多目标最优化模型

合集下载

多目标最优化数学模型

多目标最优化数学模型

第六章 最优化数学模型§1 最优化问题1.1 最优化问题概念 1.2 最优化问题分类1.3 最优化问题数学模型 §2 经典最优化方法 2.1 无约束条件极值 2.2 等式约束条件极值 2.3 不等式约束条件极值 §3 线性规划 3.1 线性规划 3.2 整数规划§4 最优化问题数值算法 4.1 直接搜索法 4.2 梯度法 4.3 罚函数法§5 多目标优化问题 5.1 多目标优化问题 5.2 单目标化解法 5.3 多重优化解法 5.4 目标关联函数解法 5.5 投资收益风险问题第六章 最优化问题数学模型 §1 最优化问题1.1 最优化问题概念 (1)最优化问题在工业、农业、交通运输、商业、国防、建筑、通信、政府机关等各部门各领域的实际工作中,我们经常会遇到求函数的极值或最大值最小值问题,这一类问题我们称之为最优化问题。

而求解最优化问题的数学方法被称为最优化方法。

它主要解决最优生产计划、最优分配、最佳设计、最优决策、最优管理等求函数最大值最小值问题。

最优化问题的目的有两个:①求出满足一定条件下,函数的极值或最大值最小值;②求出取得极值时变量的取值。

最优化问题所涉及的内容种类繁多,有的十分复杂,但是它们都有共同的关键因素:变量,约束条件和目标函数。

(2)变量变量是指最优化问题中所涉及的与约束条件和目标函数有关的待确定的量。

一般来说,它们都有一些限制条件(约束条件),与目标函数紧密关联。

设问题中涉及的变量为n x x x ,,,21 ;我们常常也用),,,(21n x x x X 表示。

(3)约束条件在最优化问题中,求目标函数的极值时,变量必须满足的限制称为约束条件。

例如,许多实际问题变量要求必须非负,这是一种限制;在研究电路优化设计问题时,变量必须服从电路基本定律,这也是一种限制等等。

在研究问题时,这些限制我们必须用数学表达式准确地描述它们。

第六章 多目标最优化方法

第六章 多目标最优化方法
v 12.对长江航运有无影响:U12(x) v 方案xi完成运输任务对长江航运有无干扰
影响,有影响为2,无影响为1。 v 13.外来物资的装卸次数:U13(x) v 方案xi运输外来物资至坝址的装和卸总次
数。
v 以上各指标及方案的值详见表3(运输系统决 策分析技术经济指标表)
v 6.4.4 决策意见
v
U9(x)=U1(x)/Q(x) 效益投资比
v 式中Q(x)为交通运输方案xi担负的总货运量(吨)
v 10.运输系统职工总人数:U10(x) (人) v 方案xi完成运输系统运行管理的职工总人数
(反映管理的难易、繁简)。
v 11.运输工具能源消耗费用:U11(x)(万元)
v 方案xi完成商品材料、砂石料和客运、总 运量消耗的能源费用。
员) v 2. 目标函数 v (1) 总的投资最省; v (2) 工期最短; v (3) 生产均衡,不均系数小,施工高峰强度小; v (4) 工程质量优,良率最高; v (5) 能源及原材料消耗最少;
v (6) 劳力及机械设备用量最少。 v 显然目标间存在矛盾,彼长此短,无一
方案全面最优,只能整体最优。 v 6.1.3 多目标决策的一般数学表达式 v 设有m个约束条件,k个目标函数,
表3 运输系统决策分析技术经济指标表
v 表42 火车轮渡直达两岸(杨家湾设码头) v 加权多指标决策对比优序数矩阵的计算
序数法,排出如表44,从该表44中的aij'排出 加权多目标优序数决策矩阵如表45中Ki'的大 小为序,其决策顺序应为
v
x3 → x4 → x2 → x1
v 铁路 公路 水运 火车轮渡
v 建议对三峡工程施工对外交通运输方案
做决策时,应采用铁路为主,水运与公路为 辅的方案,就铁路工程本身,应采用铁二院 推荐的姜家庙电力机车牵引方案见表46 。

多目标最优化模型

多目标最优化模型

多目标最优化模型多目标最优化是一种将多个目标函数优化问题组合在一起的方法,旨在找到一个让所有目标函数达到最优的解。

这种方法广泛应用于工程、经济学和决策科学等领域,因为在现实世界中,很少有问题只涉及一个目标。

通过解决多目标最优化问题,我们可以在平衡各种需求和限制条件的基础上做出更好的决策。

在多目标最优化问题中,我们需要同时考虑多个冲突的目标函数。

这些目标函数可以是相互独立的,也可以存在相互依赖关系。

例如,对于一个制造公司来说,我们可能希望同时最小化生产成本和最大化产量,这两个目标是相互矛盾的。

当我们试图减少成本时,产量可能会受到影响,而当我们试图提高产量时,成本可能会增加。

在解决多目标最优化问题时,我们需要定义一个衡量目标函数的目标向量。

这个向量通常包含所有目标函数的值,通过改变决策变量的值,我们可以在目标向量中找到不同的点。

我们的目标是找到一个解,使得目标向量达到最优,即找到一个无法通过改变决策变量的值而得到更好结果的点。

多目标最优化问题的解可以有多个,这些解通过一种称为帕累托前沿的概念呈现。

帕累托前沿是指在不改变任何目标函数值的前提下,无法找到另一个解使得一些目标函数值变得更好的解。

换句话说,帕累托前沿是指在一个多目标最优化问题中,无法一次达到所有目标函数的最优值,因为它们往往是相互冲突的。

解决多目标最优化问题的方法有很多,包括传统的数学编程方法和启发式算法。

在数学编程方法中,我们可以使用多目标规划模型来定义和求解问题。

这种方法的优点是准确性和可解释性高,但在面对大规模和复杂问题时效率较低。

另一种方法是使用启发式算法,如遗传算法、模拟退火算法和粒子群优化算法等。

这些算法通过模拟生物进化和物理过程,逐步解空间并逐渐改进解的质量。

启发式算法的优点是能够在较短的时间内找到满足要求的解,但无法保证最优解。

除了解决问题的方法外,还有一些问题需要考虑。

首先,我们需要定义目标函数,这是一个非常关键和困难的任务。

多目标优化数学模型

多目标优化数学模型

多目标优化数学模型是指在优化问题中存在多个目标函数的情况下,通过数学建模来求解最优解。

多目标优化问题可以形式化为如下形式:
$$
\begin{align*}
\text{minimize} \quad f_1(x) \\
\text{subject to} \quad f_2(x) \leq 0 \\
\quad f_3(x) \leq 0 \\
\quad \vdots \\
\quad f_m(x) \leq 0 \\
\end{align*}
$$
其中,$x$是决策变量,$f_1(x), f_2(x), \ldots, f_m(x)$是目标函数,$m$是目标函数的个数。

在多目标优化中,通常存在多个不同的最优解,这些最优解构成了一个被称为Pareto前沿(Pareto front)的集合。

Pareto前沿是指在所有满足约束条件的解中,无法通过改变一个目标函数的值而使其他目标函数的值变得更好的解。

求解多目标优化问题的常用方法包括遗传算法、粒子群算法、模拟退
火算法等。

这些算法通过在解空间中搜索,逐步逼近Pareto前沿,从而得到一组近似最优解。

多目标优化数学模型的应用非常广泛,例如在工程设计中,可以通过多目标优化来平衡不同的设计目标,如成本、性能、可靠性等;在金融投资中,可以通过多目标优化来平衡风险和收益等。

资源调度中的多目标优化算法设计

资源调度中的多目标优化算法设计

资源调度中的多目标优化算法设计资源调度是在现代社会中面临的一个重要问题,尤其是在信息技术高度发达的背景下,各种资源的分配与调度问题变得更加复杂。

由于资源调度的多样性和复杂性,传统的单目标优化算法已经不能满足需求,而多目标优化算法逐渐成为资源调度领域的研究热点。

本文将探讨资源调度中的多目标优化算法的设计和应用,以及一些常见的算法模型和解决方法。

资源调度中的多目标优化算法旨在通过有效地分配和调度资源,实现多个目标的最优化。

多目标优化的目标可以是经济效益、时间效率、质量优先、能源消耗、环境条件等等,针对不同的应用场景可以设计出不同的多目标优化算法。

下面将介绍几种常见的多目标优化算法及其设计原理。

1. 遗传算法:遗传算法是一种模拟自然界进化过程的优化算法。

通过将问题表示为染色体的形式,通过选择、交叉和变异等操作,逐代地优化染色体,以求得最优解。

在资源调度中,可以将资源与任务抽象为基因和染色体的形式,通过不断进化调整资源分配,实现多目标最优化。

2. 粒子群优化算法:粒子群优化算法来源于对鸟群中鸟群行为的模拟,通过模拟多个粒子的位置和速度,以及粒子间的信息传递和合作,来搜索最优解。

在资源调度中,粒子群优化算法可以用于寻找合适的资源分配策略,通过粒子间的交流和合作来优化资源的分配。

3. 蚁群算法:蚁群算法源于模拟蚂蚁寻找食物的行为,通过模拟蚂蚁释放信息素、寻找最短路径的行为,实现优化问题的求解。

在资源调度中,可以将不同的资源抽象为蚂蚁,通过信息素的释放和更新,来引导资源的分配和调度,以达到最优解。

以上只是几种常见的多目标优化算法,在实际应用中,需要根据具体问题的特点和需求,结合合适的算法模型进行设计。

同时,也需要考虑多目标优化算法的评价和选择方法。

在多目标优化算法中,如何评价和选择最优解是一个重要的问题。

常见的方法有帕累托解集、权重法和支配关系等方法。

帕累托解集是指在多目标优化中,某个解在所有目标上都优于其他解的解集。

多目标优化模型

多目标优化模型

多目标优化模型多目标优化模型是指在优化问题中存在多个目标函数的情况下,同时优化这些目标函数的模型。

多目标优化模型的出现是为了解决现实问题中存在的多因素、多目标的情况,通过将多个目标函数综合考虑,寻求最优的方案。

多目标优化模型的基本特点是:1. 多目标函数:多目标优化模型中存在多个目标函数,每个目标函数反映了不同的优化目标。

2. 目标函数之间的相互制约:目标函数之间往往存在相互制约的关系,即对某一个目标函数的优化可能会对其他目标函数产生不利影响。

3. 非单一最优解:多目标优化模型往往存在多个最优解,而不是唯一的最优解。

这是因为不同的最优解往往对应了不同的权衡方案,选择最终解需要根据决策者的偏好进行。

解决多目标优化模型的常用方法有:1. 加权法:将多个目标函数进行线性加权求和的方式,转化为单一目标函数的优化问题。

通过调整目标函数的权重系数,可以实现对不同目标函数的调节。

2. 约束优化法:将多目标优化问题转化为带有约束条件的优化问题。

通过引入约束条件来限制不同目标函数之间的关系,使得在满足约束条件的情况下,尽可能地优化各个目标函数。

3. Pareto最优解法:Pareto最优解是指在多目标优化问题中,不存在能够同时优化所有目标函数的方案。

Pareto最优解的特点是,在不牺牲任何一个目标函数的前提下,无法再进一步优化其他目标函数。

通过构建Pareto最优解集合,可以提供决策者在权衡不同目标函数时的参考。

多目标优化模型在现实生活中有着广泛的应用,比如在工程设计中,不仅需要考虑成本和效率,还需要考虑安全性和可持续性等因素。

通过引入多目标优化模型,可以使得决策者能够综合考虑多个因素,选择出最优的方案。

同时,多目标优化模型还能在制定政策和规划城市发展等方面提供决策支持。

最优化多目标规划动态规划

最优化多目标规划动态规划

最优化多目标规划动态规划多目标规划是指在决策问题中同时考虑多个目标的优化问题,其目标可能相互矛盾或者相互关联。

动态规划是一种通过将问题划分为子问题并利用子问题的最优解来求解整体最优解的方法。

将多目标规划与动态规划结合起来,可以解决一些具有多个相互关联目标的决策问题。

下面将介绍最优化多目标规划动态规划的原理和应用举例。

1.定义决策变量:确定需要作出的决策,并定义决策变量。

2.建立状态转移方程:将问题划分为多个子问题,并建立它们之间的状态转移方程。

状态转移方程描述了子问题之间的关系,通过子问题之间的转移可以得到整体问题的最优解。

3.确定初始状态和边界条件:确定初始状态和边界条件,即子问题的初始状态和边界条件,用于递归地求解子问题。

4.递推求解:使用动态规划的递推求解方法,从初始状态开始,逐步求解子问题,直到求解出整体的最优解。

5.分析最优解:根据求解结果分析得到的最优解,并根据需要进行调整和优化。

假设有一家公司要进行产品的生产安排,公司有多个产品需要安排生产,每个产品有不同的生产时间和利润,同时公司还要考虑生产能力的限制和产品订单的要求。

问题可以建立如下的数学模型:决策变量:对于每个产品,决定其生产数量。

目标函数:最大化总利润。

约束条件:生产时间不能超过生产能力限制,同时生产数量要满足订单要求。

利用动态规划方法可以将问题分解为多个子问题,以子问题的最优解作为动态规划的递推依据。

具体步骤如下:1.将产品的生产时间和利润作为状态,根据时间顺序划分为多个子问题。

2.定义状态转移方程,将子问题的最优解与前面子问题的最优解关联起来。

3.初始状态为生产时间为0的情况,边界条件为订单要求。

4.递推求解,根据状态转移方程求解每个子问题的最优解。

5.分析最优解,确定每个产品的生产数量,以及总利润。

通过最优化多目标规划动态规划的方法,可以在满足多个目标和约束条件的情况下,求解出最优的决策方案。

这种方法可以应用于生产调度、资源分配、物流配送等领域,帮助企业做出合理的决策,达到优化目标。

第五章多目标问题的最优化方法

第五章多目标问题的最优化方法

c) 当fj 取的值越靠近预先确定的适当值时, dj ,否则dj ↓。
功效系数法的关键在于如何确定功效函数,即功效系数的值。 功效系数的确定方法有:直线法、折线法和指数法。
三. 方法评价:

可直接按所要求的性能指标来评价函数,非常直观,试算后调 整方便;
min . F x
w j f j x
j 1
s
w j f jx
j s 1
q
o w
j
1
上述问题所得的优化解,显然是使位于分子的各目标函数尽可 能小,使位于分母的各目标函数尽可能大的值的解。
五.
目标函数的规格化:
当各分目标函数值在数量级上有很大差别时,可先做一次规格 化。以三角函数、指数、线性或二次函数等作为转换函数,使目标 函数值规范在 [0,1] 之间。
一.
功效系数法
基本思想:
多目标优化问题中,各个单目标的要求不全相同,有的要求极 小值,有的要求极大值,有的则要求有一个合适的数值。为了在评 价函数中反映这些不同的要求,可引入功效函数。
给每一个分目标函数值一个评价,以功效系数dj (0≤dj ≤1)表示。 对于一个设计方案 xk , F(xk),有q个分目标函数值f1(xk), f2(xk),…, fq(xk), ,对应q个功效系数 d1,d2,…,dq 。 以各功效系数的几何平均值为方案的评价函数 d :
f2
最优解:使各个分目标函数同时达到最优值的解。
● ●
4

6
5
对于f1(x),1最好,其次为3,2,4,5,6; 对于f2(x),2最好,其次为3,1,5,4,6。 综合考虑,1,2,3为非劣解,4,5,6为劣解。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章最优化数学模型§1最优化问题1.1最优化问题概念1.2最优化问题分类1.3最优化问题数学模型§2经典最优化方法2.1无约束条件极值2.2等式约束条件极值2.3不等式约束条件极值§3线性规划3.1线性规划3.2整数规划§4最优化问题数值算法4.1直接搜索法4.2梯度法4.3罚函数法§5多目标优化问题5.1多目标优化问题5.2单目标化解法5.3多重优化解法5.4目标关联函数解法5.5投资收益风险问题第六章最优化问题数学模§1最优化问题1.1最优化问题概念(1)最优化问题在工业、农业、交通运输、商业、国防、建筑、通信、政府机关等各部门各领域的实际工作中,我们经常会遇到求函数的极值或最大值最小值问题,这一类问题我们称之为最优化问题。

而求解最优化问题的数学方法被称为最优化方法。

它主要解决最优生产计划、最优分配、最佳设计、最优决策、最优管理等求函数最大值最小值问题。

最优化问题的目的有两个:①求出满足一定条件下,函数的极值或最大值最小值;②求出取得极值时变量的取值。

最优化问题所涉及的内容种类繁多,有的十分复杂,但是它们都有共同的关键因素:变量,约束条件和目标函数。

(2)变量变量是指最优化问题中所涉及的与约束条件和目标函数有关的待确定的量。

一般来说,它们都有一些限制条件(约束条件),与目标函数紧密关联。

设问题中涉及的变量为x1,x2, , x n ;我们常常也用X (x1,x2, ,x n)表示。

3)约束条件在最优化问题中,求目标函数的极值时,变量必须满足的限制称为约束条件例如,许多实际问题变量要求必须非负,这是一种限制;在研究电路优化设计问题时,变量必须服从电路基本定律,这也是一种限制等等。

在研究问题时,这些限制我们必须用数学表达式准确地描述它们。

用数学语言描述约束条件一般来说有两种:等式约束条件g i (X) 0, i 1,2, ,m不等式约束条件h i (X) 0, i 1,2, ,r或h i (X) 0, i 1,2, ,r注:在最优化问题研究中,由于解的存在性十分复杂,一般来说,我们不考虑不等式约束条件h(X) 0或h(X) 0 。

这两种约束条件最优化问题最优解的存在性较复杂。

(4)目标函数在最优化问题中,与变量有关的待求其极值(或最大值最小值)的函数称为目标函数。

目标函数常用f(X) f (x1,x2, ,x n )表示。

当目标函数为某问题的效益函数时,问题即为求极大值;当目标函数为某问题的费用函数时,问题即为求极小值等等。

求极大值和极小值问题实际上没有原则上的区别,因为求 f (X) 的极小值,也就是要求 f ( X )的极大值,两者的最优值在同一点取到1.2 最优化问题分类最优化问题种类繁多,因而分类的方法也有许多。

可以按变量的性质分类,按有无约束条件分类,按目标函数的个数分类等等。

一般来说,变量可以分为确定性变量,随机变量和系统变量等等,相对应的最优化问题分别称为:普通最优化问题,统计最优化问题和系统最优化问题。

按有无约束条件分类:无约束最优化问题,有约束最优化问题。

按目标函数的个数分类:单目标最优化问题,多目标最优化问题。

按约束条件和目标函数是否是线性函数分类:线性最优化问题 (线性规划),非线性最优化问题(非线性规划) 。

按约束条件和目标函数是否是时间的函数分类:静态最优化问题和动态最优化问题(动态规划)。

按最优化问题求解方法分类:无约束①解析法(间接法)有约束古典微分法古典变分法极大值原理库恩图克定理斐波那西法一维搜索法 黄金分割法 插值法坐标轮换法 步长加速法多维搜索法 方向加速法 单纯形法 随机搜索法最速下降法 拟牛顿法 无约束梯度法共轭梯度法 变尺度法 可行方向法 梯度投影法SUMT 法 化有约束为无约束SWIFT 法 复形法单目标化方法④多目标优化方法 多重目标化方法目标关联函数法⑤网络优化方法1.3 最优化问题的求解步骤和数学模型(1)最优化问题的求解步骤 最优化问题的求解涉及到应用数学, 计算机科学以及各专业领域等等, 是一 个十分复杂的问题, 然而它却是需要我们重点关心的问题之一。

怎样研究分析求 解这类问题呢?其中最关键的是建立数学模型和求解数学模型。

一般来说, 应用 最优化方法解决实际问题可分为四个步骤进行:步骤 1:建立模型 提出最优化问题,变量是什么?约束条件有那些?目标函数是什么?建立最 优化问题数学模型:确定变量,建立目标函数,列出约束条件—— 建立模型 。

步骤 2:确定求解方法分析模型,根据数学模型的性质,选择优化求解方法—— 确定求解方法 。

步骤 3:计算机求解编程序(或使用数学计算软件) ,应用计算机求最优解—— 计算机求解 。

步骤 4:结果分析对算法的可行性、收敛性、通用性、时效性、稳定性、灵敏性和误差等等作出 评价——结果分析 。

(2)最优化问题数学模型②数值算法(直接法)③数值算法(梯度法)有约束梯度法最优化问题的求解与其数学模型的类型密切相关, 因而我们有必要对最优化 问题的数学模型有所掌握。

一般来说,最优化问题的常见数学模型有以下几种:① 无约束最优化问题数学模型 由某实际问题设立变量, 建立一个目标函数且无约束条件, 这样的求函数极 值或最大值最小值问题,我们称为 无约束最优化问题 。

其数学模型为:m i nf (x 1, x 2, ,x n ) ——目标函数例如:求一元函数 y f (x) 和二元函数 z f (x,y)的极值。

又例如:求函数 f (x 1, x 2, x 3) 3x 12 4x 22 6x 32 2x 1x 2 4x 1x 3 2x 2x 3 的极值和取 得极值的点。

② 有约束最优化问题数学模型 由某实际问题设立变量, 建立一个目标函数和若干个约束条件 (等式或不等 式),这样的求函数极值或最大值最小值问题,我们称为 有约束最优化问题 。

其 数学模型为:m i nf (x 1, x 2, , x n )——目标函数g i (x 1,x 2, ,x n ) 0 i 1,2, ,m ——约束条件 有约束最优化问题的例子:求函数 f (x 1,x 2, x 3) x 1x 3 x n 在约束条件条件 x 1 x 3x n 2008, x i 0 ,i 1,2, , n 下的最大值和取得最大值的点。

③ 线性规划问题数学模型 由某实际问题设立变量,建立一个目标函数和若干个约束条件,目标函数 和约束条件都是变量的线性函数, 而且变量是非负的, 这样的求函数最大值最小 值问题,我们称为线性最优化问题,简称为 线性规划问题m i nf (x 1, x 2, ,x n ) c 1x 1 c 2x 2c n x na i1x 1 a i2x 2a im x nb i i 1,2, ,mx i 0矩阵形式: mi nf (X) C T XAX B X0其中 X (x 1,x 2, ,x n )T , C (c 1,c 2, ,c n )T , B (b 1,b 2, ,b m )T 在线性规划问题中,关于约束条件我们必须注意以下几个问题。

注 1:非负约束条件 x i 0 ( i 1,2, , n),一般来说这是实际问题要求的需要。

如果约束条件为 x i d i ,我们作变量替换 z i x i d i 0 ;如果约束条件为 x i d i ,我们作变量替换 z i d i x i 0。

注 2 :在线性规划的标准数学模型中,约束条件为等式。

如果约束条件不是等式, 我们引入松驰变量, 化不等式约束条件为等式约束 条件。

情况 1:若约束条件为 a i1x 1 a i2x 2a im x nb i ,引入松驰变量其标准数学模型为: ——目标函数——约束条件——目标函数——约束条件原约束条件变为a i1x1 a i2x2 a im x n z i b i 。

情况2:若约束条件为a i1x1 a i2x2 a im x n b i ,引入松驰变量原约束条件变为a i1x1 a i2 x2 a im x n z i b i在其它最优化问题中,我们也常常采取上述方法化不等式约束条件为等式约束条件。

实际问题中,我们经常遇到两类特殊的线性规划问题。

一类是:所求变量要求是非负整数,称为整数规划问题;另一类是所求变量要求只取0或1,称为0-1 规划问题。

例如:整数规划问题x2 3.13s.t. 22x1 34x2 2 8 5 。

x1 0, x2 0且为整数又例如:0-1 规划问题ma xz 3x1 2x2 5x3x1 2x2 x3 2x1 4x2 x3 4s.t. x1, x2, x3 0或1。

x1 x2 34x2 x3 6④非线性规划问题数学模型由某实际问题设立变量,建立一个目标函数和若干个约束条件,如果目标函数或约束条件表达式中有变量的非线性函数,那么,这样的求函数最大值最小值问题,我们称为非线性规划最优化问题,简称为非线性规划问题。

其数学模型为:m i nf (x1, x2, , x n) ——目标函数g i (x1,x2 , , x n) 0 i 1,2, ,m ——约束条件其中目标函数或约束条件中有变量的非线性函数。

例如:非线性规划问题mi nf(x,y) (x 1)2 yg1(x, y) x y 2 0 。

g2(x, y) y 0上述最优化问题中,目标函数是非线性函数,故称为非线性规划问题。

前面介绍的四种最优化数学模型都只有一个目标函数,称为单目标最优化问题,简称为最优化问题。

⑤多目标最优化问题数学模型由某实际问题设立变量,建立两个或多个目标函数和若干个约束条件,且目标函数或约束条件是变量的函数,这样的求函数最大值最小值问题,我们称为多目标最优化问题。

其数学模型为:m inf i (x1,x2, ,x n) i 1,2, ,s ——目标函数g i (x1,x2 , ,x n) 0 i 1,2, ,m ——约束条件上述模型中有s 个目标函数,m个等式约束条件。

例如:“生产商如何使得产值最大而且消耗资源最少问题” “投资商如何使得投资收益最大而且风险最小问题”等都是多目标最优化问题。

§ 2 经典最优化方法经典最优化方法包括无约束条件极值问题和等式约束条件极值问题两种,不等式约束条件极值问题可以化为等式约束条件极值问题。

经典的极值理论:首先,根据可微函数取极值的必要条件确定可能极值点;其次,根据函数取极值的充分条件判断是否取极值?是极大值?还是极小值?这种方法已经几百年的历史了。

2.1 无约束条件极值设n元函数f (X) f (x1,x2, ,x n),求f (X )的极值和取得极值的点。

这是一个无约束条件极值问题,经典的极值理论如下。

相关文档
最新文档