真题推荐江苏省高考数学 真题分类汇编 概率与统计

合集下载

21 2008~2019年江苏高考数学分类汇编(解析版)---概率加试

21 2008~2019年江苏高考数学分类汇编(解析版)---概率加试

2008~2019年江苏高考数学分类汇编概率2009-23 对于正整数n ≥2,用n T 表示关于x 的一元二次方程220x ax b ++=有实数根的有序数组(,)a b 的组数,其中{},1,2,,a b n ∈L (a 和b 可以相等);对于随机选取的{},1,2,,a b n ∈L (a 和b 可以相等),记n P 为关于x 的一元二次方程220x ax b ++=有实数根的概率。

(1)求2n T 和2n P ;(2)求证:对任意正整数n ≥2,有1n P n>. 【解析】本小题主要考查概率的基本知识和记数原理,考查探究能力。

2010-22 某工厂生产甲、乙两种产品,甲产品的一等品率为80%,二等品率为20%;乙产品的一等品率为90%,二等品率为10%.生产1件甲产品,若是一等品则获得利润4万元,若是二等品则亏损1万元;生产1件乙产品,若是一等品则获得利润6万元,若是二等品则亏损2万元.设生产各种产品相互独立.(1)记X (单位:万元)为生产1件甲产品和1件乙产品可获得的总利润,求X 的分布列; (2)求生产4件甲产品所获得的利润不少于10万元的概率. 【解析】本题主要考查概率的有关知识,考查运算求解能力.解:(1)由题设知,X 的可能取值为10,5,2,-3,且P (X=10)=0.8×0.9=0.72,P (X=5)=0.2×0.9=0.18, P (X=2)=0.8×0.1=0.08, P (X=-3)=0.2×0.1=0.02. 由此得X 的分布列为:X 10 5 2 -3 P0.720.180.080.02(2)设生产的4件甲产品中一等品有件,则二等品有4n -件.由题设知4(4)10n n --≥,解得145n ≥, 又n N ∈,得3n =,或4n =.所求概率为33440.80.20.80.8192P C =⨯⨯+= 答:生产4件甲产品所获得的利润不少于10万元的概率为0.8192.2012-22 设ξ为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,0ξ=;当两条棱平行时,ξ的值为两条棱之间的距离;当两条棱异面时,1ξ=.(1)求概率(0)P ξ=; (2)求ξ的分布列,并求其数学期望()E ξ.【点评】本题主要考查概率统计知识:离散型随机变量的分布列、数学期望的求解、随机事件的基本运算.本题属于基础题目,难度中等偏上.考查离散型随机变量的分布列和期望的求解,在列分布列时,要注意ξ的取值情况,不要遗漏ξ的取值情况.2014-22 盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同.(1)从盒中一次随机抽出2个球,求取出的2个球的颜色相同的概率;(2)从盒中一次随机抽出4个球,其中红球、黄球、绿球的个数分别为123,,x x x ,随机变量X 表示123,,x x x 的最大数,求X 的概率分布和数学期望()E X .2017-23 已知一个口袋中有m 个白球,n 个黑球(,*,2m n n ∈N ≥),这些球除颜色外全部相同.现将口袋中的球随机地逐个取出,并放入如图所示的编号为1,2,3,,m n +L 的抽屉内,其中第k(1,2,3,,)k m n =+L (1)试求编号为2的抽屉内放的是黑球的概率;(2)随机变量X 表示最后一个取出的黑球所在抽屉编号的倒数,()E X 是X 的数学期望,证明:()()(1)nE X m n n <+-.【解析】(1)编号为2的抽屉内放的是黑球的概率p 为:11C C n mn n m n n p m n-+-+==+. (2)随机变量X 的概率分布为随机变量X 的期望为11C 111(1)!()C C (1)!()!n m nm nk n nk n k n m nm n k E X k k n k n -++-==++-=⋅=⋅--∑∑. 所以1(2)!1(2)!()C (1)!()!(1)C (2)!()!m nm n n n k n k nm nm nk k E X n k n n n k n ++==++--<=-----∑∑222121(1C C C )(1)C n n n n n m n nm nn ----+-+=++++-L 12221121(C C C C )(1)C n n n n n n n m n nm nn ------+-+=++++-L 12221(C C C )(1)C n n n n n m n nm nn ---+-+=+++-L 12221(C C )(1)C n n m n m n nm nn --+-+-+==+-L 11C (1)C ()(1)n m n n m nn n m n n -+-+==-+-, 即()()(1)nE X m n n <+-.【考点】古典概型概率、排列组合、随机变量及其分布、数学期望 【名师点睛】求解离散型随机变量的数学期望的一般步骤为:(1)“判断取值”,即判断随机变量的所有可能取值,以及取每个值所表示的意义;(2)“探求概率”,即利用排列组合、枚举法、概率公式(常见的有古典概型公式、几何概型公式、互斥事件的概率和公式、独立事件的概率积公式,以及对立事件的概率公式等),求出随机变量取每个值时的概率; (3)“写分布列”,即按规范形式写出分布列,并注意用分布列的性质检验所求的分布列或某事件的概率是否正确;(4)“求期望值”,一般利用离散型随机变量的数学期望的定义求期望的值,对于有些实际问题中的随机变量,如果能够断定它服从某常见的典型分布(如二项分布(,)X B n p :),则此随机变量的期望可直接利用这种典型分布的期望公式(()E X np =)求得.因此,应熟记常见的典型分布的期望公式,可加快解题速度.2019-23 在平面直角坐标系xOy 中,设点集{(0,0),(1,0),(2,0),,(,0)}n A n =⋯,{(0,1),(,1)},{(0,2),(1,2),(2,2),,(,2)},.n n B n C n n N *==∈L 令n n n n M A B C =U U .从集合M n 中任取两个不同的点,用随机变量X 表示它们之间的距离. (1)当n =1时,求X 的概率分布; (2)对给定的正整数n (n ≥3),求概率P (X ≤n )(用n 表示).【分析】(1)由题意首先确定X 可能的取值,然后利用古典概型计算公式求得相应的概率值即可确定分布列;(2)将原问题转化为对立事件的问题求解()P X n >的值,据此分类讨论①.b d =,②.0,1b d ==,③.0,2b d ==,④.1,2b d ==四种情况确定X 满足X n >的所有可能的取值,然后求解相应的概率值即可确定()P X n ≤的值.【详解】(1)当1n =时,X的所有可能取值是12X的概率分布为22667744(1),(C 15C 15P X P X ======,22662222(2),(C 15C 15P X P X ======. (2)设()A a b ,和()B c d ,是从n M 中取出的两个点. 因为()1()P X n P X n ≤=->,所以仅需考虑X n >的情况. ①若b d =,则AB n ≤,不存在X n >的取法;②若01b d ==,,则AB =≤X n >当且仅当AB 0 a c n ==,或 0a n c ==,,有2种取法; ③若02b d ==,,则AB =≤,因为当3n ≥时,n ≤,所以X n >当且仅当AB =0 a c n ==,或 0a n c ==,,有2种取法; ④若12b d ==,,则AB =≤X n >当且仅当AB 0 a c n ==,或 0a n c ==,,有2种取法. 综上,当X n >时,X,且22242442(,(C C n n P X P X ++====.因此,2246()1((1C n P X n P X P X +≤=-=-==-.【点睛】本题主要考查计数原理、古典概型、随机变量及其概率分布等基础知识,考查逻辑思维能力和推理论证能力.。

江苏省镇江市高考数学真题分类汇编专题16:概率与统计(综合题)

江苏省镇江市高考数学真题分类汇编专题16:概率与统计(综合题)

江苏省镇江市高考数学真题分类汇编专题16:概率与统计(综合题)姓名:________ 班级:________ 成绩:________一、概率与统计 (共8题;共70分)1. (10分)国家质量技术监督总局对某工厂生产的六年、九年、十二年三种被怀疑有问题的白酒进行甲醇和塑化剂含量检测,测试过程相互独立,其中通过甲醇含量检测的概率分别为,,,通过塑化剂含量检测的概率分别为,,,两项检测均通过的白酒则认为其达标.(1)求三种白酒仅有一种达标的概率;(2)检测后不达标的白酒将停产整改,求停产整改的白酒种数X的分布列及数学期望.2. (15分) (2018高三上·丰台期末) 某校为了鼓励学生热心公益,服务社会,成立了“慈善义工社”.2017年12月,该校“慈善义工社”为学生提供了4次参加公益活动的机会,学生可通过网路平台报名参加活动.为了解学生实际参加这4次活动的情况,该校随机抽取100名学生进行调查,数据统计如下表,其中“√”表示参加,“×”表示未参加.(Ⅰ)从该校所有学生中任取一人,试估计其2017年12月恰参加了2次学校组织的公益活动的概率;(Ⅱ)若在已抽取的100名学生中,2017年12月恰参加了1次活动的学生比4次活动均未参加的学生多17人,求的值;(Ⅲ)若学生参加每次公益活动可获得10个公益积分,试估计该校4000名学生中,2017年12月获得的公益积分不少于30分的人数.3. (10分) (2017高一下·南昌期末) 某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下:零件的个数x(个)2345加工的时间y(小时) 2.534 4.5(1)在给定的坐标系中画出表中数据的散点图;(2)求出y关于x的线性回归方程 = x+ ,并在坐标系中画出回归直线;(3)试预测加工10个零件需要多少时间?参考公式:回归直线 =bx+a,其中b= = ,a= ﹣b .4. (15分)(2018·全国Ⅲ卷理) 某工厂为提高生产效率,开展技术创新活动,提出了完成项目生产任务的两种新的生产方式,为比较两种生产方式的效率,选取40名工人,将他们随即分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式,根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数m,并将完成生产任务所需时间超过m和不超过m的工人数填入下面的列联表:超过m不超过m第一种生产方式第二种生产方式(3)根据2中的列联表,能否有99%的把握认为两种生产方式的效率有差异?附:,5. (5分)(2017·常宁模拟) 某经销商从外地水产养殖厂购进一批小龙虾,并随机抽取40只进行统计,按重量分类统计结果如图:(1)记事件A为:“从这批小龙虾中任取一只,重量不超过35g的小龙虾”,求P(A)的估计值;(2)若购进这批小龙虾100千克,试估计这批小龙虾的数量;(3)为适应市场需求,了解这批小龙虾的口感,该经销商将这40只小龙虾分成三个等级,如下表:等级一等品二等品三等品重量(g)[5,25)[25,45)[45,55]按分层抽样抽取10只,再随机抽取3只品尝,记X为抽到二等品的数量,求抽到二级品的期望.6. (5分) (2016高三上·湛江期中) 在某天的上午9:00~12:00时段,湛江一间商业银行随机收集了100位客户在营业厅窗口办理业务类型及用时量的信息,相关数据统计如表1与图2所示.一次办理业务类型A型业务B型业务C型业务D型业务E型业务平均用时量(分钟/人)5 6.581215已知这100位客户中办理型和型业务的共占50%(假定一人一次只办一种业务).(Ⅰ)确定图2中x,y的值,并求随机一位客户一次办理业务的用时量X的分布列与数学期望;(Ⅱ)若某客户到达柜台时,前面恰有2位客户依次办理业务(第一位客户刚开始办理业务),且各客户之间办理的业务相互独立,求该客户办理业务前的等候时间不超过13分钟的概率.(注:将频率视为概率,参考数据:5×35+6.5×15+8×23+12×17=660.5,352+152+2×35×23+2×35×15=4110,352+152+35×23=2255)7. (5分) PM2.5是衡量空气污染程度的一个指标,为了了解某市空气质量情况,从去年每天的PM2.5值的数据中随机抽取40天的数据,其频率分布直方图如图所示.现将PM2.5的值划分为如下等级PM2.5[0,100)[100,150)[150,200)[200,250]等级一级二级三级四级(1)根据样本空气质量PM2.5的数据的频率分布直方图完成下列分布表;PM2.5[0,50)[50,100)[100,150)[150,200)[200,250]天数________________________________________(2)估计该市在下一年的360天中空气质量为一级天气的天数;(3)在样本中,按照分层抽样的方法从一级天气,三级天气,四级天气的PM2.5值的数据中抽取5天的数据,再从这5个数据中随机抽取2个,求至少一天是一级天气的概率.8. (5分) (2017高二上·清城期末) 某小学对五年级的学生进行体质测试,已知五年一班共有学生30人,测试立定跳远的成绩用茎叶图表示如图(单位:cm):男生成绩在175cm以上(包括175cm)定义为“合格”,成绩在175cm以下(不包括175cm)定义为“不合格”.女生成绩在165cm以上(包括165cm)定义为“合格”,成绩在165cm以下(不包括165cm)定义为“不合格”.(1)求五年一班的女生立定跳远成绩的中位数;(2)在五年一班的男生中任意选取3人,求至少有2人的成绩是合格的概率;(3)若从五年一班成绩“合格”的学生中选取2人参加复试,用X表示其中男生的人数,写出X的分布列,并求X的数学期望.参考答案一、概率与统计 (共8题;共70分)1-1、1-2、2-1、3-1、3-2、3-3、4-1、4-2、4-3、5-1、5-2、5-3、6-1、7-1、7-2、7-3、8-1、8-2、8-3、第11 页共11 页。

高考数学真题分类汇编专题12:概率统计(基础题)

高考数学真题分类汇编专题12:概率统计(基础题)

2018年高考数学真题分类汇编专题12:概率统计(基础题)1.(2018•卷Ⅰ)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番。

为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例。

得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半【答案】A【解析】【解答】解:经济增长一倍,A中种植收入应为2a错误!未找到引用源。

37%>a错误!未找到引用源。

60%,∴种植收入增加,则A错。

故答案为:A【分析】设建设前的经济收入为1,则建设后的经济收入为2,由建设前后的经济收入饼图对比,对各选项分析得到正确答案.2.(2018•卷Ⅰ)下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ,在整个图形中随机取一点,此点取自Ⅰ、Ⅱ、Ⅲ的概率分别记为错误!未找到引用源。

,则()A.错误!未找到引用源。

B.错误!未找到引用源。

C.错误!未找到引用源。

D.错误!未找到引用源。

【答案】A【解析】【解答】解:记三角形区域面积为S1,黑色部分面积为S2,AB=a,AC=b,BC=c.则c2=a2+b2, ∴S1=错误!未找到引用源。

ab,S2=错误!未找到引用源。

.即S1=S2,故答案为:A.【分析】先求出三个部分的面积,再由几何概型概率公式求出概率,再比较大小.3.(2018•卷Ⅱ)从2名男同学和3名女同学中任选2人参加社区服务,则选中的2人都是女同学的概率为()A.0.6 B.0.5 C.0.4 D.0.3【答案】D【解析】【解答】记选中的2人都是女同学为事件A则P(A)=错误!未找到引用源。

压轴题08 概率与统计的综合运用(原卷版)-2023年高考数学压轴题专项训练(江苏专用)

压轴题08  概率与统计的综合运用(原卷版)-2023年高考数学压轴题专项训练(江苏专用)

压轴题08概率与统计的综合运用概率统计在高考中扮演着很重要的角色,概率统计解答题是新高考卷及多数省市高考数学必考内容,考查热点为古典概型、相互独立事件的概率、条件概率、超几何分布、二项分布、正态分布、统计图表与数字特征、回归分析、离散型随机变量的分布列、期望与方差的实际应用等.回顾近几年的高考试题,可以看出概率统计解答题,大多紧密结合社会实际,以现实生活为背景设置试题,注重知识的综合应用与实际应用,作为考查实践能力的重要载体,命题者要求考生会收集,整理、分析数据,能从大量数据中抽取对研究问题有用的信息,建立数学模型,再应用数学原理和数学工具解决实际问题.考向一:概率与其它知识的交汇问题考向二:递推概率考向三:与体育比赛规则有关的概率问题考向四:决策型问题考向五:条件概率、全概率公式、贝叶斯公式(一)涉及的概率知识层面主要考查随机变量的概率分布与数学期望,一定要根据有关概念,判断是等可能事件、互斥事件、相互独立事件还是独立重复试验,以便选择正确的计算方法,进行概率计算及离散型随机变量的分布列和数学期望的计算,也要掌握几种常见常考的概率分布模型:离散型有二项分布、超几何分布,连续型有正态分布.考查运用概率知识解决简单实际问题的能力,1、离散型随机变量的期望与方差一般地,若离散型随机变量X 的分布列为称1122()n n E X x p x p x p =+++ 为随机变量X 的均值或数学期望,它反映了离散型随机变量取值的平均水平.称()21()()ni i i D X x E X p ==-∑为随机变量X 的方差,它刻画了随机变量X 与其均值()E XX 的标准差.(1)离散型随机变量的分布列的性质①0(1,2,,)i p i n = ;②121n p p p +++= .(2)均值与方差的性质若Y aX b =+,其中,a b 为常数,则Y 也是随机变量,且2()();()()E aX b aE X b D aX b a D X +=++=(3)分布列的求法①与排列、组合有关分布列的求法.由排列、组合、概率知识求出概率,再求出分布列.②与频率分布直方图有关分布列的求法.可由频率估计概率,再求出分布列.③与互斥事件有关分布列的求法.弄清互斥事件的关系,利用概率公式求出概率,再列出分布列.④与独立事件(或独立重复试验)有关分布列的求法.先弄清独立事件的关系,求出各个概率,再列出分布列.(4)常见的离散型随机变量的概率分布模型①二项分布;②超儿何分布.2、常见的连续型概率分布模型正态分布.(二)概率分布与不同知识背景结合考查对实际问题的解决能力1、与数列结合的实际问题2、与函数导数结合的实际问题3、与分段函数求最值、解不等式结合的实际问题4、与统计结合的实际问题5、与其他背景结合的实际问题一、单选题1.(2023·福建·统考模拟预测)已知()2,X N μσ ,则()0.6827P X μσμσ-≤≤+≈,()220.9545P X μσμσ-≤≤+≈,()330.9973P X μσμσ-≤≤+≈.今有一批数量庞大的零件.假设这批零件的某项质量指标引单位:毫米)服从正态分布()25.40,0.05N ,现从中随机抽取N 个,这N 个零件中恰有K 个的质量指标ξ位于区间()5.35,5.55.若45K =,试以使得()45P K =最大的N 值作为N 的估计值,则N 为()A .45B .53C .54D .902.(2023·贵州·统考模拟预测)信息熵是信息论中的一个重要概念.设随机变量X 所有可能的取值为1,2,,n ,且()()01,2,,i P X i p i n ==>=⋅⋅⋅,11ni i p ==∑,定义X 的信息熵()21log ni i i H X p p ==-∑,若2n m =,随机变量Y 所有可能的取值为1,2,,m ⋅⋅⋅,且()()211,2,,j m j P Y j p p j m +-==+=⋅⋅⋅,则()A .()()H X H Y ≥B .()()H X H Y ≤C .()()H X H Y <D .()()H X H Y >3.(2023·云南·高三校联考阶段练习)一枚质地均匀的正方体骰子,其六个面分别刻有1,2,3,4,5,6六个数字,投掷这枚骰子两次,A 表示事件“第一次向上一面的数字是1”,B 表示事件“第二次向上一面的数字是2”,C 表示事件“两次向上一面的数字之和是7”,D 表示事件“两次向上一面的数字之和是8”,则()A .C 与D 相互独立B .A 与D 相互独立C .B 与D 相互独立D .A 与C 相互独立二、多选题4.(2023·辽宁沈阳·沈阳二中校考三模)已知数列{}n a 的前n 项和为n S ,且1i a =或2i a =的概率均为()11,2,3,2i =⋅⋅⋅.设n S 能被3整除的概率为n P ,则()A .21P =B .314P =C .113411024P =D .当25n ≥时,13n P <5.(2023·福建泉州·统考三模)某商场设有电子盲盒机,每个盲盒外观完全相同,规定每个玩家只能用一个账号登陆,且每次只能随机选择一个开启.已知玩家第一次抽盲盒,抽中奖品的概率为27,从第二次抽盲盒开始,若前一次没抽中奖品,则这次抽中的概率为12,若前一次抽中奖品,则这次抽中的概率为13.记玩家第n 次抽盲盒,抽中奖品的概率为n P ,则()A .21942P =B .数列37n P ⎧⎫-⎨⎬⎩⎭为等比数列C .1942n P ≤D .当2n ≥时,n 越大,n P 越小6.(2023·山西大同·大同市实验中学校考模拟预测)如图,已知正方体1111ABCD A B C D -顶点处有一质点Q ,点Q 每次会随机地沿一条棱向相邻的某个顶点移动,且向每个顶点移动的概率相同.从一个顶点沿一条棱移动到相邻顶点称为移动一次.若质点Q 的初始位置位于点A 处,记点Q 移动n 次后仍在底面ABCD 上的概率为n P ,则下列说法正确的是()A .259P =B .12133n n P P +=+C .点Q 移动4次后恰好位于点1C 的概率为0D .点Q 移动10次后仍在底面ABCD 上的概率为10111()232+7.(2023·山东烟台·高二统考阶段练习)甲、乙两人进行()*2N n n ∈局羽毛球比赛(无平局),每局甲获胜的概率均为12.规定:比赛结束时获胜局数多的人贏得比赛.记甲贏得比赛的概率为()P n ,假设每局比赛互不影响,则()A .()114P =B .()11316P =C .()221C 122n nnP n +=-D .()P n 单调递增三、填空题8.(2023·河南信阳·校联考模拟预测)在ABC 中,内角,,A B C 的对边分别为,,a b c .若c =,2b =,π3C =,AD 是BC 边上的高线,点D 为垂足.点E 为线段BD 上一点,点B 关于直线AE 的对称点为点M .从四边形BACM 中任取一点,该点来自ABC 的概率记为()P A ,则()P A 的最小值为______.9.(2023·山东枣庄·统考二模)一个袋子中有100个大小相同的球,其中有40个黄球,60个白球.采取不放回摸球,从中随机摸出22个球作为样本,用X 表示样本中黄球的个数.当()P X k =最大时,()E X k +=____________.10.(2023·浙江金华·浙江金华第一中学校考模拟预测)定义:如果甲队赢了乙队,乙队赢了丙队,而丙队又赢了甲队,则称甲乙丙为一个“友好组”.如果20支球队参加单循环比赛,则友好组个数的最大值为__________.11.(2023·上海黄浦·高二上海市大同中学校考阶段练习)已知正三角形ABC ,某同学从A 点开始,用掷骰子的方法移动棋子.规定:①每掷一次骰子,把一枚棋子从三角形的一个顶点移动到另一个顶点.②棋子移动的方向由掷骰子(点数为16-)决定,若掷出骰子的点数大于3,则按逆时针方向移动;若掷出骰子的点数不大于3,则按顺时针方向移动.设掷骰子n 次时,棋子移动到,,A B C 处的概率分别为()n P A ,()n P B ,()n P C .例如:掷骰子一次时,棋子移动到,,A B C 处的概率分别为1()0P A =,11((1))2P B P C ==.当掷骰子7次时,棋子移动到A 处的概率7()P A 值为___________.12.(2023·天津·统考一模)一袋中有大小相同的4个红球和2个白球若从中任取3球,则恰有一个白球的概率是__________,若从中不放回的取球2次,每次任取1球,记“第一次取到红球”为事件A ,“第二次取到红球”为事件B ,则()|P B A =__________.13.(2023·山东烟台·高二山东省招远第一中学校考期中)现有一款闯关游戏,共有4关,规则如下:在第n 关要抛掷骰子n 次,每次观察向上面的点数并做记录,如果这n 次抛掷所出现的点数之和大于2n n +,则算过第n 关.假定每次过关互不影响,则直接挑战第2关并过关的概率为__________,若直接挑战第4关,则过关的概率为__________.14.(2023·山东潍坊·统考一模)乒乓球被称为我国的“国球”.甲、乙两名运动员进行乒乓球比赛,其中每局中甲获胜的概率为34,乙获胜的概率为14,每局比赛都是相互独立的.①若比赛为五局三胜制,则需比赛五局才结束的概率为__________.②若两人约定其中一人比另一人多赢两局时比赛结束,则需要进行的比赛局数的数学期望为__________.附:当01q <<时,lim 0n n q →+∞=,lim 0n n n q →+∞⋅=.四、解答题15.(2023·江西·校联考模拟预测)某企业对生产设备进行优化升级,升级后的设备控制系统由()21k k *-∈N 个相同的元件组成,每个元件正常工作的概率均为()01p p <<,各元件之间相互独立.当控制系统有不少于k 个元件正常工作时,设备正常运行,否则设备停止运行,记设备正常运行的概率为k p (例如:2p 表示控制系统由3个元件组成时设备正常运行的概率;3p 表示控制系统由5个元件组成时设备正常运行的概率).(1)若23p =,当2k =时,求控制系统中正常工作的元件个数X 的分布列和数学期望,并求3p ;(2)已知设备升级前,单位时间的产量为a 件,每件产品的利润为1元,设备升级后,在正常运行状态下,单位时间的产量是原来的4倍,且出现了高端产品,每件产品成为高端产品的概率为14,每件高端产品的利润是2元.记设备升级后单位时间内的利润为Y (单位:元).(i )请用k p 表示()E Y ;(ii )设备升级后,在确保控制系统中元件总数为奇数的前提下,分析该设备能否通过增加控制系统中元件的个数来提高利润.16.(2023·浙江杭州·统考二模)马尔科夫链是概率统计中的一个重要模型,也是机器学习和人工智能的基石,在强化学习、自然语言处理、金融领域、天气预测等方面都有着极其广泛的应用.其数学定义为:假设我们的序列状态是…,2t X -,1t X -,t X ,1t X +,…,那么1t X +时刻的状态的条件概率仅依赖前一状态t X ,即()()1211,,,t t t t t t P X X X X P X X +--+⋅⋅⋅=.现实生活中也存在着许多马尔科夫链,例如著名的赌徒模型.假如一名赌徒进入赌场参与一个赌博游戏,每一局赌徒赌赢的概率为50%,且每局赌赢可以赢得1元,每一局赌徒赌输的概率为50%,且赌输就要输掉1元.赌徒会一直玩下去,直到遇到如下两种情况才会结束赌博游戏:一种是手中赌金为0元,即赌徒输光;一种是赌金达到预期的B 元,赌徒停止赌博.记赌徒的本金为()*N ,A A A B ∈<,赌博过程如下图的数轴所示.当赌徒手中有n 元(0n B ≤≤,N n ∈)时,最终输光的概率为........()P n ,请回答下列问题:(1)请直接写出()0P 与()P B 的数值.(2)证明(){}P n 是一个等差数列,并写出公差d .(3)当100A =时,分别计算200B =,1000B =时,()P A 的数值,并结合实际,解释当B →∞时,()P A 的统计含义.17.(2023·吉林·统考三模)2022年11月20日,卡塔尔足球世界杯正式开幕,世界杯上的中国元素随处可见.从体育场建设到电力保障,从赛场内的裁判到赛场外的吉祥物都是中国制造,为卡塔尔世界杯提供了强有力的支持.国内也再次掀起足球热潮.某地足球协会组建球队参加业余比赛,该足球队教练组为了考查球员甲对球队的贡献,作出如下数据统计(甲参加过的比赛均分出了输赢):球队输球球队赢球总计甲参加23032甲未参加81018总计104050(1)根据小概率值0.005α=的独立性检验,能否认为该球队赢球与甲球员参赛有关联;(2)从该球队中任选一人,A 表示事件“选中的球员参赛”,B 表示事件“球队输球”.()()||P B A P B A 与()()||P B A P B A 的比值是选中的球员参赛对球队贡献程度的一项度量指标,记该指标为R .①证明:()()()()||||P A B P A B R P A B P A B =⋅;②利用球员甲数据统计,给出()|P A B ,()|P A B 的估计值,并求出R 的估计值.附:()()()()()22n ad bc a b c d a c b d χ-=++++.参考数据:a 0.050.010.0050.001ax 3.8416.6357.87910.82818.(2023·全国·模拟预测)2022年11月4日上午,福建省福州市教育局对2023年初中毕业生体育考试抽考类、抽选考类项目进行摇号抽签,最终确定排球对墙垫球为抽考项目,立定跳远、50米跑、双手头上前掷实心球三项为抽选考项目(考生从这三个项目中自选两项考试).此外,体育中考还有必考项目:1000米跑(男)、800米跑(女)或200米游泳(泳姿不限),考生按性别从2个项目中自选1项考试.若某初三男生参加中考体育测试的项目为排球对墙垫球、立定跳远、双手头上前掷实心球、1000米跑.为了提高成绩,该男生决定每天进行多次训练(一次练一项),第一次,在4个项目中等可能地随机选一项开始训练,从第二次起,每次都是从上一次未训练的3个项目中等可能地随机选1项训练.(1)若该男生某天进行了3次训练,求第三次训练的是“排球对墙垫球”的概率;(2)若该男生某天进行了5次训练,4个项目都有训练,且第一次训练的是“1000米跑”,前后训练项目不同视为不同的训练顺序,设5次训练中选择“1000米跑”的次数为X ,求X 的分布列及数学期望.19.(2023·福建莆田·统考二模)互花米草是禾本科草本植物,其根系发达,具有极高的繁殖系数,对近海生态具有较大的危害.为尽快消除互花米草危害,2022年10月24日,市政府印发了《莆田市互花米草除治攻坚实施方案》,对全市除治攻坚行动做了具体部署.某研究小组为了解甲、乙两镇的互花米草根系分布深度情况,采用按比例分层抽样的方法抽取样本.已知甲镇的样本容量12m =,样本平均数18x =,样本方差2119s =;乙镇的样本容量18n =,样本平均数36y =,样本方差2270s =.(1)求由两镇样本组成的总样本的平均数z 及其方差2S ;(2)为营造“广泛发动、全民参与”的浓厚氛围,甲、乙两镇决定进行一次“互花米草除治大练兵”比赛,两镇各派一支代表队参加,经抽签确定第一场在甲镇举行.比赛规则:每场比赛直至分出胜负为止,胜方得1分,负方得0分,下一场在负方举行,先得2分的代表队获胜,比赛结束.当比赛在甲镇举行时,甲镇代表队获胜的概率为35,当比赛在乙镇举行时,甲镇代表队获胜的概率为12.假设每场比赛结果相互独立.甲镇代表队的最终得分记为X ,求()E X .参考数据:2222212183888,183623328,28.8829.44,1210.81399.68,187.2933.12⨯=⨯==⨯=⨯=.20.(2023·浙江·模拟预测)2022年卡塔尔世界杯决赛圈共有32队参加,其中欧洲球队有13支,分别是德国、丹麦、法国、西班牙、英格兰、克罗地亚、比利时、荷兰、塞尔维亚、瑞士、葡萄牙、波兰、威尔士.世界杯决赛圈赛程分为小组赛和淘汰赛,当进入淘汰赛阶段时,比赛必须要分出胜负.淘汰赛规则如下:在比赛常规时间90分钟内分出胜负,比赛结束,若比分相同,则进入30分钟的加时赛.在加时赛分出胜负,比赛结束,若加时赛比分依然相同,就要通过点球大战来分出最后的胜负.点球大战分为2个阶段.第一阶段:前5轮双方各派5名球员,依次踢点球,以5轮的总进球数作为标准(非必要无需踢满5轮),前5轮合计踢进点球数更多的球队获得比赛的胜利.第二阶段:如果前5轮还是平局,进入“突然死亡”阶段,双方依次轮流踢点球,如果在该阶段一轮里,双方都进球或者双方都不进球,则继续下一轮,直到某一轮里,一方罚进点球,另一方没罚进,比赛结束,罚进点球的一方获得最终的胜利.下表是2022年卡塔尔世界杯淘汰赛阶段的比赛结果:淘汰赛比赛结果淘汰赛比赛结果1/8决赛荷兰3:1美国1/4决赛克罗地亚4112():()巴西阿根廷2:1澳大利亚荷兰3224():()阿根廷法国3:1波兰摩洛哥10:葡萄牙英格兰30:塞内加尔英格兰1:2法国日本1113():()克罗地亚半决赛阿根廷30:克罗地亚巴西4:1韩国法国20:摩洛哥摩洛哥3000():()西班牙季军赛克罗地亚2:1摩洛哥葡萄牙61:瑞士决赛阿根廷4332():()法国注:“阿根廷4332():()法国”表示阿根廷与法国在常规比赛及加时赛的比分为33:,在点球大战中阿根廷42:战胜法国.(1)请根据上表估计在世界杯淘汰赛阶段通过点球大战分出胜负的概率.(2)根据题意填写下面的22⨯列联表,并通过计算判断是否能在犯错的概率不超过0.01的前提下认为“32支决赛圈球队闯入8强”与是否为欧洲球队有关.欧洲球队其他球队合计闯入8强未闯入8强合计知甲队球员每轮踢进点球的概率为p,乙队球员每轮踢进点球的概率为23,求在点球大战中,两队前2轮比分为2:2的条件下,甲队在第一阶段获得比赛胜利的概率(用p表示).参考公式:22(),.()()()()n ad bc n a b c da b c d a c b dχ-==+++ ++++()2Pχα≥0.10.050.010.0050.001α 2.706 3.841 6.6357.87910.82821.(2023·山西·统考一模)假设有两个密闭的盒子,第一个盒子里装有3个白球2个红球,第二个盒子里装有2个白球4个红球,这些小球除颜色外完全相同.(1)每次从第一个盒子里随机取出一个球,取出的球不再放回,经过两次取球,求取出的两球中有红球的条件下,第二次取出的是红球的概率;(2)若先从第一个盒子里随机取出一个球放入第二个盒子中,摇匀后,再从第二个盒子里随机取出一个球,求从第二个盒子里取出的球是红球的概率.22.(2023·江苏盐城·盐城中学一模)抽屉中装有5双规格相同的筷子,其中2双是一次性筷子,3双是非一次性筷子,每次使用筷子时,从抽屉中随机取出1双,若取出的是一次性筷子,则使用后直接丢弃,若取出的是非一次性筷子,则使用后经过清洗再次放入抽屉中,求:(1)在第2次取出的是非一次性筷子的条件下,第1次取出的是一次性筷子的概率;(2)取了3次后,取出的一次性筷子的个数(双)的分布列及数学期望;n n=,…)次后,所有一次性筷子刚好全部取出的概率.(3)取了(2,3,423.(2023·湖南长沙·湖南师大附中校考一模)第22届世界杯于2022年11月21日到12月18日在卡塔尔举办.在决赛中,阿根廷队通过点球战胜法国队获得冠军.(1)扑点球的难度一般比较大,假设罚点球的球员会等可能地随机选择球门的左、中、右三个方向射门,门将也会等可能地随机选择球门的左、中、右三个方向来扑点球,而且门将即使方向判断正确也有23的可能性扑不到球.不考虑其它因素,在一次点球大战中,求门将在前三次扑到点球的个数X 的分布列和期望;(2)好成绩的取得离不开平时的努力训练,甲、乙、丙三名前锋队员在某次传接球的训练中,球从甲脚下开始,等可能地随机传向另外2人中的1人,接球者接到球后再等可能地随机传向另外2人中的1人,如此不停地传下去,假设传出的球都能接住.记第n 次传球之前球在甲脚下的概率为pn ,易知121,0==p p .①试证明:13n p ⎧⎫-⎨⎩⎭为等比数列;②设第n 次传球之前球在乙脚下的概率为qn ,比较p 10与q 10的大小.24.(2023·河北衡水·衡水市第二中学校考模拟预测)某游戏中的角色“突击者”的攻击有一段冷却时间(即发动一次攻击后需经过一段时间才能再次发动攻击).其拥有两个技能,技能一是每次发动攻击后有12的概率使自己的下一次攻击立即冷却完毕并直接发动,该技能可以连续触发,从而可能连续多次跳过冷却时间持续发动攻击;技能二是每次发动攻击时有12的概率使得本次攻击以及接下来的攻击的伤害全部变为原来的2倍,但是多次触发时效果不可叠加(相当于多次触发技能二时仅得到第一次触发带来的2倍伤害加成).每次攻击发动时先判定技能二是否触发,再判定技能一是否触发.发动一次攻击并连续多次触发技能一而带来的连续攻击称为一轮攻击,造成的总伤害称为一轮攻击的伤害.假设“突击者”单次攻击的伤害为1,技能一和技能二的各次触发均彼此独立:(1)当“突击者”发动一轮攻击时,记事件A 为“技能一和技能二的触发次数之和为2”,事件B 为“技能一和技能二各触发1次”,求条件概率()P B A (2)设n 是正整数,“突击者”一轮攻击造成的伤害为2n 的概率记为n P ,求n P .25.(2023·全国·模拟预测)为落实立德树人根本任务,坚持五育并举全面推进素质教育,某学校举行了乒乓球比赛,其中参加男子乒乓球决赛的12名队员来自3个不同校区,三个校区的队员人数分别是3,4,5.本次决赛的比赛赛制采取单循环方式,即每名队员进行11场比赛(每场比赛都采取5局3胜制),最后根据积分选出最后的冠军.积分规则如下:比赛中以3:0或3:1取胜的队员积3分,失败的队员积0分;而在比赛中以3:2取胜的队员积2分,失败的队员的队员积1分.已知第10轮张三对抗李四,设每局比赛张三取胜的概率均为()01p p <<.(1)比赛结束后冠亚军(没有并列)恰好来自不同校区的概率是多少?(2)第10轮比赛中,记张三3:1取胜的概率为()f p .①求出()f p 的最大值点0p ;②若以0p 作为p 的值,这轮比赛张三所得积分为X ,求X 的分布列及期望.26.(2023·江苏宿迁·江苏省沭阳高级中学校考模拟预测)为丰富学生课外生活,某市组织了高中生钢笔书法比赛,比赛分两个阶段进行:第一阶段由评委给出所有参赛作品评分,并确定优胜者;第二阶段为附加赛,参赛人员由组委会按规则另行确定.数据统计员对第一阶段的分数进行了统计分析,这些分数X 都在[70,100)内,在以组距为5画分数的频率分布直方图(设“=Y 频率组距”)时,发现Y 满足*8109,16300,N ,55(1)11,161520n n Y n n X n k n n -⎧⎪⎪=∈<+⎨⎪-⋅>⎪-⎩ .(1)试确定n 的所有取值,并求k ;(2)组委会确定:在第一阶段比赛中低于85分的参赛者无缘获奖也不能参加附加赛;分数在[)95,100的参赛者评为一等奖;分数在[90,95)的同学评为二等奖,但通过附加赛有111的概率提升为一等奖;分数在[85,90)的同学评为三等奖,但通过附加赛有17的概率提升为二等奖(所有参加附加赛的获奖人员均不降低获奖等级).已知学生A 和B 均参加了本次比赛,且学生A 在第一阶段评为二等奖.(i )求学生B 最终获奖等级不低于学生A 的最终获奖等级的概率;(ii )已知学生A 和B 都获奖,记A B ,两位同学最终获得一等奖的人数为ξ,求ξ的分布列和数学期望.27.(2023·广东江门·高二校考阶段练习)三年多的“新冠之战”在全国人民的共同努力下刚刚取得完胜,这给我们的个人卫生和公共卫生都提出更高的要求!某机构欲组建一个有关“垃圾分类”相关事宜的项目组,对各个地区“垃圾分类”的处理模式进行相关报道,该机构从600名员工中进行筛选,筛选方法如下:每位员工测试A ,B ,C 三项工作,3项测试中至少2项测试“不合格”的员工,将被认定为“暂定”,有且只有一项测试“不合格”的员工将再测试A ,B 两项,如果这两项中有1项以上(含1项)测试“不合格”,将也被认定为“暂定”,每位员工测试A ,B ,C 三项工作相互独立,每一项测试“不合格”的概率均为()01p p <<.(1)记每位员工被认定为“暂定”的概率为()f p ,求()f p ;(2)每位员工不需要重新测试的费用为90元,需要重新测试的前后两轮测试的总费用为150元,所有员工除测试费用外,其他费用总计为1万元,若该机构的预算为8万元,且600名员工全部参与测试,试估计上述方案是否会超出预算,并说明理由.28.(2023·重庆沙坪坝·高三重庆八中校考阶段练习)某辖区组织居民接种新冠疫苗,现有A ,B ,C ,D 四种疫苗且每种都供应充足.前来接种的居民接种与号码机产生的号码对应的疫苗,号码机有A ,B ,C ,D 四个号码,每次可随机产生一个号码,后一次产生的号码由前一次余下的三个号码中随机产生,张医生接种A 种疫苗后,再为居民们接种,记第n 位居民(不包含张医生)接种A ,B ,C ,D 四种疫苗的概率分别为(),(),(),()n n n n P A P B P C P D .(1)第2位居民接种哪种疫苗的概率最大;(2)证明:()()()n n n P B P C P D ==;(3)张医生认为,一段时间后接种A ,B ,C ,D 四种疫苗的概率应该相差无几,请你通过计算第10位居民接种A ,B ,C ,D 四种的概率,解释张医生观点的合理性.参考数据:910910553411115.110, 1.710, 2.010,9.810.3322----⎛⎫⎛⎫⎛⎫⎛⎫≈⨯≈⨯≈⨯≈⨯ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭29.(2023·云南·高三云南师大附中校考阶段练习)某商场计划在国庆节开展促销活动,准备了游戏环节,主持人准备一枚质地均匀的骰子,掷到奇数和偶数的概率各为12,游戏要求顾客掷()*2n n N ∈次骰子,每次记录下点数为奇数还是偶数.(1)若正好有n 次的点数为偶数,则顾客获得一个价值50元的红包作为顾客,你认为1n =和2n =哪种情况更有利于你获得红包?(2)投掷2n 次骰子后,若掷出偶数的次数多于奇数,则顾客获得一张100元的消费券;掷出偶数的次数等于奇数,则顾客获得一张50元的消费券;掷出偶数的次数少于奇数,则顾客获得一张10元的消费券.(ⅰ)当2n =时,记顾客获得的消费券为X 元,求随机变量X 的数学期望;(ⅱ)记“掷2n 次骰子,掷出偶数的次数多于奇数”的概率为n P ,求n P (直接写出n P 表达式即可)。

历年(2019-2024)全国高考数学真题分类(事件与概率)汇编(附答案)

历年(2019-2024)全国高考数学真题分类(事件与概率)汇编(附答案)

历年(2019-2024)全国高考数学真题分类(事件与概率)汇编考点01 古典概率一、单选题1.(2024∙全国甲卷∙高考真题)甲、乙、丙、丁四人排成一列,则丙不在排头,且甲或乙在排尾的概率是()A.14B.13C.12D.232.(2023∙全国乙卷∙高考真题)某学校举办作文比赛,共6个主题,每位参赛同学从中随机抽取一个主题准备作文,则甲、乙两位参赛同学抽到不同主题概率为()A.56B.23C.12D.133.(2023∙全国甲卷∙高考真题)某校文艺部有4名学生,其中高一、高二年级各2名.从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为()A.16B.13C.12D.234.(2022∙全国甲卷∙高考真题)从分别写有1,2,3,4,5,6的6张卡片中无放回随机抽取2张,则抽到的2张卡片上的数字之积是4的倍数的概率为()A.15B.13C.25D.235.(2022∙全国新Ⅰ卷∙高考真题)从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为()A.16B.13C.12D.236.(2021∙全国甲卷∙高考真题)将3个1和2个0随机排成一行,则2个0不相邻的概率为() A.0.3 B.0.5 C.0.6 D.0.87.(2019∙全国∙高考真题)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是A.16B.14C.13D.128.(2019∙全国∙高考真题)生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为A.23 B.35C.25D.15二、填空题21.(2024∙全国新Ⅰ卷∙高考真题)甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片上分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8,两人进行四轮比赛,在每轮比赛中,两人各自从自己持有的卡片中随机选一张,并比较所选卡片上数字的大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用).则四轮比赛后,甲的总得分不小于2的概率为 .22.(2024∙全国甲卷∙高考真题)有6个相同的球,分别标有数字1、2、3、4、5、6,从中无放回地随机取3次,每次取1个球.记m 为前两次取出的球上数字的平均值,n 为取出的三个球上数字的平均值,则m 与n 之差的绝对值不大于12的概率为 .23.(2024∙全国新Ⅱ卷∙高考真题)在如图的4×4的方格表中选4个方格,要求每行和每列均恰有一个方格被选中,则共有 种选法,在所有符合上述要求的选法中,选中方格中的4个数之和的最大值是 .24.(2023∙天津∙高考真题)把若干个黑球和白球(这些球除颜色外无其它差异)放进三个空箱子中,三个箱子中的球数之比为5:4:6.且其中的黑球比例依次为40%,25%,50%.若从每个箱子中各随机摸出一球,则三个球都是黑球的概率为 ;若把所有球放在一起,随机摸出一球,则该球是白球的概率为 . 25.(2022∙浙江∙高考真题)现有7张卡片,分别写上数字1,2,2,3,4,5,6.从这7张卡片中随机抽取3张,记所抽取卡片上数字的最小值为ξ,则(2)P ξ== ,()E ξ= .26.(2022∙全国甲卷∙高考真题)从正方体的8个顶点中任选4个,则这4个点在同一个平面的概率为 . 27.(2022∙全国乙卷∙高考真题)从甲、乙等5名同学中随机选3名参加社区服务工作,则甲、乙都入选的概率为 .28.(2021∙浙江∙高考真题)袋中有4个红球m 个黄球,n 个绿球.现从中任取两个球,记取出的红球数为ξ,若取出的两个球都是红球的概率为16,一红一黄的概率为13,则m n -= ,()E ξ= .29.(2020∙江苏∙高考真题)将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是 .30.(2019∙江苏∙高考真题)从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是 .考点02 条件概率1.(2024∙天津∙高考真题),,,,A B C D E 五种活动,甲、乙都要选择三个活动参加.甲选到A 的概率为 ;已知乙选了A 活动,他再选择B 活动的概率为 .2.(2023∙全国甲卷∙高考真题)某地的中学生中有60%的同学爱好滑冰,50%的同学爱好滑雪,70%的同学爱好滑冰或爱好滑雪.在该地的中学生中随机调查一位同学,若该同学爱好滑雪,则该同学也爱好滑冰的概率为( ) A .0.8B .0.6C .0.5D .0.43.(2022∙天津∙高考真题)52张扑克牌,没有大小王,无放回地抽取两次,则两次都抽到A 的概率为 ;已知第一次抽到的是A ,则第二次抽取A 的概率为考点03 全概率公式与贝叶斯公式1.(2024∙上海∙高考真题)某校举办科学竞技比赛,有、、A B C 3种题库,A 题库有5000道题,B 题库有4000道题,C 题库有3000道题.小申已完成所有题,他A 题库的正确率是0.92,B 题库的正确率是0.86,C 题库的正确率是0.72.现他从所有的题中随机选一题,正确率是 .2.(2023∙全国新Ⅰ卷∙高考真题)甲、乙两人投篮,每次由其中一人投篮,规则如下:若命中则此人继续投篮,若末命中则换为对方投篮.无论之前投篮情况如何,甲每次投篮的命中率均为0.6,乙每次投篮的命中率均为0.8.由抽签确定第1次投篮的人选,第1次投篮的人是甲、乙的概率各为0.5. (1)求第2次投篮的人是乙的概率; (2)求第i 次投篮的人是甲的概率;(3)已知:若随机变量i X 服从两点分布,且()()110,1,2,,i i i P X P X q i n ==-===⋅⋅⋅,则11n n i i i i E X q ==⎛⎫= ⎪⎝⎭∑∑.记前n 次(即从第1次到第n 次投篮)中甲投篮的次数为Y ,求()E Y .考点04 正态分布指定区间的概率1.(2024∙全国新Ⅰ卷∙高考真题)(多选)随着“一带一路”国际合作的深入,某茶叶种植区多措并举推动茶叶出口.为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值 2.1x =,样本方差20.01s =,已知该种植区以往的亩收入X 服从正态分布()21.8,0.1N ,假设推动出口后的亩收入Y 服从正态分布()2,N x s ,则( )(若随机变量Z 服从正态分布()2,N μσ,()0.8413P Z μσ<+≈)A .(2)0.2P X >>B .(2)0.5P X ><C .(2)0.5P Y >>D .(2)0.8P Y ><2.(2022∙全国新Ⅱ卷∙高考真题)已知随机变量X 服从正态分布()22,N σ,且(2 2.5)0.36P X <≤=,则( 2.5)P X >= .3.(2021∙全国新Ⅱ卷∙高考真题)某物理量的测量结果服从正态分布()210,N σ,下列结论中不正确的是( ) A .σ越小,该物理量在一次测量中在(9.9,10.1)的概率越大 B .该物理量在一次测量中大于10的概率为0.5C .该物理量在一次测量中小于9.99与大于10.01的概率相等D .该物理量在一次测量中落在(9.9,10.2)与落在(10,10.3)的概率相等参考答案考点01 古典概率一、单选题 1.(2024∙全国甲卷∙高考真题)甲、乙、丙、丁四人排成一列,则丙不在排头,且甲或乙在排尾的概率是( ) A .14 B .13C .12D .23【答案】B【详细分析】解法一:画出树状图,结合古典概型概率公式即可求解.解法二:分类讨论甲乙的位置,结合得到符合条件的情况,然后根据古典概型计算公式进行求解. 【答案详解】解法一:画出树状图,如图,由树状图可得,甲、乙、丙、丁四人排成一列,共有24种排法, 其中丙不在排头,且甲或乙在排尾的排法共有8种, 故所求概率81=243P =. 解法二:当甲排在排尾,乙排第一位,丙有2种排法,丁就1种,共2种; 当甲排在排尾,乙排第二位或第三位,丙有1种排法,丁就1种,共2种;于是甲排在排尾共4种方法,同理乙排在排尾共4种方法,于是共8种排法符合题意;基本事件总数显然是44A 24=,根据古典概型的计算公式,丙不在排头,甲或乙在排尾的概率为81243=. 故选:B2.(2023∙全国乙卷∙高考真题)某学校举办作文比赛,共6个主题,每位参赛同学从中随机抽取一个主题准备作文,则甲、乙两位参赛同学抽到不同主题概率为( )6323【答案】A【详细分析】对6个主题编号,利用列举列出甲、乙抽取的所有结果,并求出抽到不同主题的结果,再利用古典概率求解作答.【答案详解】用1,2,3,4,5,6表示6个主题,甲、乙二人每人抽取1个主题的所有结果如下表:甲 1234 5 61 (1,1) (1,2) (1,3) (1,4)(1,5) (1,6) 2 (2,1)(2,2) (2,3) (2,4) (2,5) (2,6) 3 (3,1) (3,2) (3,3)(3,4) (3,5)(3,6) 4 (4,1)(4,2) (4,3) (4,4) (4,5) (4,6) 5 (5,1) (5,2) (5,3)(5,4) (5,5) (5,6) 6(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)共有36个不同结果,它们等可能,其中甲乙抽到相同结果有(1,1),(2,2),(3,3),(4,4),(5,5),(6,6),共6个, 因此甲、乙两位参赛同学抽到不同主题的结果有30个,概率305366P ==. 故选:A3.(2023∙全国甲卷∙高考真题)某校文艺部有4名学生,其中高一、高二年级各2名.从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为( )A .16B .13C .12D .23【答案】D【详细分析】利用古典概率的概率公式,结合组合的知识即可得解.【答案详解】依题意,从这4名学生中随机选2名组织校文艺汇演,总的基本事件有24C 6=件, 其中这2名学生来自不同年级的基本事件有1122C C 4=,所以这2名学生来自不同年级的概率为4263=. 故选:D.4.(2022∙全国甲卷∙高考真题)从分别写有1,2,3,4,5,6的6张卡片中无放回随机抽取2张,则抽到的2张卡片上的数字之积是4的倍数的概率为( )5353【答案】C【详细分析】方法一:先列举出所有情况,再从中挑出数字之积是4的倍数的情况,由古典概型求概率即可.【答案详解】[方法一]:【最优解】无序 从6张卡片中无放回抽取2张,共有()()()()()()()()()()()()()()()1,2,1,3,1,4,1,5,1,6,2,3,2,4,2,5,2,6,3,4,3,5,3,6,4,5,4,6,5,615种情况,其中数字之积为4的倍数的有()()()()()()1,4,2,4,2,6,3,4,4,5,4,66种情况,故概率为62155=. [方法二]:有序从6张卡片中无放回抽取2张,共有()()()()()()()()()()()()()()()1,2,1,3,1,4,1,5,1,6,2,3,2,4,2,5,2,6,3,4,3,5,3,6,4,5,4,6,5,6,(2,1),(3,1),(4,1),(5,1),(6,1),(3,2),(4,2),(5,2),(6,2),(4,3),(5,3),(6,3),(5,4),(6,4),(6,5)30种情况,其中数字之积为4的倍数有(1,4),(2,4),(2,6),(3,4),(4,1),(4,2),(4,3),(4,5),(4,6),(5,4),(6,2),(6,4)12种情况,故概率为122305=. 故选:C.【整体点评】方法一:将抽出的卡片看成一个组合,再利用古典概型的概率公式解出,是该题的最优解; 方法二:将抽出的卡片看成一个排列,再利用古典概型的概率公式解出;5.(2022∙全国新Ⅰ卷∙高考真题)从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为( )A .16B .13C .12D .23【答案】D【详细分析】由古典概型概率公式结合组合、列举法即可得解.【答案详解】从2至8的7个整数中随机取2个不同的数,共有27C 21=种不同的取法,若两数不互质,不同的取法有:()()()()()()()2,4,2,6,2,8,3,6,4,6,4,8,6,8,共7种, 故所求概率2172213P -==. 故选:D.6.(2021∙全国甲卷∙高考真题)将3个1和2个0随机排成一行,则2个0不相邻的概率为( ) A .0.3 B .0.5C .0.6D .0.8【答案】C【详细分析】利用古典概型的概率公式可求概率.【答案详解】解:将3个1和2个0随机排成一行,可以是:00111,01011,01101,01110,10011,10101,10110,11001,11010,11100,共10种排法,其中2个0不相邻的排列方法为:01011,01101,01110,10101,10110,11010,共6种方法,故2个0不相邻的概率为6=0.610, 故选:C.7.(2019∙全国∙高考真题)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是A .16B .14 C .13D .12【答案】D【解析】男女生人数相同可利用整体发详细分析出两位女生相邻的概率,进而得解.【答案详解】两位男同学和两位女同学排成一列,因为男生和女生人数相等,两位女生相邻与不相邻的排法种数相同,所以两位女生相邻与不相邻的概率均是12.故选D .【名师点评】本题考查常见背景中的古典概型,渗透了数学建模和数学运算素养.采取等同法,利用等价转化的思想解题.8.(2019∙全国∙高考真题)生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为 A .23B .35C .25D .15【答案】B【详细分析】本题首先用列举法写出所有基本事件,从中确定符合条件的基本事件数,应用古典概率的计算公式求解.【答案详解】设其中做过测试的3只兔子为,,a b c ,剩余的2只为,A B ,则从这5只中任取3只的所有取法有{,,},{,,},{,,},{,,},{,,},{,,}a b c a b A a b B a c A a c B a A B ,{,c,},{,c,},{b,,},{c,,}b A b B A B A B 共10种.其中恰有2只做过测试的取法有{,,},{,,},{,,},{,,},a b A a b B a c A a c B {,c,},{,c,}b A b B 共6种, 所以恰有2只做过测试的概率为63105,选B . 【名师点评】本题主要考查古典概率的求解,题目较易,注重了基础知识、基本计算能力的考查.应用列举法写出所有基本事件过程中易于出现遗漏或重复,将兔子标注字母,利用“树图法”,可最大限度的避免出错.二、填空题 21.(2024∙全国新Ⅰ卷∙高考真题)甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片上分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8,两人进行四轮比赛,在每轮比赛中,两人各自从自己持有的卡片中随机选一张,并比较所选卡片上数字的大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用).则四轮比赛后,甲的总得分不小于2的概率为 . 【答案】12/0.5 【详细分析】将每局的得分分别作为随机变量,然后详细分析其和随机变量即可. 【答案详解】设甲在四轮游戏中的得分分别为1234,,,X X X X ,四轮的总得分为X .对于任意一轮,甲乙两人在该轮出示每张牌的概率都均等,其中使得甲获胜的出牌组合有六种,从而甲在该轮获胜的概率()631448k P X ===⨯,所以()()31,2,3,48k E X k ==. 从而()()()441234113382k k k E X E X X X X E X ===+++===∑∑.记()()0,1,2,3k p P X k k ===.如果甲得0分,则组合方式是唯一的:必定是甲出1,3,5,7分别对应乙出2,4,6,8,所以04411A 24p ==; 如果甲得3分,则组合方式也是唯一的:必定是甲出1,3,5,7分别对应乙出8,2,4,6,所以34411A 24p ==. 而X 的所有可能取值是0,1,2,3,故01231p p p p +++=,()1233232p p p E X ++==. 所以121112p p ++=,1213282p p ++=,两式相减即得211242p +=,故2312p p +=.所以甲的总得分不小于2的概率为2312p p +=. 故答案为:12.【名师点评】关键点名师点评:本题的关键在于将问题转化为随机变量问题,利用期望的可加性得到等量关系,从而避免繁琐的列举.22.(2024∙全国甲卷∙高考真题)有6个相同的球,分别标有数字1、2、3、4、5、6,从中无放回地随机取3次,每次取1个球.记m 为前两次取出的球上数字的平均值,n 为取出的三个球上数字的平均值,则m 与n 之差的绝对值不大于12的概率为 . 【答案】715【详细分析】根据排列可求基本事件的总数,设前两个球的号码为,a b ,第三个球的号码为c ,则323a b c a b +-≤≤++,就c 的不同取值分类讨论后可求随机事件的概率.【答案详解】从6个不同的球中不放回地抽取3次,共有36A 120=种,设前两个球的号码为,a b ,第三个球的号码为c ,则1322a b c a b +++-≤, 故2()3c a b -+≤,故32()3c a b -≤-+≤, 故323a b c a b +-≤≤++,若1c =,则5a b +≤,则(),a b 为:()()2,3,3,2,故有2种, 若2c =,则17a b ≤+≤,则(),a b 为:()()()()()1,3,1,4,1,5,1,6,3,4,()()()()()3,1,4,1,5,1,6,1,4,3,故有10种,当3c =,则39a b ≤+≤,则(),a b 为:()()()()()()()()1,2,1,4,1,5,1,6,2,4,2,5,2,6,4,5, ()()()()()()()()2,1,4,1,5,1,6,1,4,2,5,2,6,2,5,4,故有16种,当4c =,则511a b ≤+≤,同理有16种, 当5c =,则713a b ≤+≤,同理有10种, 当6c =,则915a b ≤+≤,同理有2种, 共m 与n 的差的绝对值不超过12时不同的抽取方法总数为()22101656++=, 故所求概率为56712015=. 故答案为:71523.(2024∙全国新Ⅱ卷∙高考真题)在如图的4×4的方格表中选4个方格,要求每行和每列均恰有一个方格被选中,则共有 种选法,在所有符合上述要求的选法中,选中方格中的4个数之和的最大值是 .【答案】 24 112【详细分析】由题意可知第一、二、三、四列分别有4、3、2、1个方格可选;利用列举法写出所有的可能结果,即可求解.【答案详解】由题意知,选4个方格,每行和每列均恰有一个方格被选中, 则第一列有4个方格可选,第二列有3个方格可选,第三列有2个方格可选,第四列有1个方格可选, 所以共有432124⨯⨯⨯=种选法;每种选法可标记为(,,,)a b c d ,ab c d ,,,分别表示第一、二、三、四列的数字, 则所有的可能结果为:(11,22,33,44),(11,22,34,43),(11,22,33,44),(11,22,34,42),(11,24,33,43),(11,24,33,42), (12,21,33,44),(12,21,34,43),(12,22,31,44),(12,22,34,40),(12,24,31,43),(12,24,33,40), (13,21,33,44),(13,21,34,42),(13,22,31,44),(13,22,34,40),(13,24,31,42),(13,24,33,40), (15,21,33,43),(15,21,33,42),(15,22,31,43),(15,22,33,40),(15,22,31,42),(15,22,33,40),所以选中的方格中,(15,21,33,43)的4个数之和最大,为152********+++=. 故答案为:24;112【名师点评】关键点名师点评:解决本题的关键是确定第一、二、三、四列分别有4、3、2、1个方格可选,利用列举法写出所有的可能结果.24.(2023∙天津∙高考真题)把若干个黑球和白球(这些球除颜色外无其它差异)放进三个空箱子中,三个箱子中的球数之比为5:4:6.且其中的黑球比例依次为40%,25%,50%.若从每个箱子中各随机摸出一球,则三个球都是黑球的概率为 ;若把所有球放在一起,随机摸出一球,则该球是白球的概率为 . 【答案】 0.0535/0.6 【详细分析】先根据题意求出各盒中白球,黑球的数量,再根据概率的乘法公式可求出第一空; 根据古典概型的概率公式可求出第二个空.【答案详解】设甲、乙、丙三个盒子中的球的个数分别为5,4,6n n n ,所以总数为15n , 所以甲盒中黑球个数为40%52n n ⨯=,白球个数为3n ; 乙盒中黑球个数为25%4n n ⨯=,白球个数为3n ; 丙盒中黑球个数为50%63n n ⨯=,白球个数为3n ;记“从三个盒子中各取一个球,取到的球都是黑球”为事件A ,所以,()0.40.250.50.05P A =⨯⨯=;记“将三个盒子混合后取出一个球,是白球”为事件B , 黑球总共有236n n n n ++=个,白球共有9n 个, 所以,()93155n P B n ==. 故答案为:0.05;35.25.(2022∙浙江∙高考真题)现有7张卡片,分别写上数字1,2,2,3,4,5,6.从这7张卡片中随机抽取3张,记所抽取卡片上数字的最小值为ξ,则(2)P ξ== ,()E ξ= . 【答案】1635,127/517【详细分析】利用古典概型概率公式求(2)P ξ=,由条件求ξ分布列,再由期望公式求其期望.【答案详解】从写有数字1,2,2,3,4,5,6的7张卡片中任取3张共有37C 种取法,其中所抽取的卡片上的数字的最小值为2的取法有112424C C C +种,所以11242437C C C 16(2)C 35P ξ+===, 由已知可得ξ的取值有1,2,3,4,2637C 15(1)C 35P ξ===,16(2)35P ξ==,,()()233377C 31134C 35C 35P P ξξ======所以15163112()1234353535357E ξ=⨯+⨯+⨯+⨯=, 故答案为:1635,127. 26.(2022∙全国甲卷∙高考真题)从正方体的8个顶点中任选4个,则这4个点在同一个平面的概率为 . 【答案】635. 【详细分析】根据古典概型的概率公式即可求出.【答案详解】从正方体的8个顶点中任取4个,有48C 70n ==个结果,这4个点在同一个平面的有6612m =+=个,故所求概率1267035m P n ===. 故答案为:635. 27.(2022∙全国乙卷∙高考真题)从甲、乙等5名同学中随机选3名参加社区服务工作,则甲、乙都入选的概率为 . 【答案】310/0.3 【详细分析】根据古典概型计算即可【答案详解】解法一:设这5名同学分别为甲,乙,1,2,3,从5名同学中随机选3名,有:(甲,乙,1),(甲,乙,2),(甲,乙,3),(甲,1,2),(甲,1,3),(甲,2,3),(乙,1,2),(乙,1,3),(乙,2,3),(1,2,3),共10种选法; 其中,甲、乙都入选的选法有3种,故所求概率310P =. 故答案为:310. 解法二:从5名同学中随机选3名的方法数为35C 10=甲、乙都入选的方法数为13C 3=,所以甲、乙都入选的概率310P =故答案为:31028.(2021∙浙江∙高考真题)袋中有4个红球m 个黄球,n 个绿球.现从中任取两个球,记取出的红球数为ξ,若取出的两个球都是红球的概率为16,一红一黄的概率为13,则m n -= ,()E ξ= .【答案】 189【详细分析】根据古典概型的概率公式即可列式求得,m n 的值,再根据随机变量ξ的分布列即可求出()E ξ. 【答案详解】2244224461(2)366m n m n m n C P C CCξ++++++====⇒=,所以49m n ++=, ()P 一红一黄114244133693m m n C C m m m C ++⋅====⇒=, 所以2n =, 则1m n -=.由于11245522991455105(2),(1),(0)63693618C C C P P P C C ξξξ⋅⨯========== 155158()2106918399E ξ∴=⨯+⨯+⨯=+=.故答案为:1;89.29.(2020∙江苏∙高考真题)将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是 . 【答案】19【详细分析】分别求出基本事件总数,点数和为5的种数,再根据概率公式解答即可. 【答案详解】根据题意可得基本事件数总为6636⨯=个. 点数和为5的基本事件有()1,4,()4,1,()2,3,()3,2共4个.∴出现向上的点数和为5的概率为41369P ==. 故答案为:19.【名师点评】本题考查概率的求法,考查古典概型、列举法等基础知识,考查运算求解能力,是基础题. 30.(2019∙江苏∙高考真题)从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是 . 【答案】710. 【详细分析】先求事件的总数,再求选出的2名同学中至少有1名女同学的事件数,最后根据古典概型的概率计算公式得出答案.【答案详解】从3名男同学和2名女同学中任选2名同学参加志愿服务,共有2510C =种情况.若选出的2名学生恰有1名女生,有11326C C=种情况,若选出的2名学生都是女生,有221C=种情况,所以所求的概率为617 1010 +=.【名师点评】计数原理是高考考查的重点内容,考查的形式有两种,一是独立考查,二是与古典概型结合考查,由于古典概型概率的计算比较明确,所以,计算正确基本事件总数是解题的重要一环.在处理问题的过程中,应注意审清题意,明确“分类”“分步”,根据顺序有无,明确“排列”“组合”.考点02 条件概率1.(2024∙天津∙高考真题),,,,A B C D E五种活动,甲、乙都要选择三个活动参加.甲选到A的概率为;已知乙选了A活动,他再选择B活动的概率为.【答案】 3512【详细分析】结合列举法或组合公式和概率公式可求甲选到A的概率;采用列举法或者条件概率公式可求乙选了A活动,他再选择B活动的概率.【答案详解】解法一:列举法从五个活动中选三个的情况有:,,,,,,,,,ABC ABD ABE ACD ACE ADE BCD BCE BDE CDE,共10种情况,其中甲选到A有6种可能性:,,,,,ABC ABD ABE ACD ACE ADE,则甲选到A得概率为:63105P==;乙选A活动有6种可能性:,,,,,ABC ABD ABE ACD ACE ADE, 其中再选则B有3种可能性:,,ABC ABD ABE,故乙选了A活动,他再选择B活动的概率为31 = 62.解法二:设甲、乙选到A为事件M,乙选到B为事件N,则甲选到A的概率为()2435C3 C5P M==;乙选了A活动,他再选择B活动的概率为()()()133524351C2CCP MN CP N MP M===故答案为:35;122.(2023∙全国甲卷∙高考真题)某地的中学生中有60%的同学爱好滑冰,50%的同学爱好滑雪,70%的同学爱好滑冰或爱好滑雪.在该地的中学生中随机调查一位同学,若该同学爱好滑雪,则该同学也爱好滑冰的概率为( ) A .0.8 B .0.6C .0.5D .0.4【答案】A【详细分析】先算出同时爱好两项的概率,利用条件概率的知识求解. 【答案详解】同时爱好两项的概率为0.50.60.70.4+-=, 记“该同学爱好滑雪”为事件A ,记“该同学爱好滑冰”为事件B , 则()0.5,()0.4P A P AB ==,所以()0.4()0.8()0.5P AB P B A P A ===∣. 故选:A .3.(2022∙天津∙高考真题)52张扑克牌,没有大小王,无放回地抽取两次,则两次都抽到A 的概率为 ;已知第一次抽到的是A ,则第二次抽取A 的概率为 【答案】1221 117【详细分析】由题意结合概率的乘法公式可得两次都抽到A 的概率,再由条件概率的公式即可求得在第一次抽到A 的条件下,第二次抽到A 的概率.【答案详解】由题意,设第一次抽到A 的事件为B ,第二次抽到A 的事件为C ,则()()()()1431411221,(),|1525122152131713BC P BC P B P C B P B P =⨯======. 故答案为:1221;117.考点03 全概率公式与贝叶斯公式1.(2024∙上海∙高考真题)某校举办科学竞技比赛,有、、A B C 3种题库,A 题库有5000道题,B 题库有4000道题,C 题库有3000道题.小申已完成所有题,他A 题库的正确率是0.92,B 题库的正确率是0.86,C 题库的正确率是0.72.现他从所有的题中随机选一题,正确率是 .【答案】0.85【详细分析】求出各题库所占比,根据全概率公式即可得到答案. 【答案详解】由题意知,,,A B C 题库的比例为:5:4:3, 各占比分别为543,,121212, 则根据全概率公式知所求正确率5430.920.860.720.85121212p =⨯+⨯+⨯=.故答案为:0.85.(附加)2.(2023∙全国新Ⅰ卷∙高考真题)甲、乙两人投篮,每次由其中一人投篮,规则如下:若命中则此人继续投篮,若末命中则换为对方投篮.无论之前投篮情况如何,甲每次投篮的命中率均为0.6,乙每次投篮的命中率均为0.8.由抽签确定第1次投篮的人选,第1次投篮的人是甲、乙的概率各为0.5. (1)求第2次投篮的人是乙的概率; (2)求第i 次投篮的人是甲的概率;(3)已知:若随机变量i X 服从两点分布,且()()110,1,2,,i i i P X P X q i n ==-===⋅⋅⋅,则11n n i i i i E X q ==⎛⎫= ⎪⎝⎭∑∑.记前n 次(即从第1次到第n 次投篮)中甲投篮的次数为Y ,求()E Y . 【答案】(1)0.6(2)1121653i -⎛⎫⨯+ ⎪⎝⎭(3)52()11853nnE Y ⎡⎤⎛⎫=-+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦【详细分析】(1)根据全概率公式即可求出;(2)设()i i P A p =,由题意可得10.40.2i i p p +=+,根据数列知识,构造等比数列即可解出; (3)先求出两点分布的期望,再根据题中的结论以及等比数列的求和公式即可求出. 【答案详解】(1)记“第i 次投篮的人是甲”为事件i A ,“第i 次投篮的人是乙”为事件i B , 所以,()()()()()()()21212121121||P B P A B P B B P A P B A P B P B B =+=+ ()0.510.60.50.80.6=⨯-+⨯=.(2)设()i i P A p =,依题可知,()1i i P B p =-,则()()()()()()()11111||i i i i i i i i i i i P A P A A P B A P A P A A P B P A B +++++=+=+,即()()10.610.810.40.2i i i i p p p p +=+-⨯-=+, 构造等比数列{}i p λ+, 设()125i i p p λλ++=+,解得13λ=-,则1121353i i p p +⎛⎫-=- ⎪⎝⎭, 又11111,236p p =-=,所以13i p ⎧⎫-⎨⎩⎭是首项为16,公比为25的等比数列,即11112121,365653i i i i p p --⎛⎫⎛⎫-=⨯=⨯+ ⎪ ⎪⎝⎭⎝⎭. (3)因为1121653i i p -⎛⎫=⨯+ ⎪⎝⎭,1,2,,i n =⋅⋅⋅,所以当*N n ∈时,()122115251263185315nn n n n E Y p p p ⎛⎫- ⎪⎡⎤⎛⎫⎝⎭=+++=⨯+=-+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦- ,故52()11853nnE Y ⎡⎤⎛⎫=-+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦. 【名师点评】本题第一问直接考查全概率公式的应用,后两问的解题关键是根据题意找到递推式,然后根据数列的基本知识求解.考点04 正态分布指定区间的概率1.(2024∙全国新Ⅰ卷∙高考真题)(多选)随着“一带一路”国际合作的深入,某茶叶种植区多措并举推动茶叶出口.为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值 2.1x =,样本方差20.01s =,已知该种植区以往的亩收入X 服从正态分布()21.8,0.1N ,假设推动出口后的亩收入Y 服从正态分布()2,N x s ,则( )(若随机变量Z 服从正态分布()2,N μσ,()0.8413P Z μσ<+≈)A .(2)0.2P X >>B .(2)0.5P X ><C .(2)0.5P Y >>D .(2)0.8P Y ><【答案】BC【详细分析】根据正态分布的3σ原则以及正态分布的对称性即可解出. 【答案详解】依题可知,22.1,0.01x s ==,所以()2.1,0.1Y N ,故()()()2 2.10.1 2.10.10.84130.5P Y P Y P Y >=>-=<+≈>,C 正确,D 错误; 因为()1.8,0.1X N ,所以()()2 1.820.1P X P X >=>+⨯,因为()1.80.10.8413P X <+≈,所以()1.80.110.84130.15870.2P X >+≈-=<, 而()()()2 1.820.1 1.80.10.2P X P X P X >=>+⨯<>+<,B 正确,A 错误, 故选:BC .2.(2022∙全国新Ⅱ卷∙高考真题)已知随机变量X 服从正态分布()22,N σ,且(2 2.5)0.36P X <≤=,则( 2.5)P X >= .【答案】0.14/750. 【详细分析】根据正态分布曲线的性质即可解出.【答案详解】因为()22,X N σ ,所以()()220.5P X P X <=>=,因此()()()2.522 2.50.50.360.14P X P X P X >=>-<≤=-=.故答案为:0.14.3.(2021∙全国新Ⅱ卷∙高考真题)某物理量的测量结果服从正态分布()210,N σ,下列结论中不正确的是( ) A .σ越小,该物理量在一次测量中在(9.9,10.1)的概率越大 B .该物理量在一次测量中大于10的概率为0.5C .该物理量在一次测量中小于9.99与大于10.01的概率相等D .该物理量在一次测量中落在(9.9,10.2)与落在(10,10.3)的概率相等【答案】D【详细分析】由正态分布密度曲线的特征逐项判断即可得解.【答案详解】对于A ,2σ为数据的方差,所以σ越小,数据在10μ=附近越集中,所以测量结果落在()9.9,10.1内的概率越大,故A 正确;对于B ,由正态分布密度曲线的对称性可知该物理量一次测量大于10的概率为0.5,故B 正确;对于C ,由正态分布密度曲线的对称性可知该物理量一次测量结果大于10.01的概率与小于9.99的概率相等,故C 正确;对于D ,因为该物理量一次测量结果落在()9.9,10.0的概率与落在()10.2,10.3的概率不同,所以一次测量结果落在()9.9,10.2的概率与落在()10,10.3的概率不同,故D 错误. 故选:D.。

2017-2021年江苏省高考数学真题分类汇编:排列组合与概率统计(附答案解析)

2017-2021年江苏省高考数学真题分类汇编:排列组合与概率统计(附答案解析)

2017-2021年江苏省高考数学真题分类汇编:排列组合与概率统

一.选择题(共1小题)
1.(2021•新高考Ⅰ)有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球.甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则()
A.甲与丙相互独立B.甲与丁相互独立
C.乙与丙相互独立D.丙与丁相互独立
二.多选题(共1小题)
(多选)2.(2021•新高考Ⅰ)有一组样本数据x1,x2,…,x n,由这组数据得到新样本数据y1,y2,…,y n,其中y i=x i+c(i=1,2,…,n),c为非零常数,则()A.两组样本数据的样本平均数相同
B.两组样本数据的样本中位数相同
C.两组样本数据的样本标准差相同
D.两组样本数据的样本极差相同
三.填空题(共8小题)
3.(2020•江苏)将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是.
4.(2020•江苏)已知一组数据4,2a,3﹣a,5,6的平均数为4,则a的值是.5.(2019•江苏)已知一组数据6,7,8,8,9,10,则该组数据的方差是.6.(2019•江苏)从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是.
7.(2018•江苏)已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判

打出的分数的平均数为
8.(2018•江苏)某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为.
第1页(共23页)。

江苏省扬州市高考数学真题分类汇编专题16:概率与统计(综合题)

江苏省扬州市高考数学真题分类汇编专题16:概率与统计(综合题)

江苏省扬州市高考数学真题分类汇编专题16:概率与统计(综合题)姓名:________ 班级:________ 成绩:________一、概率与统计 (共8题;共70分)1. (10分)(2017·江西模拟) 一个正四面体的“骰子”(四个面分别标有1,2,3,4四个数字),掷一次“骰子”三个侧面的数字的和为“点数”,连续抛掷“骰子”两次.(1)设A为事件“两次掷‘骰子’的点数和为16”,求事件A发生的概率;(2)设X为两次掷“骰子”的点数之差的绝对值,求随机变量X的分布列和数学期望.2. (15分) (2017高一下·西安期中) 为了让学生了解环保知识,增强环保意识,某中学举行了一次“环保知识竞赛”,共有900名学生参加了这次竞赛.为了解本次竞赛的成绩情况,从中抽取了部分学生的成绩进行统计.请你根据尚未完成并有局部污损的频率分布表和频率分布直方图(如图所示),解答下列问题:分组频数频率50.5~60.540.0860.5~70.50.1670.5~80.51080.5~90.5160.3290.5~100.5合计50(1)填充频率分布表中的空格;(2)补全频率分布直方图;(3)若成绩在80.5~90.5分的学生可以获得二等奖,问获得二等奖的学生约为多少人?3. (10分)一台机器由于使用时间较长,生产的零件会有一些缺损,按不同的转速生产出来的零件有缺损的统计数据如下表转速x转/秒681214每小时生产有缺损零件数y/个2468问:(1)请画出上表数据的散点图;(2)请根据散点图,判断转速x和每小时生产的缺损零件数y之间是否具有线性关系;参考公式: = ,a= ﹣ x,若有,求回归直线方程y=bx+a;(3)若实际生产中,允许每小时的产品中有缺损的零件最多为10个,那么,机器的运转速度应控制在什么范围内?4. (15分)(2017·河北模拟) 鹰潭市龙虎山花语世界位于中国第八处世界自然遗产,世界地质公元、国家自然文化双遗产地、国家AAAAA级旅游景区﹣﹣龙虎山主景区排衙峰下,是一座独具现代园艺风格的花卉公园,园内汇集了3000余种花卉苗木,一年四季姹紫嫣红花香四溢.花园景观融合法、英、意、美、日、中六大经典园林风格,景观设计唯美新颖.玫瑰花园、香草花溪、台地花海、植物迷宫、儿童乐园等景点错落有致,交相呼应又自成一体,是世界园艺景观的大展示.该景区自2015年春建成试运行以来,每天游人如织,郁金香、向日葵、虞美人等赏花旺季日入园人数最高达万人.某学校社团为了解进园旅客的具体情形以及采集旅客对园区的建议,特别在2017年4月1日赏花旺季对进园游客进行取样调查,从当日12000名游客中抽取100人进行统计分析,结果如下:(表一)年龄频数频率男女[0,10)100.155[10,20)①②③④[20,30)250.251213[30,40)200.21010[40,50)100.164[50,60)100.137[60,70)50.0514[70,80)30.0312[80,90)20.0202合计100 1.004555(1)完成表格一中的空位①﹣④,并在答题卡中补全频率分布直方图,并估计2017年4月1日当日接待游客中30岁以下人数.(2)完成表格二,并问你能否有97.5%的把握认为在观花游客中“年龄达到50岁以上”与“性别”相关?50岁以上50岁以下合计男生________________________女生________________________合计________________________(3)按分层抽样(分50岁以上与50以下两层)抽取被调查的100位游客中的10人作为幸运游客免费领取龙虎山内部景区门票,再从这10人中选取2人接受电视台采访,设这2人中年龄在50岁以上(含)的人数为ξ,求ξ的分布列(表二)P(K2≥k)0.150.100.050.0250.0100.0050.001k 2.072 2.706 3.841 5.024 6.6357.87910.828(参考公式:k2= ,其中n=a+b+c+d)5. (5分)(2017·黄石模拟) 某理科考生参加自主招生面试,从7道题中(4道理科题3道文科题)不放回地依次任取3道作答.(1)求该考生在第一次抽到理科题的条件下,第二次和第三次均抽到文科题的概率;(2)规定理科考生需作答两道理科题和一道文科题,该考生答对理科题的概率均为,答对文科题的概率均为,若每题答对得10分,否则得零分.现该生已抽到三道题(两理一文),求其所得总分X的分布列与数学期望E(X).6. (5分)(2017·内江模拟) 某工厂为了解用电量y与气温x℃之间的关系,随机统计了5天的用电量与当天气温,得到如下统计表:曰期8月1曰8月7日8月148月18日8月25日日平均气温(℃)3330323025用电量(万度)3835413630xiyi=5446, xi2=4538, = , = ﹣(1)请根据表中的数据,求出y关于x的线性回归方程.据气象預报9月3日的平均气温是23℃,请预测9月3日的用电量;(结果保留整数)(2)请从表中任选两天,记用电量(万度)超过35的天数为ξ,求ξ的概率分布列,并求其数学期望和方差.7. (5分) (2017高二下·雅安开学考) 为贯彻落实教育部6部门《关于加快发展青少年校园足球的实施意见》,全面提高我市中学生的体质健康水平,培养拼搏意识和团队精神,普及足球知识和技能,市教体局决定举行春季校园足球联赛.为迎接此次联赛,甲中学选拔了20名学生组成集训队,现统计了这20名学生的身高,记录入如表:(设ξ为随机变量)身高(cm)168174175176178182185188人数12435131(1)请计算这20名学生的身高的中位数、众数,并补充完成下面的茎叶图;(2)身高为185cm和188cm的四名学生分别记为A,B,C,D,现从这四名学生选2名担任正副门将,请利用列举法列出所有可能情况,并求学生A入选门将的概率.8. (5分)(2017·武邑模拟) 某电视台举行一个比赛类型的娱乐节目,A、B两队各有六名选手参赛,将他们首轮的比赛成绩作为样本数据,绘制成茎叶图如图所示,为了增加节目的趣味性,主持人故意将A队第六位选手的成绩没有给出,并且告知大家B队的平均分比A队的平均分多4分,同时规定如果某位选手的成绩不少于21分,则获得“晋级”.(1)根据茎叶图中的数据,求出A队第六位选手的成绩;(2)主持人从A队所有选手成绩中随机抽2个,求至少有一个为“晋级”的概率;(3)主持人从A、B两队所有选手成绩分别随机抽取2个,记抽取到“晋级”选手的总人数为ξ,求ξ的分布列及数学期望.参考答案一、概率与统计 (共8题;共70分)1-1、1-2、2-1、2-2、2-3、3-1、3-2、3-3、4-1、4-2、4-3、5-1、5-2、6-1、6-2、7-1、7-2、8-1、8-2、8-3、。

十年高考分类江苏高考数学试卷精校版含详解13概率统计期望方差部分

十年高考分类江苏高考数学试卷精校版含详解13概率统计期望方差部分

十年高考分类江苏高考数学试卷精校版含详解13概率统计期望方差部分一、选择题(共1小题;共5分)1. 下图中有一个信号源和五个接收器,接收器与信号源在同一个串联线路中时,就能接收到信号,否则就不能接收到信号.若将图中左端的六个接线点随机地平均分成三组,将右端的六个接线点也随机的平均分成三组,再把所有六组中每组的两个接线点用导线连接,则这五个接收器能同时接收到信号的概率是 A. 445B. 136C. 415D. 815二、填空题(共10小题;共50分)2. 从1,2,3,6这4个数中一次随机地取2个数,则所取2个数的乘积为6的概率是.3. 盒子中有大小相同的3只白球,1只黑球,若从中随机地摸出两只球,两只球颜色不同的概率是.4. 现有10个数,它们能构成一个以1为首项,−3为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是.5. 从1,2,3,4这四个数中一次随机取两个数,则其中一个数是另一个的两倍的概率是.6. 在平面直角坐标系xOy中,设D是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E是到原点的距离不大于1的点构成的区域,向D中随机投一点,则所投的点落入E中的概率是.7. 现有5根竹竿,它们的长度(单位:m)分别为2.5,2.6,2.7,2.8,2.9,若从中一次随机抽取2根竹竿,则它们的长度恰好相差0.3 m的概率为.8. 将一个质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6六个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是.9. 若将一颗质地均匀的骰子(一种各面上分别标有1,2,3,4,5,6六个点的正方体形玩具)先后抛掷2次,则出现向上的点数之和为4的概率为.10. 现在某类病毒记作X m Y n,其中正整数m,n(m≤7,n≤9)可以任意选取,则m,n都取到奇数的概率为.11. 记函数f x=6+x−x2定义域为D.在区间−4,5上随机取一个数x,则x∈D的概率是.三、解答题(共7小题;共91分)12. 某气象站天气预报的准确率为80%,计算(结果保留到小数点后面第2位):(1)5次预报中恰有2次准确的概率;(2)5次预报中至少有2次准确的概率;(3)5次预报中恰有2次准确,且其中第3次预报准确的概率.13. 已知一个口袋有m个白球,n个黑球m,n∈N∗,n≥2,这些球除颜色外全部相同.现将口袋中的球随机的逐个取出,并放入如图所示的编号为1,2,3,⋯,m+n的抽屉内,其中第k次取出的球放入编号为k的抽屉k=1,2,3,⋯,m+n.123⋯m+n(1)试求编号为2的抽屉内放的是黑球的概率p;(2)随机变量X表示最后一个取出的黑球所在抽屉编号的倒数,E X是X的数学期望,证明E X<nm+n n−1.14. 盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同.(1)从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P;(2)从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为x1,x2,x3,随机变量X表示x1,x2,x3中的最大数,求X的概率分布和数学期望E X.15. 设ξ为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,ξ=0;当两条棱平行时,ξ的值为两条棱之间的距离;当两条棱异面时,ξ=1.(1)求概率Pξ=0;(2)求ξ的分布列,并求其数学期望Eξ.16. 甲、乙两人各射击一次,击中目标的概率分别是23和34.假设两人射击是否击中目标,相互之间没有影响;每次射击是否击中目标,相互之间没有影响.(1)求甲射击4次,至少1次未击中目标的概率;(2)求两人各射击4次,甲恰好击中目标2次且乙恰好击中目标3次的概率;(3)假设某人连续2次未击中目标,则停止射击.问:乙恰好射击5次后,被中止射击的概率是多少?17. 某工厂生产甲、乙两种产品,甲产品的一等品率为80%,二等品率为20%;乙产品的一等品率为90%,二等品率为10%.生产1件甲产品,若是一等品则获得利润4万元,若是二等品则亏损1万元;生产1件乙产品,若是一等品则获得利润6万元,若是二等品则亏损2万元.设生产各种产品相互独立.(1)记X(单位:万元)为生产1件甲产品和1件乙产品可获得的总利润,求X的分布列;(2)求生产4件甲产品所获得的利润不少于10万元的概率.18. 有三种产品,合格率分别是0.90,0.95和0.95,各抽取一件进行检验.(1)求恰有一件不合格的概率;(2)求至少有两件不合格的概率.(精确到0.001)答案第一部分 1. D【解析】左端平均分成三组的不同方法总数为C 62C 42C 22A 33=15 种,右端平均分成三组也有 15 种,故接收器所有的连接方式有 15×15=225 种.要接收器同时接收到信号,信号源与五个接收器需要串接起来,考虑信号源左边与谁相连有 C 51种选择,信号源右边与谁相连有 C 41 种选择;再考虑左边与信号源相连的接收器右边与谁相连有 C 31 种选择,右边与信号源相连的接收器左边与谁相连有 C 21 种选择,最后左边剩下两个接线点,右边剩下两个接线点直接相连.从而得到使得五个接收器能同时接收到信号的连接方式有 C 51C 41C 31C 21=120 种.故所求概率 P =120225=815.第二部分 2. 13【解析】提示:所有可能的取法有 6 种,其中乘积为 6 的取法有 2 种. 3. 12 4. 13【解析】组成满足条件的数列为:1,−3,9,−27,81,−243,729,−2187,6561,−19683 . 从中随机取出一个数共有 10 种取法,其中小于 8 的取法共有 6 种,因此取出的这个数小于 8 的概率为 35 . 5. 136. π16 【解析】P =S 圆S 正方形=π16.7. 0.2【解析】从 5 根竹竿中一次随机抽取 2 根竹竿共有 10 种抽取方法,而抽取的两根竹竿长度恰好相差 0.3 m 的情况有 2 种,P =210=0.2. 8. 56【解析】将先后两次点数记为 x ,y ,则共有 6×6=36 个等可能基本事件,其中点数之和大于等于 10 的有 4,6 , 5,5 , 5,6 , 6,4 , 6,5 , 6,6 六种,则点数之和小于 10 的共有 30 种,从而所求概率为 3036=56.9. 112【解析】一个骰子连续抛掷 2 次,所有的可能有 m =6×6=36(种),点数和为 4 的有 1+3,2+2,3+1,共 3 种可能,所以 n =3,所求概率为 nm =336=112. 10. 2063 11. 59第三部分12. (1)P=C524521−453=10×1625×1125≈0.05.(2)P=1−C51×451−454−1−455=1−0.0064−0.00032≈0.99.(3)P=C41×451−453×45≈0.02.13. (1)设事件A i表示编号为i的抽屉里放的是黑球,则p=p A2=P A2∣A1P A1+P A2∣A1 P A1=n−1m+n−1×nm+n+nm+n−1×mm+n=n2−n+mn m+n m+n−1=n.(2)因为X的所有可能取值为1n ,1n+1,⋯,1n+m,P x=1k =C k−1n−1C m+nn,k=n,n+1,n+2,⋯,n+m,所以E X = 1k ⋅C k−1n−1C n +mnn +mk =n=1C n +mn ⋅C k−1n−1k n +mk =n =1n +mn ⋅C k−1n−1n +mk =n <1n +mn ⋅C k−1n−1n +m k =n =1n +mn ⋅C k−2n−2n +m k =n =1 n +mn ⋅ C n−2n−2+C n−1n−2+⋯+C n +m−2n−2=1 m +nn ⋅C m +n−1n−1=nm +n n −1,所以 E X <nm +n n−1 .14. (1) 一次取 2 个球共有 C 92=36 种可能情况,2 个球颜色相同共有 C 42+C 32+C 22=10 种可能情况,所以取出的 2 个球颜色相同的概率 P =1036=518. (2) X 的所有可能取值为 4,3,2,则 P X =4 =C 44C 9=1126, P X =3 =C 43C 51+C 33C 61C 94=1363,P X =2 =1−P X =3 −P X =4 =1114, 所以 X 的概率分布列为X 234P11131 故 X 的数学期望为E X =2×1114+3×1363+4×1126=209.15. (1) 若两条棱相交,则交点必为正方体 8 个顶点中的 1 个,过任意 1 个顶点恰有 3 条棱,所以共有 8C 32对相交棱,因此P ξ=0 =8C 32C 122=8×366=411.(2) 若两条棱平行,则它们的距离为 1 或 2,其中距离为 2 的共有 6 对,故P ξ= 2 =6C 122=111,于是Pξ=1=1−Pξ=0−P ξ=2=1−411−111=611,所以随机变量ξ的分布列是ξ012Pξ411611111因此Eξ=1×611+2×111=6+211.16. (1)记"甲连续射击4次至少有一次未中目标"为事件A1,由题意知,射击4次,相当于作4次独立重复试验,故P A1=1−P A1=1−234=6581.(2)记"甲射击4次,恰有2次射中目标"为事件A2 ",乙射击4次,恰有3次射中目标"为事件B2,则P A2=C42⋅232⋅1−232=827,P B2=C43⋅343⋅1−341=2764.由于甲乙射击相互独立,故P A2B2=P A2P B2=827×2764=18.(3)记"乙恰好射击5次后被中止射击"为事件A3,"乙第i次射击未中"为事件D i i=1,2,3,4,5,则A3=D5⋅D4⋅D3⋅D2D1P D i=14.由于各事件相互独立,故P A3=P D5⋅P D4⋅P D3⋅P D2D1=14×14×34×1−14×14=45.17. (1)由题意知,X的可能取值为10,5,2,−3.P X=10=0.8×0.9=0.72,P X=5=0.2×0.9=0.18,P X=2=0.8×0.1=0.08,P X=−3=0.2×0.1=0.02,所以X的分布列为X1052−3P0.720.180.080.02(2)设生产的4件甲产品中一等品有n n≤4 且n∈N 件,则二等品有4−n件.由题设知4n−4−n≥10,解得n≥145.又n∈N,得n=3或n=4,所以P=C43×0.83×0.2+C44×0.84=0.8192.故所求概率为0.8192.18. (1)P A=0.90,P B=P C=0.95.因为事件A,B,C相互独立,恰有一件不合格的概率为:P A⋅B⋅C +P A⋅B⋅C +P A⋅B⋅C=P A⋅P B⋅P C +P A⋅P B ⋅P C+P A ⋅P B⋅P C=2×0.90×0.95×0.05+0.10×0.95×0.95=0.176.所以恰有一件不合格的概率为0.176.(2)三件产品都合格的概率为:P A⋅B⋅C=P A⋅P B⋅P C=0.90×0.952=0.812,由(1)知,恰有一件不合格的概率为0.176,所以至少有两件不合格的概率为:1−P A⋅B⋅C+0.176=1−0.812+0.176=0.012.所以至少有两件不合的概率为0.012.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

十、概率与统计
(一)填空题
1、(2008江苏卷2)一个骰子连续投2 次,点数和为4 的概率.
【解析】本小题考查古典概型.基本事件共6×6 个,点数和为4 的有(1,3)、(2,2)、(3,1)
共3 个,故
31
6612 P==

2、(2008江苏卷6)在平面直角坐标系xoy中,设D是横坐标与纵坐标的绝对值均不大于2 的点构成的区域, E是到原点的距离不大于1 的点构成的区域,向D 中随机投一点,则落入E 中的概率.
【解析】本小题考查古典概型.如图:区域D 表示边长为4 的正方形的内部(含边界),区
域E 表示单位圆及其内部,因此.
2
1
4416 P
ππ

==

3、(2009江苏卷5)现有5根竹竿,它们的长度(单位:m)分别为2.5,2.6,2.7,2.8,2.9,若从中一次随机抽取2根竹竿,则它们的长度恰好相差0.3m的概率为 . 【解析】考查等可能事件的概率知识。

从5根竹竿中一次随机抽取2根的可能的事件总数为10,它们的长度恰好相差0.3m的事件数为2,分别是:2.5和2.8,2.6和2.9,所求概率为0.2。

4、(2009江苏卷6)某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮练习,每人投10次,投中的次数如下表:
学生1号2号3号4号5号
甲班 6 7 7 8 7
乙班 6 7 6 7 9
则以上两组数据的方差中较小的一个为2s= .
【解析】考查统计中的平均值与方差的运算。

甲班的方差较小,数据的平均值为7,故方差
22222
2
(67)00(87)02
55 s
-+++-+
==
5、(2010江苏卷3)盒子中有大小相同的3只白球,1只黑球,若从中随机地摸出两只球,两只球颜色不同的概率是_ __.
[解析]考查古典概型知识。

31
62
p==
6、(2010江苏卷4)某棉纺厂为了了解一批棉花的质量,从
中随机抽取了100根棉花纤维的长度(棉花纤维的长度是棉花
质量的重要指标),所得数据都在区间[5,40]中,其频率分布
直方图如图所示,则其抽样的100根中,有____根在棉花纤维
的长度小于20mm 。

[解析]考查频率分布直方图的知识。

100×(0.001+0.001+0.004)×5=30
7、(2011江苏卷5)从1,2,3,4这四个数中一次随机取两个数,则其中一个数是另一个的两倍的概率是______
【解析】从1,2,3,4这四个数中一次随机取两个数有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)共6种. 其中符合条件的有2种,所以概率为
13.也可以由41
163
-=得到. 本题主要考查随机事件与概率,古典概型的概率计算,互斥事件及其发生的概率.容易题. 8、(2011江苏卷6)某老师从星期一到星期五收到信件数分别是10,6,8,5,6,则该组数据的方差___2
=s .【解析】五个数的平均数是7,方差为
222222
(107)(67)(87)(57)(67)16
55
s -+-+-+-+-==
题考查总体分布的估计,总体特征数的估计,平均数方差的计算,考查数据处理能力,容易题. 9、(2012江苏卷2). 某学校高一、高二、高三年级的学生人数之比为334::,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取 名学生. 【解析】根据分层抽样的方法步骤,按照一定比例抽取,样本容量为50,那么根据题意得:从高三一共可以抽取人数为:1510
3
50=⨯
人,答案 15 . 【点评】本题主要考查统计部分知识:抽样方法问题,分层抽样的具体实施步骤.分层抽样也叫做“按比例抽样”,也就是说,要根据每一层的个体数的多少抽取,这样才能够保证样本的科学性与普遍性,这样得到的数据才更有价值、才能够较精确地反映总体水平,本题属于容易题,也是高考热点问题,希望引起重视.
10、(2013江苏卷6)6.抽样统计甲、乙两位设计运动员的5此训练成绩(单位:环),结果如下:
运动员 第1次 第2次 第3次 第4次 第5次 甲 87 91 90 89 93 乙
89
90
91
88
92
则成绩较为稳定(方差较小)的那位运动员成绩的方差为 。

答案: 6.2
11、(2013江苏卷7)7.现在某类病毒记作n m Y X ,其中正整数m ,n (7≤m ,9≤n )可以任意选取,则n m ,都取到奇数的概率为 。

答案:7.
20
63
(二)解答题
1、(2010江苏卷22)本小题满分10分)
某工厂生产甲、乙两种产品,甲产品的一等品率为80%,二等品率为20%;乙产品的一等品率为90%,二等品率为10%。

生产1件甲产品,若是一等品则获得利润4万元,若是二等品则亏损1万元;生产1件乙产品,若是一等品则获得利润6万元,若是二等品则亏损2万元。

设生产各种产品相互独立。

(1)记X (单位:万元)为生产1件甲产品和1件乙产品可获得的总利润,求X 的分布列; (2)求生产4件甲产品所获得的利润不少于10万元的概率。

【解析】本题主要考查概率的有关知识,考查运算求解能力。

解:(1)由题设知,X 的可能取值为10,5,2,-3,且
P (X=10)=0.8×0.9=0.72,P (X=5)=0.2×0.9=0.18, P (X=2)=0.8×0.1=0.08, P (X=-3)=0.2×0.1=0.02。

由此得X 的分布列为:
X 10 5 2 -3 P
0.72
0.18
0.08
0.02
(2)设生产的4件甲产品中一等品有n 件,则二等品有4n -件。

由题设知
4(4)10n n --≥,解得14
5
n ≥
, 又n N ∈,得3n =,或4n =。

所求概率为3
3440.80.20.80.8192P C =⨯⨯+=。

相关文档
最新文档