高压变频器结构原理(精品课件)
变频器培训课件ppt课件

行业定制化
针对不同行业和应用场景, 开发定制化的变频器产品, 以满足特定需求并优化性能 。
感谢您的观看
THANKS
实施效果
03
通过变频器控制,实现了空调系统的智能调节,提高了室内环
境的舒适度和空调系统的能效比。
电梯控制系统应用案例
案例背景
某高层住宅电梯控制系统,需保证电梯运行平稳、快速响 应乘客需求。
解决方案
采用变频器控制电梯曳引机电机,根据电梯运行状态和乘 客需求实时调整电机转速和制动力矩,保证电梯运行平稳 、快速响应。
程序编写方法及技巧
编程语言基础
编程技巧与规范
简要介绍变频器编程所涉及的编程语 言基础,如变量、数据类型、控制结 构等。
分享一些实用的编程技巧和规范,如 代码优化、错误处理、注释规范等, 提高学员的编程效率和代码质量。
程序结构与设计
讲解变频器程序的结构和设计方法, 包括主程序、子程序、中断程序等的 设计思路和实现方法。
欠压故障
变频器输出电压过低,可能是电源电 压过低、电源缺相等原因导致。
过热故障
变频器内部温度过高,可能是散热系 统不良、环境温度过高等原因导致。
故障排除方法和步骤
识别故障现象
根据变频器的故障指示或报警信息,识别 出具体的故障现象。
排除故障
根据故障原因,采取相应的措施进行故障 排除,如更换损坏的部件、调整参数设置
实施效果
通过变频器控制,实现了电梯控制系统的精确控制,提高 了电梯的运行效率和乘客的舒适度。同时,变频器还具有 节能效果,降低了电梯的能耗和运行成本。
05
变频器维护保养与故障排 除
日常维护保养项目
清洁变频器表面
定期清除变频器表面的 灰尘、油污等杂物,保
变频器的原理及其应用ppt课件

提纲
一、变频器的结构及原理 二、变频器的控制方法 三、变频器在风机负载和泵类负载中的应用 四、变频调速系统接电抗器的作用 五、变频器的抗干扰 六、变频器的功能 七、变频器的选择 八、变频器的运行 九、变频器的调试与维护
一、变频器的结构 及原理
变频器的调速原理
调速原理:
N:转速
38
1. 变频器的干扰源
图7-1 变频器的电压、电流波形
39
2. 电路耦合干扰
— 电路传播:1)电源线 2)地线
措施 : 1)隔离变压器 2)光耦隔离 3)正确接地
40
3.感应耦合干扰
—电磁感应 —静电感应
1) 电磁感应是电流干扰传播方式 2)静电感应是电压干扰传播方式
41
4. 抗干扰措施
远离、相绞、屏蔽、不平行
四. 变频调速系统 接电抗器的作用
32
1. 变频器输出端接入电抗器的场合
图 需要接入电抗器的场合
a)电机与变频器距离远 b)小变频器带轻载大电机
33
输出电抗器作用:
➢ 抑制变频器电磁幅射干扰 ➢ 抑制电动机电压谐振
34
2. 输入交流电抗器
作用:1)提高功率因数 2)抑制高次谐波 3)削弱电流浪涌
P0=55*10%=5.5KW P1=55KW
由PL=P0+KPnL3得: KP=55-5.5=49.5KW P2=5.5+49.5*(50%)3=11.7KW
总消耗的功率为55+11.7=67KW
风机的节电率统计举例
(2)两台变频运行时每台的平均供风量为75%Q P1=P2=5.5+49.5(75%)3=26.4KW
1)准确停车 2) 变频器给电动机输入直流电,在电机
高压变频培训课件

高压变频器的定义和特点
高压变频器采用交-直-交的工作方式,首先将工频电源通过整流器转化为直流电源,然后再通过逆变器转化为不同频率的交流电源。
高压变频器采用电力电子器件和大规模集成电路,可以实现高效率、高精度的调速控制,同时具有较高的可靠性。
安装环境
确保高压变频器安装在干燥、无尘、无振动的环境中,避免阳光直射和高温影响。
信号接入
正确连接所有的输入和输出信号线,并确保信号接口与相应的信号类型匹配。
高压变频器的安装要求及注意事项
在变频器空载状态下进行调试,检查电机和变频器的工作状态,确认无异常。
高压变频器的调试项目及方法
空载调试
逐步增加负载,观察电机和变频器在负载状态下的工作情况,检查电机是否有过载、过热、振动等问题。
保护器
监测系统运行状态,当出现异常时自动切断电源,保护设备免受损坏。
控制与保护元件
通过改变电源频率
通过改变输入电源的频率,实现对电动机转速的调节。
通过改变电动机极数
通过改变电动机的极数,实现电动机转速的调节。
高压变频器的调速方法
03
高压变频器的安装调试和维护
电源接入
确保电源电压与变频器额定电压相符,并采用独立的电源回路进行供电。
人工智能和物联网技术的融合将为高压变频技术的发展带来新的机遇和挑战。
THANKS
感谢观看
案例三
某高压变频器控制面板无法进入参数设置页面,可能是什么原因?如何处理?
典型故障案例分析
05
高压变频节能原理及应用实例
通过改变电机转速,实现节能。
变频调速节能原理
能量守恒定律
2024年高压变频培训课件

高压变频培训课件一、引言随着工业自动化程度的不断提高,高压变频器在电力、化工、冶金、水泥等行业的应用越来越广泛。
高压变频器以其节能、调速范围宽、运行稳定、维护方便等优点,成为了工业生产中不可或缺的设备。
为了提高大家对高压变频器的了解和应用能力,我们特此编写了本培训课件。
二、高压变频器的基本原理1.变频调速的原理变频调速是通过改变电机供电频率来实现电机转速调节的一种方法。
根据电机转速与供电频率的关系,可以得到如下公式:n=60f/p其中,n表示电机转速,f表示供电频率,p表示电机极对数。
通过调节供电频率,就可以实现电机转速的调节。
2.高压变频器的组成高压变频器主要由整流器、滤波器、逆变器、控制电路等组成。
整流器将交流电转换为直流电,滤波器对直流电进行滤波处理,逆变器将直流电转换为可控的交流电,控制电路负责对整个系统进行控制和保护。
3.高压变频器的控制策略高压变频器的控制策略主要包括电压型控制和电流型控制。
电压型控制通过控制逆变器的输出电压,实现对电机转速的调节;电流型控制通过控制逆变器的输出电流,实现对电机转矩的调节。
三、高压变频器的应用1.节能降耗高压变频器在工业生产中具有显著的节能效果。
以风机、泵类负载为例,当负载需求降低时,通过降低电机转速,可以显著降低电机功耗,实现节能降耗。
2.提高生产效率高压变频器可以实现电机转速的精确调节,满足各种生产工艺的需求。
在提高生产效率的同时,还可以保证产品质量。
3.软启动功能高压变频器具有软启动功能,可以减少电机启动时的电流冲击,延长电机使用寿命。
4.保护功能高压变频器具有过载、过压、欠压、过热等多种保护功能,确保电机安全运行。
四、高压变频器的选型与维护1.选型原则(1)根据负载特性选择合适的变频器类型;(2)根据电机功率、电压等级等参数选择合适的变频器容量;(3)考虑变频器的性能指标,如调速范围、精度、响应速度等;(4)考虑变频器的可靠性、防护等级、环境适应性等。
高压变频系统组成(合康亿盛)

第二部分
电路板
高压变频器系组成
单元电路板
矢量控制单元电路板
单元控制板
单元驱动板
第二部分
高压变频器系组成
三、功率单元
功率单元原理见图2.7,输入电源端R、S、T接变压器二次线圈的三相 低压输出,三相二极管全波整流为直流环节电容充电,电容上的电压提供 给由IGBT组成的单相H形桥式逆变电路。
高压变频器系组成
控制器由三块光纤板、一块信号板、一块主控板和一块电源板组成,各板之 间通过总线底板连接,如图2.11所示。 光纤板通过光纤与功率单元传递数据信号,每块光纤板控制一相的所有单元。 光纤板周期性向单元发出脉宽调制(PWM)信号或工作模式。单元通过光纤接收其 触发指令和状态信号,并在故障时向光纤板发出故障代码信号。 信号板采集变频器的输出电压、电流信号,并将模拟信号隔离、滤波和量程 转换。转换后的信号用于变频器控制、保护,以及提供给主控板数据采集。 主控板采用高速单片机,完成对电机控制的所有功能,运用正弦波空间矢量 方式产生脉宽调制的三相电压指令。通过RS232通讯口与人机界面主控板进行交换 数据,提供变频器的状态参数,并接受来自人机界面主控板的参数设置。
图2.9 单元驱动板原理图
第二部分
高压变频器系组成
四、控制系统
控制系统由控制器、IO接口板和人机界面组成,各部分之间的联系,如图2.10 HIVERT变频器控制系统结构图所示。
图2.10 HIVERT变频器控制系统图(10kV系列)
第二部分
第二部分
高压变频器系组成
图2.8 单元控制板原理图
第二部分
高压变频器系组成
图2.9为单元驱动板原理图。驱动板用于产生4个IGBT的驱动信号,并将IGBT 的故障信号反馈到单元控制板。驱动板通过端子XS5与控制板端子XS6相连,其中L 控制左桥臂上的Q1、Q3 两个IGBT,R控制右桥臂上的Q2、Q4 两个IGBT,Q1、Q3和 Q2、Q4通过反相器互锁;/INHB为IGBT禁止信号;/DR为IGBT的故障信号,反馈回 控制板用于单元保护。驱动板上的电源来自控制板,其中+15V电源被隔离成4路电 源,分别用于4个IGBT的驱动。
变频器的基本结构和工作原理教育课件

§3.2交-直-交变频器
3、不可控整流电路
(2)三相桥式整流电路 (e)工作过程 0~t1期间: uW>uU>uV,W点电位最高,V点电位 最低,VD5、VD6优先导通,电流从 W→VD5→R→VD6→ V,忽略二极管 正向压降,负载电阻R上电压ud=uWV, VD5导通后使VD1、VD3阴极电位为uW 而承受反向电压截止。 同理VD6导通使VD4、VD2截止
二、整流电路
12
§3.2交-直-交变频器
3、不可控整流电路
(1)三相桥式整流电路
(e)工作过程 t2~t3期间: 刚过t2,则uU>uV>uW,U点电位最高, W点电位最低,VD6与VD2换相, VD6截止,VD2导通,VD1仍旧导通, 即该期间VD1、VD2导通,其余截止, 电流从U→VD1→R→VD2→ W, 负载电阻R上电压ud=uUW
3
§3.2交-直-交变频器
二、整流电路
1、概述
整流电路(Rectifying Circuit)是一种将交流电能转换为 直流电能的电路
2、分类
(1)按组成器件及控制能力: (a)不可控整流电路:整流器件由不可控功率二极管组成, 其直流整流电压和交流电源电压值之比固定不变 (b)半控整流电路:整流器件由可控开关器件和二极管混合 组成,负载电源极性不能改变,但电压平均值可以调节 (c)全控整流电路:所有整流器件采用可控开关器件(SCR 、GTR、GTO、IGBT等),其输出直流电压平均值及极性 可以通过控制元件的导通状况调节,功率既可以由电源向负 4 载传送,也可以由负载反馈给电源
由于VD2、VD3导通时管压降很小,
可忽略不计,故可以看做电源电压
全部施加于负载电阻R上, 即输出电压ud=uBA=-u2
高压变频器基本结构

一.高压变频器的基本结构将50HZ(60HZ)固定6KV(10KV)电网频率变换成0-50HZ可调频率的功率变换设备称为变频器,输出3KV/6KV电压的变频器称为高压变频器。
变频器一般由三部分组成:整流电路AC-DC;中间直流环节,滤波和能量储存;逆变器DC-AC。
二.工作原理高压变频器是由多个单元串联而成,上图显示了如何由低压单元叠加达到高压输出目的。
各个功率单元由输入隔离变压器的二次隔离线圈分别供电,额定电压为630V,每相6个,因此相电压为3780V,所对应的线电压为6600V,给功率单元供电的二级线圈互相存在一个相位差,实现输入多重化,由此可消除各单元产生的谐波。
三.专业的指标数据是衡量产品性能的唯一标准衡量高压变频器性能的主要指标有:输入对电网的谐波污染;输入的功率因数;输出波形的质量,可靠性等。
1.输入谐波高压变频器输入整流环节都为非线形的,会对电网产生谐波,其输入谐波的幅值与变频器整流环节的脉冲数密切相关。
输入谐波对电力系统的影响:如果变频器输入电流谐波较大,对电力系统会影响继电器装置、测量仪器仪表、计算机系统及通信设备的正常工作。
谐波会使挂在同一电网的电机、变压器和电容等用电设备损耗增大,严重时会过热或烧毁设备。
输入谐波的数值应该控制在标准之内:IEEE519-1992国际标准;GB/T14549-93国家标准。
图:六脉冲二极管整流电路及输入电流波形图:12脉冲二极管整流电路及输入电流波形图:12脉冲晶闸管整流电路及输入电流波形图:36脉冲整流电路即可输入基本完美的无谐波电流波形减少输入谐波的有效措施是将输入变压器进行多重化设计形成多脉冲整流。
通过对上面6脉冲二极管、12脉冲二极管、12脉冲晶闸管和36脉冲的输入波形比较,6脉冲可以有效的抵消5次以下的谐波,12脉冲整流可以有效的抵消11次以下的谐波,36脉冲可以有效的抵消35次以下的谐波。
在不加滤波器的情况下,完美无谐波变压器的谐波含量控制在2%之内。
变频器的原理和应用课件

交流电抗器一般装在变频器输入端或者输出端,直流电抗器串接在直流母线中间
ห้องสมุดไป่ตู้
注意:必须保证输入和输出不能接反 制动单元正负极正确
1.高温对变频器的危害
高温会造成变频器功率原件寿命变短,甚至损坏,变频器 必须有良好的散热能力,环境温度适中。
2.电网污染对变频器的危害
高次谐波对对电子原件损害较大,必要是变频器要加装交 流电抗器,或直流电抗器。
2.滤波:通过并联在直流母线间的电容对整流得到的直流电进行滤波,一般在直流 母线上测的电压要高于513V,因为电容有升压作用。
3.充电电阻:作用是防止开机上电瞬间电容对地短路,烧坏储能电容开机前电容二 端的电压为 0V;所以在上电(开机)的瞬间电容对地为短路状态。如果不加充电电阻 在整流桥与电解电容之间,则相当于380V电源直接对地短路,瞬间整流桥通过无穷大 的电流导致整流桥炸掉。一般而言变频器的功率越大,充电电阻越小。充电电阻的选 择范围一般为:10-300Ω。
1.变频器除尘与清洁
要经常对变频器除尘吹灰,保证散热片干净,散热风扇 运行良好。
2.外接端子检查
接线端子必须紧固,松动,打火都可能造成变频器损坏。
3.外接电机的绝缘检测
定期对外围设备进行绝缘检测,用兆欧表检测绝缘时, 必须把电机和变频器脱离,然后对电机进行绝缘检测。
4.在没有采取措施的情况下,不能直接用兆欧表对变频器进
以下所述内容主要为“交直交”变频器
1.变频器原理简图
2.变频器内部常见原件
控制部分
控制部分包括:检测部分,IGBT驱动部分,cpu主控部分
3.变频器主电路示意图
1.整流部分:变频器的整流部分由VD1-VD6六个整流二极管组成不可控全波整流桥。 对于380V的额定电源,通过三相整流后得到一个513V的直流电压。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2章 变频器主电路分析
• 2.2.4 输出波形 • 逆变器输出采用多电平移相式PWM技术,同一相的功率
单元输出相同幅值和相位的基波电压,但串联各功率单元 的载波之间互相错开一定角度,实现多电平PWM,输出 电压非常接近正弦波(输出PWM波如图所示)。 • 该变频器由于输入输出波形好,被人们称为“完美无谐波
流电流互补,连续起来。解决整流造成的传导干扰问题。 • 2. 输出多组低电压供功率单元串联,解决管子耐压不够问题。
第2章 变频器主电路分析
• 3. 延边变压器原理
将二次绕组先作三角型联接,然后在每个输出端串联上一个绕组,上
图为逆延联接,串联绕组和三角型联接绕组同相位(见图Ua1、Ua2)。
由图可见,改变串联绕组和三角型联接绕组电压的大小,可改变θ的大
第2章 变频器主电路分析
• 采用功率单元串联的形式,因为每个单元上加的 是自己的一组电压,当工作中出现了开通延时, 也不会出现过压问题,这是该电路的特点之一。
第2章 变频器主电路分析
• 1.功率单元工作原理 • 1)整流 • 将交流电变为直流电的过程叫做整流。VD1—VD6整流
二极管,完成将交流电整成直流电的工作。 • 整流原理:
第2章 变频器主电路分析
• 2.外部报警跳闸 • 外部报警跳闸一般有:过流、过载、过压、过热、夏天雷
电跳闸等。当出现了跳闸,要分析原因,及时处理。
第2章 变频器主电路分析
• 2.2.7 功率单元测量维修 • 1. 整流电路的测量 • 1)万用表选用 • 指针万用表:用X100Ω或X10 Ω挡; • 数字万用表:用测晶体管挡。
•
U线 3U相 34501.732 6KV
第2章 变频器主电路分析
• 2.2.3 功率单元和旁路电路 • 功率单元为三相输入、单相输出的交—直—交PWM型变
频结构。将相邻功率单元的输出端串接起来,形成Y联结 结构,实现变频的高压直接输出,供给高压电动机。 • 旁路电路是当功率单元失效后,自动将其短路,保证变频 器不间断工作。
指针万用表内电路
数Байду номын сангаас表打到测晶体管挡
第2章 变频器主电路分析
2)测量直流电阻 ①测量整流管 ②测量开关管
第2章 变频器主电路分析
②测量开关管
第2章 变频器主电路分析
变频器”,有的资料中也称为绿色变频器。
第2章 变频器主电路分析
• 该变频器由于采用了低压IGBT,成本较低。6000V变 频器要用90只二极管,60只IGBT,设备体积大。
• 该变频器因为用二极管整流,不能4象限运行,只能用在 风机、水泵等简单负载。
• 如果整流部分采用回馈整流电路,可以用于轧钢升降等具 有回馈电能的场合,但成本大大增加。
第2章 变频器主电路分析
• 2.2.5 变频器的应用范围 • 在没有回馈电路情况下,即不能4象限工作。当产生小能
量的回馈电能时,可以采用制动电阻来处理。该变频器主 要用途:
• 火力发电:引风机、送风机、吸尘风机、压缩机、排污泵、 锅炉给水泵、灰浆泵等; 冶金行业:引风机、吸尘风机、通风风机、泥浆泵、除垢 泵等; 石油化工:主管道泵、注水泵、锅炉给水泵、循环水泵、 潜油泵、卤水泵、引风机、气体压缩机、混合器、挤压器 等;
功率单元
第2章 变频器主电路分析
• 2. 连接 • 连接电路如下图,由图中可见,加在每个单元上的电压为
单相,变压器不强调绕组移相。
第2章 变频器主电路分析
• 3. 应用 • 该变频器通过增加回馈功能,可以四象限运行,适应工作
在具有大量回馈电能的场合。但通过增加回馈功能,又抵 消了原来变频器的优点,所以该变频器一般应用在没有回 馈电能的场合。
小。通过逆延或顺延的联接方法,可得到
相移。
第2章 变频器主电路分析
• 多移相绕组反射到初级的电流波形
第2章 变频器主电路分析
• 2.2.2 功率单元串联
• 为了解决输出高压问题,将多个功率单元串联,根据不同 输出电压的要求,选择串联的级数。该变频器由5个耐压 为690V的功率单元组成6KV变频器,相电压为 690V×5=3450V,线电压为:
第2章 变频器主电路分析
• 水泥制造:窑炉引风机、生料研磨引风机、压力送风机、 主吸尘风机、冷却器吸尘风机、冷却器排风机、预热塔风 机、分选器风机、窑炉供气风机、高温风机、尾排风机等; 市政供水、污水处理:污水泵、清水泵、净化泵、生物粗 处理塔泵等; 采矿行业:矿井的排水泵和排风扇、介质泵等; 造纸:打浆机等; 制药:清洗泵等; 其他:传动机械装置、风力涡轮机、风洞试验等。
• 高压变频器为了解决耐压问题,提出了很多解决方案,使 主电路有多种拓补结构。人们以拓补结构来命名变频器的 名称(如三电平、功率单元串联、直接串联等)。
第2章 变频器主电路分析
• 2.2 功率单元串联高压变频器
• 2.2.1 移相变压器 • 1.输出绕组采用延边三角型连接,使每组的相角不同,使不连续的整
• 该变频器由美国罗宾康公司研制,因为只申请了美国专利, 技术已经公开,我国利德华福、北京合康、山东风光、英 威腾等很多厂家都在生产。
第2章 变频器主电路分析
• 2.2.5 具有回馈功能的功率单元串联高压变频器 • 1.电路 • 为了电能回馈,整流电路由三相变为单相,变压器的结构
简化。回馈电路采用和逆变电路相同的结构,并在输入端 串入储能电感L。 • 该回馈电路在整流过程中,采用PWM整流方式,可以使 输入电流连续,消除对电网的传导干扰。因此,变压器可 以不用移相结构。
为应用打基础。
第2章 变频器主电路分析
• 2.1高压变频器分类 • 按照我国电压的划分:低于1kV,称为低压;大于lkV、
小于10kV,称为中压,10kV以上,称为高压。 • 我国在工、民、建等方面常用的电压等级为: • 220V、380V、3KV、6KV、10KV; • 在煤炭、石油、各种矿床的开采业中,除了上述电压等级
主讲
王兆义
主办单位: 新疆博识通咨询有限公司 中国工业自动化培训网
1
第2章 变频器主电路分析
• 一、本章基本内容: • 1. 高压变频器的电压等级 • 包括:电压分类、中高压的电压级别 • 2. 常用高压变频器的电路结构 • 包括:功率单元串联高压变频器、三电平高压变
频器、直接高压变频器、交—交高压变频器 • 二、要解决的问题 • 解决高压变频器主电路的拓补结构和工作原理,
第2章 变频器主电路分析
• 2)整流波形图
结论: a.相电流不连续 b.整流电压最大值为 2U线 c.每个周期有6个波峰,电压较平滑。 d.整流电流不连续,本机通过移相整流来解决,其他机型通过星、 角联接、加入电抗器的方法等来消除。
第2章 变频器主电路分析
• 3)开关电路
T1和T2、T3和T4交替工作,当T1导通时,T4导通;当T3导通 时,T2导通。如果该单元出现了问题,晶闸管T导通,L1、L2两 端短路。该单元被旁路。
• 因该变频器的研制出发点就是风机和水泵的节能应用,又 因为风机和水泵的拥有量大、用电量大,所以该变频器用 量非常大,是高压变频器的主导机型。
第2章 变频器主电路分析
• 2.2.6 变频器故障 • 1. 设备故障 • (1)因该变频器采用移相变压器和功率单元组成,移相
变压器故障率很低,功率单元内包含了整流、逆变等功率 电路,较易损坏。 • (2)损坏功率单元的原因有器件内部质量和外部过流, 因内部质量原因一般偶尔一块损坏,外部过流主要为电动 机短路,可能有多快单元损坏。 • (3)如果因内部质量原因偶尔损坏一块功率单元,可以 暂时不停机维修,如果因电动机短路造成多单元损坏,必 须停机。
之外,还有如下电压等级: • 550V、690V(660V)、850V、1140V、1700V. • 变频器在不同的应用领域,也就具有不同的电压等级。
第2章 变频器主电路分析
我们习惯上把额定电压为6kV或3kV的电动机称为“高 压电动机”。 • 在变频器的结构上,当电压超过了3KV,因为受功率器 件的耐压限制,不得不通过器件的串联等手段来应对高电 压,所以3KV~lOkV的变频器在结构上就没有本质区别, 人们习惯上将它们就统称为高压变频器。