(完整word版)高考数学导数压轴题7大题型总结
(完整word版)导数结合洛必达法则巧解高考压轴题

第一部分:历届导数高考压轴题(全国2理)设函数f (x) = (x+ 1)1 n( x + 1),若对所有的x>0,都有f (x) >ax成立,求实数a的取值范围.(辽宁理)设函数f(x)悝lnx In(x 1).1 x⑴求f(x)的单调区间和极值;(I)设a 0,讨论y f x的单调性;(U)若对任意x 0,1恒有f x 1,求a的取值范围. (全国1理)设函数f(x) e x e x.(I)证明:f(x)的导数f (x) > 2 ;(U)若对所有x > 0都有f (x) > ax,求a的取值范围.(新课标理)设函数f(x)=e x 1 x ax2.(I)若a 0,求f(x)的单调区间;(U)若当x>0时f(x) >0,求a的取值范围.导数结合洛必达法则巧解高考压轴题(I)求f(x)的单调区间;(全国1理)已知函数f x ax ⑵是否存在实数a ,使得关于x的不等式f (x)…a的解集为(0, 取值范围;若不存在,试说明理由.)?若存在,求a的(全国2理)设函数f(x)sin x2 cosx(新课标文)已知函数f(x) x(e x 1) ax2.(U)如果对任何x > 0,都有f(x) < ax,求a的取值范围.(I)若f(x)在x 1时有极值,求函数f(x)的解析式;例题:若不等式sin x x ax3对于x (0,三)恒成立,求a的取值范围(U)当x 0时,f(x) 0,求a的取值范围.(全国大纲理)设函数f (x) 1(I)证明:当x 1时,f(x)x 1(U)设当x 0时,f(x)—,求a的取值范围.ax 1第二部分:泰勒展开式(新课标理)已知函数f(x)霁x,曲线y f(x)在点(1,f(1))处的切线方程为x 2y 3 0.(I)求a、b的值;(U)如果当x 0,且x 1时,f(x)也k,求k的取值范围.x 1 x 1. e x 1 x1!x2!x3!K2 3x x2. ln(1 x) x2! 3!3 5x x3. sin x x ——K3! 5!2 4x x4. cosx 1 K2! 4!2 3(nxn!n 1xe(n 1)!nK ( 1)n1—n!2k 11)*,其中(0Rn,其中R nR n,其中R n1);n 11)n I^+)n1;2k 1k x(1) cos x ;(2 k 1)!2k 2(1)k4 Rn,其中R n2k(1)k話严x;1.(新课标理)已知函数f(x)b,曲线y f(x)在点(l,f(l))处的切线方x 1 x程为x 2y 3 0.(I)求a、b的值;(U)如果当x 0,且x 1时,f(x) 也k,求k的取值范围.x 1 x常规解法(I)略解得a 1,b 1.(n)方法一:分类讨论、假设反证法2 h(x) 0,与题设矛盾•综上可得,k的取值范围为(,0].1 x注:分三种情况讨论:① k 0 :②0 k 1 :③k 1不易想到.尤其是② 0 k 1时,许多考生都停留在此层面,举反例x (1,—1 )更难想到.而这方面根1 k据不同题型涉及的解法也不相同,这是高中阶段公认的难点,即便通过训练也很难提升.第三部分:洛必达法则及其解法洛必达法则:设函数f(x)、g(x)满足:(1)lim f(x) lim g(x) 0 ;x a x a(2)在U o(a)内,f (x)和g (x)都存在,且g (x) 0 ;(3)lim 3 A ( A可为实数,也可以是).x a g(x)则|im 他x m 3 A.x a g(x) x a g(x) 由(I)知f(x)—x 1,所以f (x) (罟-) 1 (2ln x(k 1)(x2丄)).x 1 x x 1 x 1 x x考虑函数h ;x) 2ln x(k1)(x2 1)(x 0),则h'(x)(k 1)(x221) 2xx x(i)当k 0时,由h'((x) k(x2 1) (x x2°知,当x1时,h'(x) 0.因为h(1) 0 ,所以当x (0,1)时,h(x) 0 ,可得」12 h(x) 0 ;x当x (1, )时,h(x)0,可得12 h(x)0,从而当x 0且x 1时,f(x) (ln:*) 0,即lnx f (x)k;1 x x 1 x x 1 x (ii )当0 k 1时,由于当X (1,1k)时,(k 1)(: x2 1) 2x 0,故h'(x) 0 ,而h(1)0 ,故当x (1, 1)时,h(x) 0,可得1 2 h(x) 0,与题设矛盾1 k 1 x(iii )当k 1时,h'(x) 0,而h(1)0,故当x (1, )时,h(x) 0 ,可得洛必达法则解法当x 0,且x也即k 则g '(x) xln xx 12(x21时,f(x)必兰,即x 1 x x 11 xln x 2x ln x亍1,记g(x)x x 1 1 x1)l nx 2(1 x2) 2(x21)“形= 羽(l nx(1 x2)2(1 x2)2ln x 1 ln x kx x 1 x3 1 , x 0,且x 11 x」)x2 1),t记h(x) In x2\2x )2 只,则h'(x)【儲= £+x2)从而h(x)在(0,)上单调递增,且h(1) 0,因此当(0,1)时,h(x) 0,当x (1,)时,h(x) 0 ;当x (0,1)时,g'(x) 0,当(1,)时,g'(x) 0 ,所以g(x)在(0,1)上单调递减,在(1,)上单调递增.由洛必达法则有xln x lim(-x 1 1 x1 时,g(x)l i m1g(x)即当xx l n x1) 1 lim r 1x 1 1 x20 ,即当x 0,且xIn xlimx 122x因为k g (x)恒成立, 所以k 0.综上所述, 成立, k的取值范围为(,0].1时,g(x) 0.0,且x 1 时,f(x)In x kx 1 x注:本题由已知很容易想到用分离变量的方法把参数出来的函数g(x)空与1求导,研究其单调性、极值1 x函数g(x)值没有意义”这一问题,很多考生会陷入困境k分离出来.然后对分离.此时遇到了“当x=1时, .如果考前对优秀的学生讲洛必达法则的应用,再通过强化训练就能掌握解决此类难题的这一有效方法2.(新课标理)设函数f (x) e x 1 x ax2.(I)若a 0,求f (x)的单调区间;(U)当x 0时,f(x) 0,求a的取值范围.应用洛必达法则和导数(U)当x 0 时,f(x) 0,即e x 1 x ax2.①当x记g(x)记h(x)h''(x)0时,axe 1 x2x(xxxe2)e xx (0,+0,所以h'(x)所以h(x) (x 2)e xx (0,+ )时,g'(x)由洛必达法则有,x女叫g(x)x叫一厂必XU XU x0时,e x 1 x ax2等价于),则g'(x) (x 2)e:x 2 x(0,+ ),则h'(x) (x 1)e x(x 1)e x 1在(0,+ )上单调递增,x 2在(0,+ )上单调递增,且h(x)0 ,从而g(x)xxe 1 x ,2 在(0,+xlimxxe 10 2xx..e 1limx 0 2 212综上所述,当a -且x2即当x 0 时,g(x) ,所以当x (0,+ )时,所以g(x)0时,f(x) 0成立.e x 1 x2 .x当x (0,+ )时,且h'(x) h'(0) 0 ,h(0) 0 ,因此当)上单调递增.1 1-,因此a丄.2 21故a 时,不等式sinx x ax 3对于x (0,—)恒成立.6 2例题:若不等式sinx x ax 3对于x (0,?)恒成立,求a 的取值范围.应用洛必达法则和导数 当x (0,2)时,原不等式等价于ax sin x通过以上例题的分析,我们不难发现应用洛必达法则解决的试题应满足: ① 可以分离变量; ② 用导数可以确定分离变量后一端新函数的单调性; ③ 出现“ 0”型式子.x 3 x sinx 3sin x xcosx 2x 记 f(x) 3 ,则 f '(x) 4 . x x 记g(x) 3sinx xcosx 2x ,贝U g '(x) 2cosx xsinx 2 . 因为 g''(x) xcosx sinx cosx(x tanx), (海南宁夏文)已知函数 f (x) x(e x 1) ax 2.(I)若f (x)在x 1时有极值,求函数f (x)的解析式; (U)当x 0时,f(x) 0,求a 的取值范围.解: ( I)略(n)应用洛必达法则和导数g'''(x) xsi nx 0,所以g ''(x)在(0,?)上单调递减,且g''(x),所以g'(x)在(0-)上单调递减,且g'(x) 0.因此g(x)在(0-)上单调递减, 2 2 且g(x) 0,故f'(x) •啤 0,因此f(x) x 严在(0_)上单调递减. x x 2 由洛必达法则有 li 叫 f(x)x sin x x 3 1 cosx sin x cosx lim 2 lim lim x 03x2 x 06x x 06①当x 0时, a R ;②当x 0时, x(e x 1)ax 2等价于e x x11 ax ,也即a.x记 g(x)xe 1, x (0,),则 g '(x) (x 1)e x 1xx记 h(x) (x 1)e x1 , x(0,),则h'(x) xe x 0,因此 h(x) (x 1)e x 1 在当 x 0 时,f(x) 0,即 x(e x 1) ax 2. 即当x 0时,g(x) 6,即有f(x)右(0,)上单调递增,且h(x)Xh(0) 0,所以 g'(x) 她 0,从而 g(x) -1在xx(0,)上单调递增. 由洛必达法则有(U)设当X 0时,f(x)—,求a的取值范围•ax 1解:(I)略(n)应用洛必达法则和导数由题设x 0,此时f (X) 0.①当a 0时,若x 1 a 则」0 ,ax 1 f(x) 不成立;ax 1②当a 0时,当X 0时,/ 、Xf(x) ,即1 X Xeax 1 ax 1 若x 0,则a R;若x 0,则1X eX X等价于1 e 1X X-,即 a Xe x e 1ax 1 x ax 1 xe X xxx, 2x2XcX, xxe e 1 e x e 2e 1 e z x 2 x、记g(x) x ,则g(x)x 2 = x 2(e x 2 e).xe x (xe x) (xe x)(I)求f(x)的单调区间;(n)如果对任何x > 0,都有f(x) < ax,求a的取值范围.(2 cosx)cos x sin x( sin x) 2cosx 1 解:(I) f(x) -) yco^2 n 2 n当2k n E x 2k n孑(k Z)时,cosxX叫g(x)X lim —x 0 x即当X 0时,g(x) 1 记h(x) e x x2 2 e x,则h'(x) e x 2x e x,h''(x) e x+e x 2 0.因此,h'(x) e x 2x e x在(0,)上单调递增,且h'(0) 0,所以h'(x)0,所以g(X) 1,即有a 1.综上所述,当a 1 , X 0时,f (X) 0成立. 因此g'(x)=Xex 2(xe x)h(x) 0,所以g(x)在(0,)上单调递增.(全国大纲理) 设函数f (x) 1 (I)证明:当X 1 时,f(x) 由洛必达法则有X叫g(x)g(x)X Xxe elim x——x 0 xe xXxelim x x x 0 exeXxeXxe0时, i,即有g(x) 2,所以a i.综上所述,a的取值范围是((全国2理)设函数f(x)sin x2 cosx12,即f(X) 0;2 n当 2k n x4n (k Z )时,cosx1—,即 f (x)332因此f(x)在每- 」个区间 2k nNfk n2 n(kZ )是增函数,33f(x)在每一个区间 2k n2 n3 4 n ,2k n 3(k Z ) 是减函数.另一方面,当x [,)时,g(x )xj ;:sx )2 J 2,因此a 右解:(I)略(n)应用洛必达法则和导数sin x ax 2 cosx 0,则 a R ;2xcosx 2sin x sin xcosx x 则 g '(x)-------------------------- x ^厂o 击 ----------记 h(x) 2xcosx 2sinx sin xcosx x , h'(x) 2cosx 2xsinx 2cosx cos2x 122xsinx cos2x 1 2sin x 2xsinx 2sin x(sinx x)因此,当x (0,)时,h'(x) O,h(x)在(0,)上单调递减,且h(0)0,故g'(x) 0,所以g(x)在(0, )上单调递减,而 lim g(x) x 0 limx 0 sin x x(2 cosx) lim cosxx 02+cosx xsinxf(x)若x若x 0,贝U sin x ax 等价于a2 cosxsin x x(2 cosx)即 g(x)sin x x(2 cosx)。
高考导数压轴题型归类总结_习题版

导数压轴题型归类总结目 录目录一、导数单调性、极值、最值的直接应用 (2)二、交点与根的分布 (14)三、不等式证明作差证明不等式 (19)变形构造函数证明不等式 (20)替换构造不等式证明不等式 (28)四、不等式恒成立求字母范围 (33)恒成立之最值的直接应用 (33)恒成立之分离常数 (35)恒成立之讨论字母范围 (41)五、函数与导数性质的综合运用 (47)六、导数应用题 (54)七、导数结合三角函数 (55)一些常用结论⑴sin ,(0,)x x x π<∈,变形即为sin 1x x<,其几何意义为sin ,(0,)y x x π=∈上的的点与原点连线斜率小于1.⑵1x e x >+⑶ln(1)x x >+⑷ln ,0x x x e x <<>.⑸一、导数单调性、极值、最值的直接应用 1. (切线)设函数a x x f -=2)(.(1)当1=a 时,求函数)()(x xf x g =在区间]1,0[上的最小值;(2)当0>a 时,曲线)(x f y =在点)))((,(111a x x f x P >处的切线为l ,l 与x 轴交于点)0,(2x A 求证:a x x >>21.2. (2009天津理20,极值比较讨论)已知函数22()(23)(),x f x x ax a a e x =+-+∈R 其中a ∈R⑴当0a =时,求曲线()(1,(1))y f x f =在点处的切线的斜率; ⑵当23a ≠时,求函数()f x 的单调区间与极值.3. 已知函数221()2,()3ln .2f x x axg x a x b =+=+ ⑴设两曲线()()y f x y g x ==与有公共点,且在公共点处的切线相同,若0a >,试建立b 关于a 的函数关系式,并求b 的最大值;⑵若[0,2],()()()(2)b h x f x g x a b x ∈=+--在(0,4)上为单调函数,求a 的取值范围。
高三导数压轴题题型归纳【学生】

导数压轴题题型1. 高考命题回顾例1已知函数f(x)=e x -ln(x +m).(全国新课标Ⅱ卷)(1)设x =0是f(x)的极值点,求m ,并讨论f(x)的单调性;(2)当m≤2时,证明f(x)>0.例2已知函数)(x f 满足2121)0()1(')(x x f e f x f x +-=- (1)求)(x f 的解析式及单调区间;(2)若b ax x x f ++≥221)(,求b a )1(+的最大值。
例3已知函数ln ()1a x bf x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=。
(2011全国新课标) (Ⅰ)求a 、b 的值;(Ⅱ)如果当0x >,且1x ≠时,ln ()1x kf x x x>+-,求k 的取值范围。
例4已知函数f(x)=(x 3+3x 2+ax+b)e -x . (2009宁夏、海南)(1)若a =b =-3,求f(x)的单调区间;(2)若f(x)在(-∞,α),(2,β)单调增加,在(α,2),(β,+∞)单调减少,证明β-α>6.2. 在解题中常用的有关结论※3. 题型归纳①导数切线、定义、单调性、极值、最值、的直接应用(构造函数,最值定位)(分类讨论,区间划分)(极值比较)(零点存在性定理应用)(二阶导转换)例1(切线)设函数a x x f -=2)(.(1)当1=a 时,求函数)()(x xf x g =在区间]1,0[上的最小值;(2)当0>a 时,曲线)(x f y =在点)))((,(111a x x f x P >处的切线为l ,l 与x 轴交于点)0,(2x A 求证:a x x >>21.例2(最值问题,两边分求)已知函数1()ln 1af x x ax x-=-+-()a ∈R . ⑴当12a ≤时,讨论()f x 的单调性; ⑵设2()2 4.g x x bx =-+当14a =时,若对任意1(0,2)x ∈,存在[]21,2x ∈,使12()()f x g x ≥,求实数b 取值范围.②交点与根的分布例3(切线交点)已知函数()()323,f x ax bx x a b R =+-∈在点()()1,1f 处的切线方程为20y +=.⑴求函数()f x 的解析式;⑵若对于区间[]2,2-上任意两个自变量的值12,x x 都有()()12f x f x c -≤,求实数c 的最小值;⑶若过点()()2,2M m m ≠可作曲线()y f x =的三条切线,求实数m 的取值范围.例4(综合应用)已知函数.23)32ln()(2x x x f -+= ⑴求f (x )在[0,1]上的极值;⑵若对任意0]3)(ln[|ln |],31,61[>+'+-∈x x f x a x 不等式成立,求实数a 的取值范围;⑶若关于x 的方程b x x f +-=2)(在[0,1]上恰有两个不同的实根,求实数b 的取值范围.③不等式证明例5 (变形构造法)已知函数1)(+=x ax ϕ,a 为正常数. ⑴若)(ln )(x x x f ϕ+=,且a 29=,求函数)(x f 的单调增区间;⑵在⑴中当0=a 时,函数)(x f y =的图象上任意不同的两点()11,y x A ,()22,y x B ,线段AB 的中点为),(00y x C ,记直线AB 的斜率为k ,试证明:)(0x f k '>.⑶若)(ln )(x x x g ϕ+=,且对任意的(]2,0,21∈x x ,21x x ≠,都有1)()(1212-<--x x x g x g ,求a 的取值范围.例6 (高次处理证明不等式、取对数技巧)已知函数)0)(ln()(2>=a ax x x f .(1)若2)('x x f ≤对任意的0>x 恒成立,求实数a 的取值范围; (2)当1=a 时,设函数x x f x g )()(=,若1),1,1(,2121<+∈x x ex x ,求证42121)(x x x x +<例7(绝对值处理)已知函数c bx ax x x f +++=23)(的图象经过坐标原点,且在1=x 处取得极大值.(I )求实数a 的取值范围;(II )若方程9)32()(2+-=a x f 恰好有两个不同的根,求)(x f 的解析式;(III )对于(II )中的函数)(x f ,对任意R ∈βα、,求证:81|)sin 2()sin 2(|≤-βαf f .例8(等价变形)已知函数x ax x f ln 1)(--=()a ∈R .(Ⅰ)讨论函数)(x f 在定义域内的极值点的个数;(Ⅱ)若函数)(x f 在1=x 处取得极值,对x ∀∈),0(+∞,2)(-≥bx x f 恒成立,求实数b 的取值范围; (Ⅲ)当20e y x <<<且e x ≠时,试比较xyx y ln 1ln 1--与的大小.例9(前后问联系法证明不等式)已知217()ln ,()(0)22f x xg x x mx m ==++<,直线l 与函数(),()f x g x 的图像都相切,且与函数()f x 的图像的切点的横坐标为1。
导数压轴题题型归纳

导数压轴题题型归纳1.高考命题回顾例1已知函数千3=6*—小&十巾).(2013全国新课标11卷)(1)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性;⑵当mW2时,证明f(x)>0.例2已知函数f(x)=x2+ax+b,g(x)=e x(cx+d),若曲线y=f(x)和曲线y=g(x)都过点P(0,2),且在点P处有相同的切线y=4x+2(2013全国新课标I卷)(I)求a,b,c,d的值(II)若x2—2时,f(x)-kg(x),求k的取值范围。
2. 在解题中常用的有关结论※⑴曲线产f (x )在X =X 0处的切线的斜率等于f (x 0),且切线方程为产f'(X 0)(x -X 0)+f (x 0)。
(2)若可导函数y =f(x)在X =X 0处取得极值,则f (x 0)=0。
反之,不成立。
(3)对于可导函数f (x ),不等式f ,(x )>0(<0)的解集决定函数f (x )的递增(减)区间。
(4)函数f (x )在区间I 上递增(减)的充要条件是:v x e I f (x )>0(<0)恒成立(f (x )不恒为0).(5)函数f(x )(非常量函数)在区间I 上不单调等价于f (x )在区间I 上有极值,则可等价转化为方程尸(x )=0在区间I 上有实根且为非二重根。
(若f (x )为二次函数且I=R ,则有A>0)。
(6) f(x )在区间I 上无极值等价于f (x )在区间在上是单调函数,进而得到f (x )>0或f (x )<0在I 上恒成立 ⑺若V x G I ,f (x )>0恒成立,则fx )min >0;若V x G I ,f (x )<0恒成立,则f (x )max<0 ⑻若三x 0G l ,使得f (x 0)>0,则^>0;若三x 0Gl ,使得f(x 0)<0,则)皿<0. (9)设f (x )与g (x )的定义域的交集为D ,若V x G D f (x )>g (x )恒成立,贝第[f (x )-g (x )]>0.min(10)若对V X|G I、匕e1,f(x J>g(x)恒成立,则f(x).>g(x).112212minmax若对V x e I3x e I,使得f(x)>g(x),则f(x)>g(x).112212minmin若对V x]e I,3x2G I2,使得f(x)<g(x),则f(x)<g(x).112212maxmax(11)已知f(x)在区间11上的值域为A,,g(x)在区间I2上值域为B,若对V x1e11,3x2e I2,使得f(x1)=g(x2)成立,则A之B。
高三导数压轴题题型归纳

-导数压轴题题型1. 高考命题回忆例1函数f(*)=e *-ln(*+m).〔2013全国新课标Ⅱ卷〕(1)设*=0是f(*)的极值点,求m ,并讨论f(*)的单调性; (2)当m≤2时,证明f(*)>0.(1)解 f (*)=e *-ln(*+m )⇒f ′(*)=e *-1*+m ⇒f ′(0)=e 0-10+m=0⇒m =1,定义域为{*|*>-1},f ′(*)=e *-1*+m =e **+1-1*+1,显然f (*)在(-1,0]上单调递减,在[0,+∞)上单调递增.(2)证明 g (*)=e *-ln(*+2),则g ′(*)=e *-1*+2(*>-2).h (*)=g ′(*)=e *-1*+2(*>-2)⇒h ′(*)=e *+1*+22>0,所以h (*)是增函数,h (*)=0至多只有一个实数根,又g ′(-12)=1e -132<0,g ′(0)=1-12>0,所以h (*)=g ′(*)=0的唯一实根在区间⎝ ⎛⎭⎪⎫-12,0,设g ′(*)=0的根为t ,则有g ′(t )=e t -1t +2=0⎝ ⎛⎭⎪⎫-12<t <0, 所以,e t =1t +2⇒t +2=e -t , 当*∈(-2,t )时,g ′(*)<g ′(t )=0,g (*)单调递减;当*∈(t ,+∞)时,g ′(*)>g ′(t )=0,g (*)单调递增;所以g (*)min =g (t )=e t -ln(t +2)=1t +2+t =1+t 2t +2>0,当m ≤2时,有ln(*+m )≤ln(*+2),所以f (*)=e *-ln(*+m )≥e *-ln(*+2)=g (*)≥g (*)min >0. 例2函数)(x f 满足2121)0()1(')(x x f ef x f x +-=-〔2012全国新课标〕 (1)求)(x f 的解析式及单调区间; (2)假设b ax x x f ++≥221)(,求b a )1(+的最大值。
高考导数压轴题题型精编WORD版

高考导数压轴题题型精编W O R D版IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】高考导数压轴题题型 李远敬整理 2018.4.11一.求函数的单调区间,函数的单调性1.【2012新课标】21. 已知函数()f x 满足满足121()(1)(0)2x f x f e f x x -'=-+; (1)求()f x 的解析式及单调区间;【解析】(1)1211()(1)(0)()(1)(0)2x x f x f e f x x f x f e f x --'''=-+⇒=-+ 令1x =得:(0)1f = 1211()(1)(0)(1)1(1)2x f x f e x x f f e f e --'''=-+⇒==⇔= 得:21()()()12x x f x e x x g x f x e x '=-+⇒==-+ ()10()x g x e y g x '=+>⇒=在x R ∈上单调递增得:()f x 的解析式为21()2x f x e x x =-+ 且单调递增区间为(0,)+∞,单调递减区间为(,0)-∞2.【2013新课标2】21.已知函数f (x )=e x -ln(x +m ).(1)设x =0是f (x )的极值点,求m ,并讨论f (x )的单调性;【解析】(1)f ′(x )=1e x x m-+. 由x =0是f (x )的极值点得f ′(0)=0,所以m =1. 于是f (x )=e x -ln(x +1),定义域为(-1,+∞),f ′(x )=1e 1x x -+. 函数f ′(x )=1e 1x x -+在(-1,+∞)单调递增,且f ′(0)=0. 因此当x ∈(-1,0)时,f ′(x )<0; 当x ∈(0,+∞)时,f ′(x )>0.所以f (x )在(-1,0)单调递减,在(0,+∞)单调递增.3.【2014新课标2】21. 已知函数()f x =2x x e e x ---(1)讨论()f x 的单调性;【解析】(1)f ‘(x )=e x +e −x -2≥0,等号仅当x=0时成立,所以f (x )在(—∞,+∞)单调递增【2015新课标2】21. 设函数 f (x )=e mx +x 2-mx 。
高中数学导数大题八类题型总结

导数-大题导数在大题中一般作为压轴题出现,其复杂的原因就在于对函数的综合运用:1.求导,特别是复杂函数的求导2.二次函数(求根公式的运用)3.不等式:基本不等式、均值不等式等4.基本初等函数的性质:周期函数、对数函数、三角函数、指数函数5.常用不等式的巧妙技巧:1/2<ln2<1,5/2<e<3导数大题最基本的注意点:自变量的定义域1.存在性问题2.韦达定理的运用3.隐藏零点4.已有结论的运用5.分段讨论6.分类讨论7.常见不等式的应用8.导数与三次函数的利用1. 存在性问题第(1)问有两个未知数,一般来说,双未知数问题要想办法合并成一个未知数来处理合并成一个未知数后利用不等式1.存在性问题(2)问将有且仅有一个交点分成两部分证明,分别证至多存在一个交点与必然存在交点:证明必然存在交点是单纯的找“特殊点”问题高考导数大题中的存在性问题,最后几乎都会变成零点的存在性问题要点由于只关注零点的存在性,因此就没有必要对t(x)求导讨论其单调性,直接使用零点定即可。
(2)问先对要证明的结论进行简单变形:证毕韦达定理的使用(1)问是常规的分类讨论问题隐零点设而不求,代换整体证明对称轴已经在-1右侧,保证有零点且-1处二次函数值大于0两道例题都是比较简单的含参“隐零点”问题,总之就是用零点(极值点)反过来表示参数再进行计算一些比较难的题目,一般问题就会进行一定提示,如利用(2)问提示(3)问,其难点就在于知道要利用已有结论,但无从下手第(1)问分类讨论问题,分离变量做容易导致解题过于复杂(2)问将不等式两边取对数之后思路就很清晰了(1)(2)分别证明两个不等号即可化到已知的结论上()()()()()()()()()()()()''''1101,0,1,0;1,,00,11,110f x x xx f x x f x x f x f x x x x f x f =->=∈>∈+∞<∈∈+∞==为的零点于是在上单调递增,在上单调递减是的极大值点,(3)问需要利用(2)问结论才能比较顺利的证明利用(2)中结论第(1)问是一个比较简单的存在型问题分段)高考导数大题除求导外,隐藏零点、韦达定理、极值点偏移、二,三阶导等技巧,都是附加的技巧,导数的核心,是分类讨论的考察,高考题多数绕不开分类讨论。
(word完整版)导数结合洛必达法则巧解高考压轴题.doc

导数结合洛必达法则巧解高考压轴题○2 洛必达法则可处理0 0, ,0 ,1 ,,0 , 型。
2010 年和 2011 年高考中的全国新课标卷中的第 21 题中的第 ○2 步,由不等式恒成立来求参数的0 0取值范围问题,分析难度大,但用洛必达法则来处理却可达到事半功倍的效果。
则不适用,应从另外途径求极限。
洛必达法则简介: ○4 若条件符合,洛必达法则可连续多次使用,直到求出极限为止。
法则 1 若函数 f(x) 和 g(x) 满足下列条件: (1) lim f x 0 及 lim g x 0;x a x a(2) a f(x) g(x) g'(x) 0 在点 的去心邻域内, 与 可导且 ≠ ;二.高考题处理1.(2010 年全国新课标理 )设函数x 2f (x) e 1 x ax 。
(3) limx af xg xl ,(1) 若a 0,求 f (x) 的单调区间; (2) 若当 x 0时 f (x) 0,求 a 的取值范围那么 limx af xg x= limx af xg xl 。
x x原解:(1) a 0时, ( ) 1f x e x , f '( x) e 1.法则 2 若函数 f(x) 和 g(x) 满足下列条件: (1) lim f x 0 及lim g x 0;x x当 x ( ,0) 时, f '( x) 0;当 x (0, ) 时, f '( x) 0 .故 f (x) 在( ,0) 单调减少,在(2) A f 0,f(x) 和 g(x) 在 ,A 与 A, 上可导,且 g'(x) ≠0;(0, ) 单调增加(3) limxf xg x l ,x(II ) '( ) 1 2f x e ax那么 limxf xg x=limxf xg xl。
x 由(I )知 1e x ,当且仅当 x 0时等号成立 .故f '( x) x 2ax (1 2a)x ,法则 3 若函数 f(x) 和 g(x) 满足下列条件: (1) limx af x 及 lim x ag x ;从而当 1 2a 0,即 1 a 时, f '( x) 0 ( x 0) ,而 f (0) 0 ,2(2) 在点 a 的去心邻域内, f(x) 与 g(x) 可导且 g'(x) ≠0;于是当 x 0时, f (x) 0 .(3) limx af xg xl ,x x由 e 1 x(x 0) 可得 e 1 x(x 0) .从而当1 a 时, 2那么 limf x= limx af xl 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学导数压轴题7大题型总结
北京八中
高考数学导数压轴题7大题型总结
高考导数压轴题考察的是一种综合能力,其考察内容方法远远高于课本,其涉及基本概念主要是:切线,单调性,非单调,极值,极值点,最值,恒成立等等。
导数解答题是高考数学必考题目,今天就总结导数7大题型,让你在高考数学中多拿一分,平时基础好的同学逆袭140也不是问题
01导数单调性、极值、最值的直接应用
02交点与根的分布
03不等式证明
(一)做差证明不等式
(二)变形构造函数证明不等式
(三)替换构造不等式证明不等式
04不等式恒成立求字母范围(一)恒成立之最值的直接应用
(二)恒成立之分离参数
(三)恒成立之讨论字母范围
05函数与导数性质的综合运用
06导数应用题
07导数结合三角函数。