神奇的莫比乌斯带
2023年人教版数学四年级上册神奇的默比乌斯带创新教案(精推3篇)

人教版数学四年级上册神奇的默比乌斯带创新教案(精推3篇)〖人教版数学四年级上册神奇的默比乌斯带创新教案第【1】篇〗神奇的莫比乌斯圈活动目标:1、在动手操作中学会将长方形纸条制成一个神奇的莫比乌斯圈。
2、在莫比乌斯圈魔术般的变化中感受数学的无穷魅力,拓展数学视野。
3、进一步激发学生学习数学的兴趣,让学生获得学习成功的体验。
活动重点:让学生认识“莫比乌斯圈”,学会将长方形纸条制成莫比乌斯圈。
活动难点:引导学生通过思考操作发现并验证“莫比乌斯圈”的特征,培养学生大胆猜测、勇于探究的求索精神。
活动准备:每位学生若干张长方形纸条,剪刀,双面胶、水彩笔。
活动过程:一、导入:二、认识莫比乌斯圈的特点1、请同学们取出1号纸条,认真观察这张普通的长方形纸条,它有几条边几个面?(引导学生观察)板书:四条边两个面2、你能把它变成两条边两个面吗?板书:两条边两个面学生动手操作:围成一个圈数学上把这种有里外之分的纸圈称为双侧面纸圈。
3、现在你能再想想办法将长方形纸条变成一个面一条边吗?生动手试做。
当生遇到困难时老师拿出事先做好的纸圈,让学生用手感觉它是一条边一个面。
板书:一条边一个面4、让我们一起来动动手研究一下吧!(如果学生不能做出,教师可以适当提醒。
)由做出来的同学介绍“莫比乌斯圈”的做法:将其中的一边转180度并粘贴起来。
(学生动手操作,可小组合作完成)是不是只有一条边呢?(用手沿着其中的一条边走,能回到原点)如何验证是不是只有一个面呢?(用一笔能将整个纸条画完,回到起点)为什么只有一条边一个面呢?(生小组讨论,回答)当多数学生想要亲自感受的时候,师趁机指导每一个学生做一个单侧面的纸圈。
强调:一头不变,另一头拧180度,两头粘贴。
5、现在我们做成了一个圈,它只有一条边一个面,非常地奇怪。
(课件出示:神奇的怪圈)6、简单介绍怪圈的来历。
(课件出示:莫比乌斯圈)所以同学们平时在学好书本知识的同时,要留心观察生活,更多伟大的发明、发现还等着用你们的名字命名呢!同学们,其实莫比乌斯圈还有很多神奇的地方,下面我们就用“剪”的办法再来研究研究这个神奇而有趣的怪圈。
神奇的莫比乌斯带课件

应用领域拓展
随着科学技术的发展,莫 比乌斯带的应用领域也将 越来越广泛,有望在更多 领域发挥重要的作用。
跨学科合作
莫比乌斯带研究不仅限于 数学领域,未来可以加强 与其他学科的合作,拓展 研究范围和深度。
THANKS
谢谢您的观看
神奇的莫比乌斯带课件
xx年xx月xx日
目录
• 莫比乌斯带简介 • 莫比乌斯带的基本性质 • 莫比乌斯带的制作方法 • 莫比乌斯带的应用场景 • 莫比乌斯带的未来展望
01
莫比乌斯带简介
莫比乌斯带的定义
平面曲面
莫比乌斯带是一种特殊的平面 曲面,由德国数学家莫比乌斯
发现。
无定向性
莫比乌斯带具有无定向性,即沿 着带子行走,没有明确的“正面 ”和“反面”。
注和应用。
莫比乌斯带的重要性
拓扑学
莫比乌斯带在拓扑学中具有重要的 地位,是拓扑学中一个基本且重要 的概念。
数学应用
莫比乌斯带在数学中有着广泛的应 用,如在分形、纽结理论、晶体学 等领域。
物理应用
莫比乌斯带在物理学中也有着重要 的应用,如在量子力学、光学、电 磁学等领域。
艺术应用
莫比乌斯带在艺术中也得到了广泛 的应用,如建筑设计、动画制作、 雕塑创作等领域。
它是一个一维的拓扑空间,不 同于二维平面。
它具有一个特殊的属性,即扭 转性质,使得在带子上行走的 人会发现自己回到了原点。
莫比乌斯带在生活中的运用
莫比乌斯带在数学和物理学中有很多应用。
在数学中,它可以用来解释一些复杂的数学概念,如 分形和混沌理论。
在物理学中,莫比乌斯带可以用来解释时间倒流的现 象。
它还可以在计算机科学中用来研究计算机图形学和数 据结构。
【日记】神奇的莫比乌斯带_650字

【日记】神奇的莫比乌斯带_650字神奇的莫比乌斯带,是一种具有奇特特性的数学结构。
它的名字来源于德国数学家莫比乌斯。
这种结构看似简单,但却蕴含着许多有趣的数学性质。
今天,我在数学课上学习了莫比乌斯带的一些基本概念。
莫比乌斯带是一种具有唯一边界的二维物体,它只有一个面和一个边。
如果我们在一根长而窄的纸条上做一个扭曲的动作,然后将两端接触在一起并粘合,就可以得到一个莫比乌斯带。
这个结构的奇特之处在于,我们可以用一笔从莫比乌斯带的某一点画到另一点,而不需要抬起笔。
莫比乌斯带的另一个有趣之处在于它的表面只有一个面。
这意味着,如果我们沿着莫比乌斯带的表面行走,最终会回到出发点,但可能会发现走过的路径和一开始并不一样。
这种特性让我想起了人生的循环,我们经历着不同的人生阶段,但最终又回到出发点。
莫比乌斯带给了我对循环和变化的新的理解。
莫比乌斯带的另一个有趣应用是在几何学中。
我们可以通过莫比乌斯带来研究一些几何学问题,比如如何将一个正方形变成一个正三角形,或者如何将一个球体变成一个圆柱体。
通过莫比乌斯带,我们可以发现一些几何学问题的独特解决方法,这让我对几何学的学习更加兴趣盎然。
莫比乌斯带还有一些与计算机科学相关的应用。
在计算机图形学中,我们可以使用莫比乌斯带来创建一些具有奇特形态的图形。
莫比乌斯带的数学特性和奇异性使得它成为计算机科学领域中的创新工具,可以用来生成各种有趣的图形和模型。
通过学习莫比乌斯带,我不仅对数学有了更深层次的理解,也开阔了我的思维。
它让我认识到数学不仅仅是一堆公式和计算,它也可以是一种思维方式和创造力的表达。
莫比乌斯带所带来的数学启发不仅仅用于纸上的计算,还可以应用于现实生活中的问题求解。
在今天的数学课上,我对莫比乌斯带有了更深入的了解。
它是一个神奇的数学结构,具有许多有趣的特性和应用。
通过学习和探索莫比乌斯带,我对数学的兴趣和热爱进一步增长,也意识到数学对我们生活的影响。
我希望能继续深入研究莫比乌斯带,并将其应用于实际问题的求解中。
神奇的莫比乌斯带

05
莫比乌斯带的趣味实验
穿越实验
总结词
通过观察物体在莫比乌斯带上的穿越 行为,理解莫比乌斯带的奇特性质。
详细描述
将小虫或小球放在莫比乌斯带上,观 察它如何始终保持在带的一面而穿越 整个带子。这个实验展示了莫比乌斯 带将一个二维平面扭曲成单一的闭合 曲线的特性。
剪纸实验
总结词
通过剪切莫比乌斯带,展示其独特的拓扑性质。
02
它可以通过将一条纸带的一侧旋 转180度后与另一侧粘合来制作 ,形成一个连续的曲面,其中只 有一侧,没有明确的内外之分。
莫比乌斯带的特性
莫比乌斯带具有一个奇特的特性,即它的边界是它的内部和 外部的唯一区别。在带子的内部行走或移动,最终会回到起 始点,而不是像常规曲面那样可以走出边界。
莫比乌斯带在数学和物理学中有着广泛的应用,例如在克莱 因瓶和三维空间的扭曲等概念中,都可以看到莫比乌斯带的 影子。
使用实物制作
准备工具
纸板、颜料、剪刀、胶水等
步骤
首先,将纸板剪成一个圆形,并将其一端弯曲180度后与另一端粘接成一个圈。接着,使用颜料在纸带上绘制出 所需的图案或文字。最后,等待颜料干燥后,沿着纸带的宽度方向剪开,即可得到一个立体的莫比乌斯带模型。
04
莫比乌斯带的历史与文化
莫比乌斯带的起源
莫比乌斯带的起源可以追溯到 19世纪初,由德国数学家莫比 乌斯和约翰·李斯丁共发现。
在科学中的应用
拓扑学研究
数学模型
莫比乌斯带是拓扑学领域中的一个重 要概念,对于理解空间结构和连续性 有重要意义。
莫比乌斯带在数学领域中常被用作数 学模型,用于研究复杂系统的行为和 性质。
物理学中的奇异现象
在物理学中,莫比乌斯带被用来解释 一些奇异的现象,如时间反演对称性 等。
神奇的莫比乌斯带课件

欧拉公式与莫比乌斯带的关系
欧拉公式
欧拉公式是联系复数、三角函数和多项式的一种重要公式,它为研究莫比乌 斯带提供了重要的数学工具。
应用
通过应用欧拉公式,我们可以推导出莫比乌斯带的一些重要性质,如单侧性 和无限性。
拓扑学中的莫比乌斯带
拓扑学定义
在拓扑学中,莫比乌斯带是一种特殊的拓扑空间,它由一条带子经过连续变形得 到。
建筑设计中的应用
建筑设计
莫比乌斯带在建筑设计中也有 着重要的应用,它可以作为一 种创新的建筑结构形式,实现
空间和结构的优化设计。
结构工程
在结构工程中,莫比乌斯带的 应用可以实现更加高效和稳定 的建筑结构,如桥梁、高层建
筑等。
能源利用
莫比乌斯带在能源利用方面也 有所应用,如太阳能电池板的 设计,可以通过利用莫比乌斯 带的原理提高能源利用效率。
感谢您的观看
THANKS
,否则将形成一个没有开口的圆环。
使用胶带制作莫比乌斯带
• 准备工具和材料:胶带、剪刀。 • 制作步骤 • 将胶带撕下一段,长度与胶带的宽度相等。 • 将胶带的一端粘贴在一起,形成一个圆环。 • 将另一端也粘贴在一起,但要保证两个粘贴点不在同一点
上,形成一个有开口的圆环。 • 用手指轻轻按压开口,使圆环闭合。 • 注意事项:在粘贴时确保两个粘贴点不在同一点上,否则
它是由一个矩形条带首尾相接 ,然后沿着矩形的一边扭曲后
形成一个环状。
莫比乌斯带只有一个面,且没 有边界,这种性质在日常生活
中很难想象。
莫比乌斯带的发明者
莫比乌斯带是由德国数学家约翰·弗里德里希·莫比乌斯发现并命名的。
他于1858年通过将一个带有两个边界的矩形条带扭曲后得到了莫比乌斯带。
人教版数学四年级上册神奇的默比乌斯带优秀教案(精选3篇)

人教版数学四年级上册神奇的默比乌斯带优秀教案(精选3篇)〖人教版数学四年级上册神奇的默比乌斯带优秀教案第【1】篇〗一、教学内容:人教版小学数学四年级上册70页《神奇的莫比乌斯带》二、活动目标:1、知识与技能引导学生在对比探究中认识“莫比乌斯带”,并会制作“莫比乌斯带”,初步体会莫比乌斯带的特征。
2、过程与方法组织学生动手操作,验证交流,让学生经历“猜想—验证—结论”的过程,掌握观察、猜想、验证、归纳概括发现的数学结论等探索方法,从中获得一些数学活动的经验。
3、情感态度与价值观经历猜想与现实的冲突,感受“莫比乌斯带”的神奇变化,感受数学的无穷魅力,拓展数学视野,培养创新精神。
三、教学重难点【教学重点】经历“猜想—验证—结论”的过程,掌握观察、猜想、验证等探索方法。
【教学难点】探索、发现莫比乌斯带的特征。
四、活动准备:每位学生若干张长方形纸条,剪刀,固体胶(双面胶)、水彩笔。
五、活动过程:(一)魔术引入,激发兴趣同学们,喜欢看魔术表演吗?卢老师也会变魔术,你想看吗?看,老师手里有一张纸条和两个回形针,一会儿老师可以利用纸条变个魔术,让两个回形针手牵手,你们信吗?魔术表演确实很吸引人,今天老师让每一个同学都来当一回魔术师,好不好?1、观察:请同学们拿出手中的纸条,“今天我们变魔术的道具就是这张普通的长方形纸条,仔细观察,它有几条边,几个面?”2、思考:接下来你们来变魔术,能不能把它变成只有2条边、2个面试试看(学生自主思考,尝试)。
3、操作:引导学生将纸条首尾相连围成一个纸圈。
4、验证:教师带领学生一起验证纸圈只有2条边2个面。
自主制作,验证特征活动一:制作莫比乌斯带(验证特征)1、你能不能再变,把它变得只有1条边,1个面再试试看。
先请找到方法的学生讲解示范,然后视频播放制作方法。
请同学们用手中的纸条制作出这个只有1条边1个面的纸圈。
2、面对这样一个纸圈,你有什么疑问吗学生提出疑问:预设1:这个纸圈真的只有1条边1个面吗预设2:为什么变成1条边1个面了预设3:这个纸圈有名字吗预设4:这个图形在哪里可以用得着接下来我们就带着这些疑问来探索这个纸圈。
神奇的莫比乌斯带
神奇的莫比乌斯带什么是莫比乌斯带莫比乌斯带(Moebius strip)是一种有趣而神奇的拓扑结构。
它是由德国数学家奥古斯特·莫比乌斯于19世纪提出的。
莫比乌斯带的特点在于它只有一个面和一个边。
如果你在莫比乌斯带上行走,并且一直沿着边界线走下去,你会发现自己最终回到了出发点,但是你此时可能站在原来的底面的顶部。
这种特性使得莫比乌斯带成为了许多数学问题和科学实验的对象。
如何制作莫比乌斯带制作莫比乌斯带非常简单,只需要一条长而窄的带子和一些胶水。
下面是一些步骤来演示如何制作莫比乌斯带:1.准备一条长而窄的带子,最好使用柔软的材料如纸或布。
2.将带子的一端粘合到另一端,形成一个环。
3.将带子扭动一半的圈数,然后再次将带子的两端粘合在一起。
制作完成后,你会得到一个莫比乌斯带。
你可以通过在莫比乌斯带上刻画线条或者进行一些数学实验来探索它的特性。
莫比乌斯带的应用虽然莫比乌斯带看起来像是一个玩具,但是它在许多领域都有着重要的应用。
下面是一些关于莫比乌斯带的应用示例:数学研究莫比乌斯带在数学领域中被广泛研究和应用。
它可以帮助解决许多拓扑学中的难题,如纤维丛理论、拓扑动力系统等。
计算机图形学莫比乌斯带在计算机图形学中也有一定的应用。
通过将莫比乌斯带应用于图像处理,可以创造出一些独特的效果和动画。
纳米科技在纳米科技中,莫比乌斯带被用于制造一些特殊的纳米结构体。
这种结构体可以被用于制造高效的电子器件和催化剂。
莫比乌斯带的数学原理莫比乌斯带的数学原理非常有趣。
它可以通过将一条带子的一端扭转180°来创造。
这个操作实际上是一个连续的反射和旋转过程。
在数学上,莫比乌斯带可以用一个简单的公式来描述:M = C × R,其中M为莫比乌斯带的面积,C为莫比乌斯带的周长,R为莫比乌斯带的半径。
莫比乌斯带的独特性质还可以通过一些数学实验来验证,比如将一支笔沿着莫比乌斯带的边界线画出一条封闭曲线,你会发现这条曲线的两个端点实际上是无法分离的。
神奇的莫比乌斯带 课件
2、它真的是一条边,一个面吗?请选用合适的方法验证。
神奇的莫比乌斯带
你会用纸条变魔术吗? 取两根长方形的长纸条,给它们编上序号1、2
1号环有几个面?有几条边?2号环呢?
用彩色笔涂一涂,看能不能一次连续不断地 涂完第二个环的整个面。
ห้องสมุดไป่ตู้
研究“神奇的纸杯” 1、将纸杯沿中线剪开,会变成什么样子? 2、将纸杯沿三等分线剪开,会变成什么样子?
拿一把剪刀,沿着2号环的中线剪 开指环,你有什么发现?
如果沿着2号环离边缘三分之一宽度的地方 一直剪下去,你会有什么发现?
研究莫比乌斯带的变化记录与汇报
欣赏
特点、性质、做法、应用
课后作业
1、查找有关莫比乌斯带资料与家长同学交流 2、还能怎样剪开,会变成什么样?
北师大版小学六年级数学下册
神奇的莫比乌斯带
神奇的纸杯
莫比乌斯带的由来
1858年,德国几何学 家莫比乌斯在研究一些数 学问题时意外地发现了这 个图形,后人为了纪念这 位伟大的数学家,就将它 命名为莫比乌斯带。
思考
面包屑 蚂蚁
纸杯外面的蚂蚁如 果不翻阅纸杯的边缘, 能吃到纸杯内侧的面包 屑吗?
制作神奇的纸杯
神奇的“莫比乌斯带”
神奇的“莫比乌斯带”什么是莫比乌斯带?莫比乌斯带是一种具有独特几何形状的曲面,它只有一个面和一个边。
在数学上,莫比乌斯带是二维曲面的一种特殊情况,被称为非定向曲面。
它以德国数学家奥古斯特·莫比乌斯(August Ferdinand Möbius)的名字命名,于1858年由德国数学家约瑟夫·洛斯特在其发表的论文中首次描述。
莫比乌斯带的独特之处在于,它只拥有一个连续的边,也就是说,无论你从哪个点沿曲面行走,总能回到出发点,却穿过了整个曲面的每一个点。
换句话说,如果你将一根宽带沿着一边旋转半圈再粘合起来,就得到了一个莫比乌斯带。
莫比乌斯带的结构特点要理解莫比乌斯带的结构特点,我们可以通过简单的实验来观察它。
首先,我们需要一根长而窄的纸条,将纸条的两端连接起来,形成一个环状。
接下来,取一个笔或者铅笔,将纸条的一侧都涂上墨水或者颜料。
然后,将纸条扭转一半,并且再次粘合起来。
这样,我们就得到了一个莫比乌斯带。
实验结果发现,莫比乌斯带的特点之一是,无论你从带的哪一侧开始行走,最后你总能回到起点,而且所经过的每一个点都是连续的,没有中断。
这反映了莫比乌斯带的非定向性。
另外,莫比乌斯带只有一个面,这对于曲面的研究和理解具有重要意义。
莫比乌斯带的应用莫比乌斯带的独特形态和非定向性在数学和物理学的研究中发挥了重要作用,并在一些实际应用中得到了应用。
在数学领域,莫比乌斯带被广泛用于拓扑学和几何学的研究中。
由于莫比乌斯带的结构特点,它被用作研究曲面的基本模型,以研究不同形状和拓扑性质的曲面之间的关系。
此外,莫比乌斯带还被用于解决一些拓扑学的难题,如杂乱线和全息图的展示。
在物理学领域,莫比乌斯带也有广泛的应用。
它在拓扑绝缘体和量子计算等领域中是一个重要的研究对象。
莫比乌斯带的非定向性使得电子在其上运动时具有特殊的性质,这些性质被应用于设计和制造新型的电子元件和量子通信设备。
除了在学术研究中的应用外,莫比乌斯带还在艺术和设计领域中得到了广泛的应用。
神奇的莫比乌斯带课件
笔
用于在纸条上做标记,有助于 更准确地粘贴纸条。
制作莫比乌斯带的步骤详解
1. 准备一张长纸条,长度可以根据个人 喜好来确定,但建议至少20厘米以上。
5. 现在,你已经成功制作了一个莫比乌 斯带。
4. 确保纸条的两端粘贴牢固,不会松动 。
2. 将纸条的一端扭转180度,与另一端 对齐。
3. 在纸条的两端涂抹胶水或贴上双面胶 ,然后将两端紧密粘贴在一起,形成一 个闭环。
THANK YOU
05
莫比乌斯带的拓展知 识
莫比乌斯带在数学中的拓展
拓扑学领域
莫比乌斯带是拓扑学中的一个重要概念,它揭示了二维空 间中一些独特的性质,如单侧性和无边界性,对拓扑学的 研究产生了深远影响。
几何学应用
莫比乌斯带的概念也被应用于几何学领域,通过对其性质 和结构的深入研究,几何学家们发现了一些有趣的几何现 象和性质。
神奇的莫比乌斯带课件
汇报人: 日期:
目录
• 莫比乌斯带的介绍 • 莫比乌斯带的神奇性质 • 莫比乌斯带在生活中的应用 • 制作莫比乌斯带的方法 • 莫比乌斯带的拓展知识
01
莫比乌斯带的介绍
莫比乌斯带的定义
拓扑学概念
莫比乌斯带是一种只有一个面和一个边界的拓扑学结构,由德国数学家莫比乌 斯在19世纪发现。
只有一个边界的特性
连续的边界
莫比乌斯带的边界是连续的,没有起点和终点之分。沿着边界可以一直走下去,最终回到起点。
无内外边界之分
由于莫比乌斯带只有一个面,因此它也没有内外边界之分。这一特性使得莫比乌斯带在拓扑变换中具有独特的性 质。
连续性的特性
连续的扭曲:莫比乌斯带的形成是通过将一条纸条扭转180度后首尾相连 得到的。在这个过程中,纸条的扭曲是连续的,没有中断。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
神奇的莫比乌斯带
活动目标:
1、让学生认识“莫比乌斯带”,学会将长方形纸条制成莫比乌斯带。
2、引导学生通过思考操作发现并验证“莫比乌斯带”的特征,培养学生大胆猜测、勇于探究的求索精神。
3、在莫比乌斯带魔术般的变化中感受数学的无穷魅力,拓展数学视野,进一步激发学生学习数学的兴趣,培养学生良好的数学情感。
活动准备:学生:准备剪刀,双面胶、彩笔长方形纸条
教师:为学生准备三张长方形彩纸(第二张中间带不同的颜色)
教学过程:
活动一:听一听古代故事:
师:给同学们讲一个故事想听吗?
从前有一个小偷,偷了一位很老实的农民的东西,并被当场抓获,人们将小偷送到县衙,县官发现小偷正是自己的儿子。
于是他在一张纸条的正面写上:小偷应当放掉,在纸的反面写上:农民应当关押。
县官将纸条交给执行官,由他去办理。
问:他这样做合理吗?执行官他要秉公办事,但又不能更改县太爷的命令。
聪明的执行官想了一个巧妙的办法,救下了农民,关押了小偷。
同学们想知道他用了一个什么巧妙的办法吗?学完这节课之后,我们就能知道了。
出示课题。
这节课我们就一起来学习、探究《神奇的莫比乌斯带》。
(课件显示)那么看了这个课题你们有什么想法吗?
师问1:莫比乌斯带是什么样子的?
师问2:莫比乌斯带有什么神奇的地方?
师问3:莫比乌斯带在生活中有哪些应用?
师:同学们想知道的还真不少,要想知道这些问题还得从这张小小的纸条说起.
活动二:做一做,认识莫比乌斯带
1.每个同学拿出一根长方形纸条。
看,这是根普通的纸条,但也是一根神奇的纸条呢。
先说说它有几条边,几个面?(说:四条边两个面)
2.同学们能将它两头对接起来吗?
3.小组活动。
同学们拿出①号纸条试着做一做。
4.小组同学上台汇报。
师:说说你是怎样对接的?
这样接起来纸条就成了一个环(圈)。
是这样接的同学把作品举起来。
摸一摸看一看,现在它有几条边,几个面?
师投影:两条边两个面像这样有两条边两个面的纸环我们把它叫(双侧曲面)师:说到这,同学们可能会觉得,这也没什么神奇的呀!是呀,这点小把戏,地球人都知道.奇妙的是我还能把它变成一个面,一条边.(停顿,环视学生).
看,我变出来了是这样的.(学生看师做)
(做纸圈)师:这是怎么做出来的?你们能做吗?大家看看老师怎么做?
师:好请看,先把它做成一个普通的纸圈,然后将一段翻转180度,再把它粘好.(学生跟着一起做)
现在同学们请拿出2号纸条出来开始做,同学之间可以互相帮助.这位同学做出来了,说说你是怎么做出来的?
师:刚才我说它只有一个面,(那么它是不是一个面呢?)我们一起来动手验证一下,用笔在纸圈中间画一条线,笔尖不离开纸面一直画一圈,你会有什么发现?
生:又回来了
师:说明了什么?
生:它只有一个面.
师:我们用手指沿着纸圈的边走一圈,你又发现了什么?(同学们真的很会观察发现)师:你们知道这样的一个纸圈叫什么名字吗?(板书显示课题:神奇的莫比乌斯带)它是德国数学家莫比乌斯在1858年在偶然间发现的,所以就以他的名字命名叫“莫比乌斯带”,也有人叫它“莫比乌斯圈”,还有人管他叫“怪圈”。
三、研究莫比乌斯带
莫比乌斯带到底有多神奇呢?下面我们就用“剪”的办法来研究。
(老师动手剪,学生观察验证。
)老师先拿出平常的纸圈,
问:现在老师拿出一号纸条出来剪,如果沿着纸带的中间剪下去,会变成什么样呢?请同学们认真观察老师是怎么剪的?(变成2个分开的纸圈)
(一)1/2剪莫比乌斯带
1、请同学们自己动手验证一下
2、现在,老师拿出莫比乌斯带,我们也用剪刀沿中线剪开这个莫比乌斯纸圈,同学们猜一猜会变成什么样子?同学们,让我们来猜一猜(启发学生想象力)
生1:它会变成两个圈。
生2:...........
师:要想知道它到底会变成什么样子的,我们该怎样做?
生:剪剪看。
师:为了不把它剪断,先看老师是怎样开始剪的?(强调怎样剪)注意安全。
师:剪完的同学举起来给大家看一看,太不可思议了!怎么会变成这个样子呢?
生:(因为莫比乌斯带是扭了180度才粘在一起的,所以剪开后好像伸开了一样,是一个连着的大圈)。
汇报(真的是两个圈,并且还套在一起)。
师:学到了这里,你对莫比乌斯带有了怎样的感觉呢?
生:太神奇了
师:你们说神奇吗?大家还想不想继续研究?
(二)1/3剪莫比乌斯带(师剪,学生不用操作)
师:莫比乌斯带的神奇还远远不止这些,让我们继续体会。
请拿出3号纸条,把它做成莫比乌斯带。
师:这个莫比乌斯带的面被平均分成三等分,我们可以沿着任意一条直线剪下去,会有怎样的结果呢?(猜剪汇报)
生:一个大圈套着一个小圈。
师:下面有情一个同学上台剪。
师:大家看看现在是怎样的结果呢?
师:(你来说)
生:中间涂色的部分变成了这个小圈,两边沿涂色的部分,剪完后连在一起,变成了这个大圈。
师:你们赞成他的说法吗?你们可真会探索、发现。
刚才我们研究了莫比乌斯带的?和1∕3 线剪开后的情况,感受到了莫比乌斯的神奇。
现在我们回到开课的那个故事,哪位同学能根据“莫比乌斯带”的特点帮那个执事官秉公办事,但又不能更改县太爷的命令,想办法,救下了农民,关押了小偷。
(投影)聪明的执事官将纸条扭了个弯,用手指将两端捏在一起。
然后向大家宣布:根据县太爷的命令放掉农民,关押小偷。
县官听了大怒,责问执事官。
执事官将纸条捏在手上给县官看,从“应当”二字读起,确实没错。
仔细观看字迹,也没有涂改,县官不知其中奥秘,只好自认倒霉。
现实可能根本不会发生这样的故事,但是这两个故事却很好地反映出“莫比乌斯带”的特点。
四、生活中应用
师:莫比乌斯还有很多神奇的地方,大家想对它有更多的了解吗?
他不仅好玩有趣,而且还被应用到生活的方方面面。
请欣赏图片(课件展示)
1、过山车:有些过山车的跑道采用的就是莫比乌斯原理。
(投影)
3、三叶扭结:中国科技馆的标志性的物体,是由莫比乌斯带演变而成的。
(投影)师:请看这是中国科技馆的大厅里耸立着一个巨型的三叶纽结.这个三叶纽结就是莫比乌斯带的原理设计的.它每天不停地旋转着美妙的曲线,带给我们美的享受,让我们享受着数学的神奇,带给我们无限的遐想;
师:莫比乌斯带不但很神奇,它在生活中还有许多用处呢?有些机器上的传动带就做成莫比乌斯带形状的,这样就不会只磨损一个面,使传动带的寿命提高了一倍.
五、课堂拓展
同学们通过今天这节课的学习,是不是觉得莫比乌斯带充满了奥秘呢?有的问题老师也不怎么清楚。
我告诉大家,数学中有一门专门研究莫比乌斯带的书叫《拓扑学》(板书)。
课后,有兴趣的同学可以和老师一起去研究研究,好吗?。