广泛应用于矩阵和数据分析领域的数学方法,它能够对复杂的数据集进行简单而有效的分解,为更深入的分析提供基础。
本文将详细介绍矩阵分解法的基本原理及各种应用,以及它能够解决的相关问题。
矩阵分解法的基本概念是使用矩阵的特定分解技术,将一个大的复杂的矩阵分解成若干较小的更简单的矩阵,这些矩阵之间可能存在一定的关系。
最常用的矩阵分解方法是奇异值分解(Singular Value Decomposition,SVD),它能够有效地将一个矩阵分解成三个矩阵,这三个矩阵可以用来描述矩阵的行、列和特征。
其中,最重要的矩阵是特征值矩阵,它能够描述矩阵中特征之间的关系,这些特征信息可以作为进一步分析的依据。
同时,这些特征也能够影响到矩阵的值,从而有助于解决机器学习和数据挖掘中的关系推断问题,从而获得新的结论。
此外,矩阵分解还可以用于对数据进行统计和预测,这是因为矩阵分解能够提取出高维数据中隐藏的模式,从而将复杂的数据集简化为易于理解的表示形式。
因此,矩阵分解法在实际的数据分析中有着重要的应用,如文本分类、推荐系统和图像识别等。
另外,矩阵分解法还能够帮助数据科学家们解决压缩和特征选择的问题。
首先,矩阵分解能够帮助我们压缩数据集,从而节省存储空间;其次,这种方法也可以帮助我们提取出有用的特征,从而达到减少计算负担的目的。
(尾)总之,矩阵分解法是一种极其重要的数学方法,它可以帮助我们对复杂的数据集进行分解,提取有用信息,从而为进一步分析提供基础,同时还可以用于压缩和特征选择等目的。
因此,矩阵分解法可以说是数据科学领域的一个重要的数学工具,值得进一步关注和研究。
矩阵的分解

§9. 矩阵的分解矩阵分解是将一个矩阵分解为比较简单的或具有某种特性的若干矩阵的和或乘积,这是矩阵理论及其应用中常见的方法。
由于矩阵的这些特殊的分解形式,一方面反映了原矩阵的某些数值特性,如矩阵的秩、特征值、奇异值等;另一方面矩阵分解方法与过程往往为某些有效的数值计算方法和理论分析提供了重要的依据,因而使其对分解矩阵的讨论和计算带来极大的方便,这在矩阵理论研究及其应用中都有非常重要的理论意义和应用价值。
这里我们主要研究矩阵的三角分解、谱分解、奇异值分解、满秩分解及特殊矩阵的分解等。
一、矩阵的三角分解——是矩阵的一种有效而应用广泛的分解法。
将一个矩阵分解为酉矩阵(或正交矩阵)与一个三角矩阵的乘积或者三角矩阵与三角矩阵的乘积,这对讨论矩阵的特征、性质与应用必将带来极大的方便。
首先我们从满秩方阵的三角分解入手,进而讨论任意矩阵的三角分解。
定义1 如果(1,2,,)ii a i n =均为正实数,()(,1,2,1;∈<=-ij a C R i j i n1,2,),=++j i i n 则上三角矩阵11121222000⎛⎫⎪ ⎪= ⎪⎪⎝⎭n n nn a a a a a R a 称为正线上三角复(实)矩阵,特别当1(1,2,,)ii a i n ==时,R 称为单位上三角复(实)矩阵。
定义2如果(1,2,,)ii a i n =均为正实数,()(,1,2,1;∈>=-ij a C R i j i n1,2,),=++j i i n 则下三角矩阵11212212000⎛⎫ ⎪ ⎪= ⎪⎪⎝⎭n n nn a a a L a a a称为正线下三角复(实)矩阵,特别当1(1,2,,)ii a i n ==时,L 称为单位下三角复(实)矩阵。
定理1设,⨯∈n nnA C 则A 可唯一地分解为 1=A U R其中1U 是酉矩阵,R 是正线上三角复矩阵;或者A 可唯一地分解为2=A LU其中2U 是酉矩阵,L 是正线下三角复矩阵。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A LU
据此,有
Ax LUx L(Ux ) b
因此可通过求解两个特殊的三角方程组
Ly b, Ux y 来求解线性方程组 Ax b
件中采用的方法。
,这就是数值软
二、矩阵的LU分解(Decomposition)
定义2 如果方阵 A 可以分解成一个单位下三 角矩阵 L 与一个上三角矩阵 U 的乘积
L1 L I
从而
L1 A L1 LU U L1 ( A, I ) ( L1 A, L1 ) (U , L1 )
这说明,通过行初等变换求出 U 和 L1 后,就 可求出单位下三角阵 L1 的逆矩阵 L 。
例 4 求下列矩阵的LU 分解:
1 2 1 3 1 A 0 1 1 2
L11U12 L11U11 L21U11 L21U12 L22U 22
因此
det A11 det( L11U11 ) det L11 det U11 1 det U11 det U11 0
考虑到分块矩阵 A 1 1 阶数的任意性,因此上 述结论对矩阵 A 的任意顺序主子式都成立。 那么,这个结论是否也是充分的呢?
例4的解:(未选主元法)
2 1 1 0 0 1 3 1 ( A, I ) 0 0 1 0 1 1 2 0 0 1
1 2 1 1 0 0 0 5 3 3 1 0 0 1 3 1 0 1
1 1 0 0 1 2 0 5 3 3 1 0 0 0 12 / 5 2 / 5 1 / 5 1 从而得 L1 A U , 这里 0 0 1 1 1 2 3 , U 0 5 L1 1 0 3 2 / 5 1 / 5 1 0 0 12 / 5
1 23 5
1
1
1
R12 (3) R13 ( 1) R23 ( 51 )Q
LU
0 0 1 2 1 1 3 0 5 1 0 3 1 1 / 5 1 0 0 12 / 5
这就是Gauss提出消元法100多年后才被Dwyer 注意到的 LU 分解:
%ex702.m
A=[1 2 -1 ;3 1 0; -1 -1 -2];
[L,U]=lu(A)
L=
0.3333 1.0000
1.0000 0
0 0
此时仍有 A=LU,但 L不再 是单位下三角矩阵。
-0.3333 -0.4000
1.0000
U=
3.0000 0
1.0000 1.6667
0 -1.0000
0 0 0 1 1 2 1 1 0 0 3 4 0.2 1 5 6 0 0.8 0 1 0 5 6 0.6 0.5
%ex703.m
A=[1 2 -1 ;3 1 0; -1 -1 -2];
[L,U,P]=lu(A)
L= P= 0 1.0000 0 0
1.0000 0.3333
0 1 0
1 0 0
0 0 1
-0.3333 -0.4000
1.0000
U=
事实上由 PA LU 知
A ( P L)U ( PL)U
所以
PA LU
0 0 3 1 0 1 1/ 3 0 5 / 3 1 0 1 1 / 3 2 / 5 1 0 0 12 / 5
对于任意方阵,甚至长方阵,也有类似结论。例 如对长方阵 1 2 3 4 A 5 6 存在列主元L
0 0 1 3 1 0 1 1 / 5 1
A LU
0 0 1 2 1 1 3 0 5 1 0 3 1 1 / 5 1 0 0 12 / 5
推论5 ( LDU分解定理 ) 如果方阵 A 的顺序主子式
L=
1.0000 0.6667 0.3333 0 1.0000 0.5000 0 0 1.0000 P=
0
0 1
0
1 0
1
0 0
U= 3.0000 0 0 5.0000 0.6667 0 6.0000 1.0000 0.5000
需要指出的是,在Matlab中使用函数lu计算例 4的结果不同。 这是因为, Matlab中lu函数的实现算法采用 的是列选主元法,而前面例4的算法则未选主 元。
(为什么选这样的排列矩阵P来重排A?)
3 5 6 1 0 0 2 4 5 0 1 0 ( PA, I ) 1 2 3 0 0 1
3 5 0 2 3 0 1 3 3 5 0 2 3 0 0
6 1 1 6 1
1 2
0 0 2 3 1 0 1 3 0 1 1 1 2 3 0 0 1 1 2 0 0 1
x1 2 x2 x3 0 5 x2 3 x3 1 12 x3 4 5 5 5 ( 12 ) x1 2 x2 1 3 0 x2 3 5 x 1 3 3
Δk ? 0 ( k 1, 2, L , n)
则存在唯一的单位下三角矩阵 L 、唯一的单位 上三角矩阵 U 以及对角矩阵 D ,使得
A LDU
当矩阵 A 仅为可逆方阵时,我们可以先通过排 列矩阵对 A 的行进行重排,然后就可以使用LU 分解了。
定理6 (列主元LU分解定理 ) 对可逆方阵 A ,存在排列矩阵 P ,单位下三 角矩阵 L 与上三角矩阵 U ,使得
1 5
( 2)
x1 x2 x 3
1 3 0 1 3
( II )
用矩阵形式表示,系数矩阵
1 2 1 r12 ( 3) A 3 1 0 1 1 2 r13 (1)
1 2 1 0 5 3 0 1 3
从而得 L1 PA U , 这里
1 L1 2 3 0
因为
3 5 0 1 0 , U 0 2 3 1 1 2 0 0 0
6 1 1 2
L L1
1
1 2 3 1 3
0 0 1 0 1 1 2
A LU
则称其为
A 的 LU 分解或三角分解。
什么样的矩阵才有LU 分解呢?我们先考虑可逆 方阵。 设有
A = LU ,则 0 ? det A det L ?det U det U 将 A = LU 分块为
A11 A21 A12 L11 A22 L21 O U11 L22 O U12 U 22
r23 ( 1 ) 5
1 1 2 0 5 U 3 0 0 12 / 5
R23 ( 1 ) R13 (1) R12 ( 3) A U . 5
A [ R ( ) R13 (1) R12 ( 3)] U
1 23 5 1
[ R12 ( 3)] [ R13 (1)] [ R ( )] U
一、从Gauss消元法说起
例 1 求解线性方程组
x1 2 x2 x3 3 x1 x2 x x 2 x 2 3 1 0 1 1 0 1 1
(I )
解:
(I )
x1 2 x2 x3 ( 3) 5 x2 3 x3 1 x2 3 x3
所以
PA LU
1 2 3 1 3 0 0 3 5 1 0 0 2 3 1 1 0 0 2 6 1 1 2
根据 列主元LU 定理,如果存在分解 PA LU ,
那么矩阵
L
可逆,即存在可逆矩阵 L1 ,使得
L1 L I
从而
L1 PA L1 LU U L1 ( PA, I ) ( L1 PA, L1 ) (U , L1 )
这说明,通过行初等变换求出 U 和 L1 后,就 可求出单位下三角阵 L1 的逆矩阵 L 。
%ex701.m
A=[1 2 3 ;2 4 5; 3 5 6];
[L,U,P]=lu(A) %调用lu函数
第七章
矩阵分解
类似于数的因子分解、代数式的因式分解,矩 阵的各种分解在矩阵计算中也扮演相当重要的 角色。由于变换即矩阵,所以各种分解从根本 上看是各种变换,其目的是将矩阵变换成特殊 的矩阵,比如特征值分解的对角矩阵、Jordan 分解的Jordan矩阵、Schur分解的上三角阵, 等等。将分解用于数值计算缓慢出现在电子计 算机诞生之后。最早是Dwyer(1951),然后 是Householder(1964)和Wilkinson(1965)
从而得 L1 PA U , 这里
0 0 0 1 3 1 1 / 3 1 0 , U 0 5 / 3 L1 1 1 / 5 2 / 5 1 12 / 5 0 0
因为
L L1
1
0 0 1 1/ 3 1 0 1 / 3 2 / 5 1
PA LU
例 7 求下列矩阵的LU 分解:
1 2 3 2 4 5 A 3 5 6
注意这里 1 1, 2 0 。
解:
0 0 1 1 2 3 3 5 6 0 1 0 2 4 5 2 4 5 PA 1 0 0 3 5 6 1 2 3
1.0000 0 0 1.6667 -1.0000
1
3.0000
即
PL为前页的矩阵L。
0
0
-2.4000
例4的解:(列选主元法)