2020届数学(文)高考二轮专题复习与测试:第二部分 专题六第2讲 基本初等函数、函数与方程
2020高考数学(文科)二轮专题辅导与训练课件:基本初等函数、函数与方程

• [考向分析]
• 基本初等函数作为高考的命题热点, 多单独或与不等式综合考查,常以选择 题、填空题的形式出现.有时难度较大, 函数的应用问题集中体现在函数零点个 数的判断,零点所在区间等方面.近几 年全国卷考查较少,要引起重视.
重难考点·精析精研
考点一 基本初等函数的图象与性质 指数函数与对数函数的图象与性质
当 x<0 时,y>1 数 值 a>1,
当 x>0 时,y>1;
当 x>1 时,y<0; 当 0<x<1 时,y>0 a>1, 当 x>1 时,y>0;
当 x<0 时,0<y<1
当 0<x<1 时,y<0
[例 1] (1)根据有关资料,围棋状态空间复杂度的上 限 M 约为 3361,而可观测宇宙中普通物质的原子总数 N
g(x)的最大值为-a42+a22=a42, 由图象可知,若 f(x)=ax 恰有 2 个互异的实数根, 则 a<a42<2a,得 4<a<8.
• [答案] (1)C (2)(4,8)
• ●方法指津
• 利用函数零点的情况求参数值(或范围) 的三种方法
[跟踪训练]
2 . (1)(2019·宿 州 二 模 ) 已 知 函 数 f(x) =
∴y=400-20x.∴y=f(x)=84000x,-02≤0x,x≤4<4,x≤20.
由 y≥240,得08≤0xx≥≤244,0 或44<00x-≤2200x,≥240. 解得 3≤x≤4 或 4<x≤8,∴3≤x≤8. 故第二次服药最迟应在当日下午 4:00.故选 C.
• [答案] C
• ●方法指津
于是函数 y=a1x的图象过定点(0,1),在 R 上单调递增,
2020高考数学《专题06 第二章 复习与检测》(解析版)

专题六 第二章 复习与检测 核心素养练习一、核心素养聚焦考点一 数学运算-解一元二次不等式例题7、解不等式x 2-5x +6>0; 【答案】{x |x >3,或x <2}【解析】方程x 2-5x +6=0有两个不等实数根x 1=2,x 2=3,又因为函数y =x 2-5x +6的图象是开口向上的抛物线,且抛物线与x 轴有两个交点,分别为(2,0)和(3,0),其图象如图(1).根据图象可得不等式的解集为{x |x >3,或x <2}. 考点二----- 数学建模-基本不等式的应用例题8.某种汽车,购车费用是10万元,每年使用保险费、养路费、汽油费约为0.9万元,年维修费第一年是0.2万元,以后逐年递增0.2万元,问这种汽车使用多少年时,它的年平均费用最少?【解析】设使用x 年平均费用最少.由条件知,汽车每年维修费用构成以0.2万元为首项,0.2万元为公差的等差数列.因此,汽车使用x 年总的维修费用为0.2+0.2x2x 万元.设汽车的年平均费用为y 万元,则有y =10+0.9x +0.2+0.2x2xx =10+x +0.1x 2x =1+10x +x10≥1+210x ·x10=3. 当且仅当10x =x10,即x =10时,y 取最小值.即这种汽车使用10年时,年平均费用最少.二、学业质量测评一、选择题1.(2018·全国高一专题练习(理))若0a b <<,则下列不等式错误的是( ) A .11a b> B .11a b a>- C .a b >D .22a b >【答案】B【解析】∵0a b <<,∴11a b>,故A 对; ∵0a b <<,∴0b <-,0a a b <-<,∴11a a b>-,故B 错; ∵0a b <<,∴0a b ->->,即||||a b ->-,∴||||a b >,故C 对; ∵0a b <<,∴0a b ->->,∴22()()a b ->-,即22a b >,故D 对; 故选B .2.(2019·全国高一课时练习)不等式()20x x ->的解集( ) A.{}0x x B. {|2}x x < C. {20}x x x <或 D.{|02}x x <<【答案】D【解析】()20x x ->,如果展开,其二次项系数为负,对应抛物线开口向下,大于0解集为“两根之间”,故解集为{|02}x x <<,所以正确选项为D 。
2020届高考数学(理)课标版二轮课件:重难考点专题六第2讲 基本初等函数、函数与方程

3.(2019课标全国Ⅱ,14,5分)已知f(x)是奇函数,且当x<0时, f(x)=-eax.若f(ln 2)=8,
则a=
.
答案 -3
解析 由x>0可得-x<0, 由f(x)是奇函数可知f(-x)=-f(x), ∴x>0时, f(x)=-f(-x)=-[-ea(-x)]=e-ax,则f(ln 2)=e-aln 2=8, ∴-aln 2=ln 8=3ln 2,∴a=-3.
g(x)=f(x)+x+a存在2个零点等价于函数f(x)=
e
x
,x
0,
与h(x)=-x-a的图象存在2
ln x,x 0
个交点,如图,
当x=0时,h(0)=-a,由图可知要满足y=f(x)与y=h(x)的图象存在2个交点,需要-a ≤1,即a≥-1.故选C.
2.(2017课标全国Ⅲ,11,5分)已知函数f(x)=x2-2x+a(ex-1+e-x+1)有唯一零点,则a=( C )
9
9
总结提升 判断函数零点个数的3种方法
1.(2019河南郑州联考)已知实数a,b满足2a=3,3b=2,则函数f(x)=ax+x-b的零点所 在的区间是 ( B ) A.(-2,-1) B.(-1,0) C.(0,1) D.(1,2)
答案 B 由2a=3,3b=2,得a=log23,b=log32,ab=1, f(-1)=a-1-1-b=-1<0, f(0)=1-b=1 -log32>0,所以零点所在区间为(-1,0).
lg
2.
考点二 函数的零点
命题角度一 判断零点个数或存在区间
2020版高三新课标大二轮专题辅导与增分攻略数学(文)高考真题体验:3-6-2 基本初等函数、函数与方程

1.(2019·天津卷)已知a=log52,b=log0.50.2,c=0.50.2,则a,b,c的大小关系为( ) A.aC.b
[解析] 因为a=log52log0.50.5=1,c
=0.50.2=12 15 >12,0.50.2<1,所以a[答案] A 2.(2019·浙江卷)在同一直角坐标系中,函数y=1ax,y=loga
x+
1
2
(a>0,且a≠1)的图象可能是( ) [解析] 对于函数y=logax+12,当y=0时,有x+12=1,得x
=12,即y=logax+12的图象恒过定点12,0,排除选项A、C;函数y=1ax与y=logax+12在各自定义域上单调性相反,排除选项B,故选D. [答案] D
3.(2018·全国卷Ⅰ)已知函数f(x)= ex,x≤0,lnx,x>0,g(x)=f(x)+x+a.若g(x)存在2个零点,则a的取值范围是( ) A.[-1,0) B.[0,+∞) C.[-1,+∞) D.[1,+∞) [解析] g(x)=f(x)+x+a存在2个零点等价于函数f(x)=
ex,x≤0,lnx,x>0与h(x)=-x-a的图象存在2个交点,如图,
当x=0时,h(0)=-a,由图可知要满足y=f(x)与y=h(x)的图象存在2个交点,需要-a≤1,即a≥-1.故选C. [答案] C 4.(2019·全国卷Ⅱ)已知f(x)是奇函数,且当x<0时,f(x)=-eax.若f(ln2)=8,则a=________. [解析] 解法一:由x>0可得-x<0,由f(x)是奇函数可知f(-x)=-f(x), ∴x>0时,f(x)=-f(-x)=-[-ea(-x)]=e-ax, 则f(ln2)=e-aln2=8, ∴-aln2=ln8=3ln2,∴a=-3. 解法二:由f(x)是奇函数可知f(-x)=-f(x),
高考总复习二轮数学精品课件 专题1 函数与导数 第2讲 基本初等函数、函数的应用

3.函数的零点问题
(1)函数F(x)=f(x)-g(x)的零点就是方程f(x)=g(x)的根,即函数y=f(x)的图象与
函数y=g(x)的图象交点的横坐标.
(2)确定函数零点的常用方法:①直接解方程法;②利用零点存在性定理;③
数形结合,利用两个函数图象的交点求解.
温馨提示函数的零点是一个实数,而不是几何图形.
质与相关函数的性质之间的关系进行判断.
对点练2
9 0.1
(1)(2023·广东湛江一模)已知 a=(11) ,b=log910,c=lg
A.b>c>a
B.c>b>a
C.b>a>c
D.c>a>b
11,则( A )
解析 根据指数函数和对数函数的性质,
可得
9 0.1
9 0
a=(11) < 11 =1,b=log910>log99=1,c=lg
1 1
B. - 2 , 2
1
C. 0, 2
1
1
D. - 2 ,0 ∪ 0, 2
(3)换底公式:logaN= log (a,b>0,且 a,b≠1,N>0).
(4)对数值符号规律:已知a>0,且a≠1,b>0,则logab>0⇔(a-1)(b-1)>0,
logab<0⇔(a-1)(b-1)<0.
1
温馨提示对数的倒数法则:logab= log
(a,b>0,且a,b≠1).
11>lg 10=1,
又由 2=lg 100>lg 99=lg 9+lg 11>2 lg9 × lg11,所以 1>lg
2020高考数学(文科)二轮专题精讲《基本初等函数、函数与方程》

课时跟踪检测(二) 基本初等函数、函数与方程一、选择题1.函数f (x )=ln x -2x 2的零点所在的区间为( ) A .(0,1) B .(1,2) C .(2,3)D .(3,4)解析:选B 易知f (x )=ln x -2x 2的定义域为(0,+∞),且在定义域上单调递增.∵f (1)=-2<0,f (2)=ln 2-12>0,∴f (1)·f (2)<0,∴根据零点存在性定理知,f (x )=ln x -2x 2的零点所在的区间为(1,2).故选B.2.(2019·成都模拟)已知a =log 2e ,b =ln 2,c =log 1213,则a ,b ,c 的大小关系为( )A .a >b >cB .b >a >cC .c >b >aD .c >a >b解析:选D 由已知得,c =log 23>log 2e =a >1,b =ln 2<1,∴c >a >b ,故选D.3.定义一种运算:g ⊗h =⎩⎨⎧g (g ≥h ),h (g <h ),已知函数f (x )=2x ⊗1,那么函数f (x -1)的大致图象是( )解析:选B 由定义知,当x ≥0时,2x ≥1,∴f (x )=2x ,当x <0时,2x <1,∴f (x )=1,∴f (x )=⎩⎨⎧2x ,x ≥0,1,x <0,其图象易作出,f (x -1)的图象可由f (x )的图象向右平移1个单位长度得到,故选B.4.(2019·南宁模拟)若函数f (x )与g (x )的图象关于直线y =x 对称,函数f (x )=⎝ ⎛⎭⎪⎫12-x ,则f (2)+g (4)=( ) A .3 B .4 C .5D .6解析:选D 解法一:∵函数f (x )与g (x )的图象关于直线y =x 对称,又f (x )=⎝ ⎛⎭⎪⎫12-x=2x ,∴g (x )=log 2x ,∴f (2)+g (4)=22+log 24=6. 解法二:∵f (x )=⎝ ⎛⎭⎪⎫12-x ,∴f (2)=4,即函数f (x )的图象经过点(2,4),∵函数f (x )与g (x )的图象关于直线y =x 对称,∴函数g (x )的图象经过点(4,2),∴f (2)+g (4)=4+2=6.5.函数f (x )=⎩⎨⎧2e x -1,x <2,log 3(x 2-1),x ≥2,则不等式f (x )>2的解集为( ) A .(-2,4)B .(-4,-2)∪(-1,2)C .(1,2)∪(10,+∞)D .(10,+∞)解析:选C 令2e x -1>2(x <2),解得1<x <2; 令log 3(x 2-1)>2(x ≥2),解得x >10.故不等式f (x )>2的解集为(1,2)∪(10,+∞). 6.函数f (x )=x 2lg x -2x +2的图象( )A .关于x 轴对称B .关于原点对称C .关于直线y =x 对称D .关于y 轴对称解析:选B 因为f (x )=x 2lgx -2x +2,所以其定义域为(-∞,-2)∪(2,+∞),因为f (-x )=x 2lg x +2x -2=-x 2lg x -2x +2=-f (x ),所以函数为奇函数,所以函数的图象关于原点对称.7.若函数y=log a x(a>0,且a≠1)的图象如图所示,则下列函数与其图象相符的是()解析:选B由函数y=log a x(a>0,且a≠1)的图象可知,a=3,所以y=3-x,y=(-x)3=-x3及y=log3(-x)均为减函数,只有y=x3是增函数,故选B.8.已知定义在R上的函数f(x)=2|x-m|-1为偶函数,记a=f(log0.53),b=f(log25),c=f(2m),则()A.a<b<c B.a<c<bC.c<a<b D.c<b<a解析:选C函数f(x)=2|x-m|-1为偶函数,则m=0,则f(x)=2|x|-1,a=f(log0.53)=2log23-1=2,b=f(log25)=2 log25-1=4,c=f(0)=20-1=0,故c<a<b,故选C.9.李华经营了甲、乙两家电动轿车销售连锁店,其月利润(单位:元)分别为L甲=-5x2+900x-16 000,L乙=300x-2 000(其中x为销售辆数),若某月两连锁店共销售了110辆,则能获得的最大利润为()A.11 000元B.22 000元C.33 000元D.40 000元解析:选C设甲连锁店销售x辆,则乙连锁店销售(110-x)辆,故利润L =-5x2+900x-16 000+300(110-x)-2 000=-5x2+600x+15 000=-5(x-60)2+33 000,∴当x=60时,有最大利润33 000元.10.(2019·安庆模拟)定义在R上的函数f(x),满足f(x)=⎩⎨⎧x 2+2,x ∈[0,1),2-x 2,x ∈[-1,0),且f (x +1)=f (x -1),若g (x )=3-log 2x ,则函数F (x )=f (x )-g (x )在(0,+∞)内的零点有( )A .3个B .2个C .1个D .0个解析:选B 由f (x +1)=f (x -1)得f (x )的周期为2,在同一平面直角坐标系中作出函数y =f (x ),y =g (x )的图象,由图可知有两个交点,即函数F (x )=f (x )-g (x )在(0,+∞)内的零点有2个,所以选B.11.(2019·保定模拟)定义在R 上的偶函数f (x )满足f (x +1)=-f (x ),当x ∈[0,1]时,f (x )=-2x +1,设函数g (x )=⎝ ⎛⎭⎪⎫12|x -1|(-1<x <3),则函数f (x )与g (x )的图象所有交点的横坐标之和为( )A .2B .4C .6D .8解析:选B 因为f (x +1)=-f (x ),所以f (x +1+1)=-f (x +1)=f (x ),所以f (x )的周期为2.又f (x )为偶函数,所以f (1-x )=f (x -1)=f (x +1),故f (x )的图象关于直线x =1对称.函数g (x )=⎝ ⎛⎭⎪⎫12|x -1|的图象关于直线x =1对称,在同一坐标系内作出f (x )与g (x )在(-1,3)上的图象,如图,由图可知四个交点的横坐标关于x =1对称,其和为2×2=4,故选B.12.已知函数f (x )=⎩⎪⎨⎪⎧13x +1,x ≤1,ln x ,x >1,若方程f (x )-ax =0恰有两个不同的实根,则实数a 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,13 B.⎣⎢⎡⎭⎪⎫13,1eC.⎝ ⎛⎦⎥⎤1e ,43 D .(-∞,0]∪⎣⎢⎡⎭⎪⎫43,+∞解析:选B 方程f (x )-ax =0有两个不同的实根,即直线y =ax 与函数f (x )的图象有两个不同的交点.作出函数f (x )的图象如图所示.当x >1时,由f (x )=ln x ,得f ′(x )=1x ,设直线y =kx 与函数f (x )=ln x (x >1)的图象相切, 切点为(x 0,y 0),则y 0x 0=ln x 0x 0=1x 0,解得x 0=e>1,则k =1e ,即y =1e x 是函数f (x )=ln x (x >1)的图象的切线.当a ≤0时,直线y =ax 与函数f (x )的图象有一个交点,不合题意; 当0<a <13时,直线y =ax 与函数f (x )=ln x (x >1)的图象有两个交点,但与射线y =13x +1(x ≤1)也有一个交点,共有三个交点,不合题意;当a ≥1e 时,直线y =ax 与函数f (x )的图象至多有一个交点,不合题意; 只有当13≤a <1e 时,直线y =ax 与函数f (x )的图象有两个交点,符合题意.故选B.二、填空题13.有四个函数:①y =x 12;②y =21-x ;③y =ln(x +1);④y =|1-x |.其中在区间(0,1)内单调递减的函数的序号是________. 解析:分析题意可知①③显然不满足题意,画出②④中的函数图象(图略),易知②④中的函数满足在(0,1)内单调递减.答案:②④14.已知定义在(0,+∞)上的函数f (x )=⎩⎨⎧-2,0<x <1,1,x ≥1,则不等式log 2x -[log 14(4x )-1]·f (log 3x +1)≤5的解集为________.解析:原不等式等价于⎩⎪⎨⎪⎧log 3x +1≥1,log 2x -[log 14(4x )-1]≤5或⎩⎪⎨⎪⎧0<log 3x +1<1,log 2x +2[log 14(4x )-1]≤5,解得1≤x ≤4或13<x <1, 所以原不等式的解集为⎝ ⎛⎦⎥⎤13,4.答案:⎝ ⎛⎦⎥⎤13,415.若函数f (x )=⎩⎨⎧2x -a ,x ≤0,ln x ,x >0有两个不同的零点,则实数a 的取值范围是________.解析:当x >0时,由f (x )=ln x =0,得x =1.因为函数f (x )有两个不同的零点,所以当x ≤0时,函数f (x )=2x -a 有一个零点,令f (x )=0,得a =2x ,因为2x 单调递增且0<2x ≤20=1,所以0<a ≤1.答案:(0,1]16.某食品的保鲜时间t (单位:小时)与储藏温度x (单位:℃)满足函数关系式t =⎩⎨⎧64,x ≤0,2kx +6,x >0,且该食品在4 ℃时的保鲜时间是16小时,已知甲在某日10时购买了该食品,并将其遗放在室外,且此日的室外温度随时间变化如图所示.给出以下四个结论:①该食品在6 ℃的保鲜时间是8小时;②当x ∈[-6,6]时,该食品的保鲜时间t 随着x 的增大而逐渐减少; ③到了此日13时,甲所购买的食品还在保鲜时间内; ④到了此日14时,甲所购买的食品已过了保鲜时间. 其中,所有正确结论的序号是________.解析:∵某食品的保鲜时间t (单位:小时)与储藏温度x (单位:℃)满足函数关系式t =⎩⎨⎧64,x ≤0,2kx +6,x >0,且该食品在4 ℃时的保鲜时间是16小时,∴24k +6=16,即4k +6=4,解得k =-12,∴t =⎩⎨⎧64,x ≤0,2-12x +6,x >0.①当x =6时,t =8,故①正确;②当x ∈[-6,0]时,保鲜时间恒为64小时,当x ∈(0,6]时,该食品的保鲜时间t 随着x 的增大而逐渐减少,故②错误;③此日10时,温度为8 ℃,此时保鲜时间为4小时,而随着时间的推移,到11时,温度为11 ℃,此时的保鲜时间t =2-12×11+6=2≈1.414(小时),到13时,甲所购买的食品不在保鲜时间内,故③错误;由③可知,到了此日14时,甲所购买的食品已过了保鲜时间,故④正确. 答案:①④。
2020高考数学精讲二轮第二讲 基本初等函数、函数与方程及函数的应用
2020高考数学复习:第二讲 基本初等函数、函数与方程及函数的应用考点一 指数函数、对数函数及幂函数1.指数与对数式的运算公式2.指数函数、对数函数的图象和性质指数函数y =a x (a >0,a ≠1)与对数函数y =log a x (a >0,a ≠1)的图象和性质,分0<a <1,a >1两种情况:当a >1时,两函数在定义域内都为增函数,当0<a <1时,两函数在定义域内都为减函数.[对点训练]1.(2018·河南洛阳二模)已知点⎝ ⎛⎭⎪⎫a ,12在幂函数f (x )=(a -1)x b 的图象上,则函数f (x )是( )A .奇函数B .偶函数C .定义域内的减函数D .定义域内的增函数[解析] ∵点⎝ ⎛⎭⎪⎫a ,12在幂函数f (x )=(a -1)x b 的图象上,∴a -1=1,解得a=2,则2b =12,∴b =-1,∴f (x )=x -1,∴函数f (x )是定义域(-∞,0)∪(0,+∞)上的奇函数,且在每一个区间内是减函数,故选A.[答案] A2.(2018·天津卷)已知a =log 2e ,b =ln2,c =log 1213,则a ,b ,c 的大小关系为( )A .a >b >cB .b >a >cC .c >b >aD .c >a >b[解析] 由已知得c =log 23,∵log 23>log 2e>1,b =ln2<1,∴c >a >b ,故选D.[答案] D3.(2018·山东潍坊一模)若函数f (x )=a x -a -x (a >0且a ≠1)在R 上为减函数,则函数y =log a (|x |-1)的图象可以是( )[解析] 因函数f (x )=a x -a -x (a >0且a ≠1)在R 上为减函数,故0<a <1. 易知函数y =log a (|x |-1)是偶函数,定义域为{x |x >1或x <-1},x >1时函数y =log a (|x |-1)的图象可以通过函数y =log a x 的图象向右平移1个单位得到,故选D.[答案] D4.(2018·江西九江七校联考)若函数f (x )=log 2(x 2-ax -3a )在区间(-∞,-2]上是减函数,则实数a 的取值范围是________.[解析] 由题意得x 2-ax -3a >0在区间(-∞,-2]上恒成立且函数y =x 2-ax -3a 在(-∞,-2]上递减,则a2≥-2且(-2)2-(-2)a -3a >0,解得实数a 的取值范围是[-4,4).[答案][-4,4)[快速审题]看到指数式、对数式,想到指数、对数的运算性质;看到指数函数、对数函数、幂函数,想到它们的图象和性质.基本初等函数的图象与性质的应用技巧(1)对数函数与指数函数的单调性都取决于其底数的取值,当底数a的值不确定时,要注意分a>1和0<a<1两种情况讨论:当a>1时,两函数在定义域内都为增函数;当0<a<1时,两函数在定义域内都为减函数.(2)由指数函数、对数函数与其他函数复合而成的函数,其性质的研究往往通过换元法转化为两个基本初等函数的有关性质,然后根据复合函数的性质与相关函数的性质之间的关系进行判断.(3)对于幂函数y=xα的性质要注意α>0和α<0两种情况的不同.考点二函数的零点1.函数的零点及其与方程根的关系对于函数f(x),使f(x)=0的实数x叫做函数f(x)的零点.函数F(x)=f(x)-g(x)的零点就是方程f(x)=g(x)的根,即函数y=f(x)的图象与函数y=g(x)的图象交点的横坐标.2.零点存在性定理如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)<0,那么函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根.角[解析]当x≤0时,由f (x )=0,即x 2+2017x -2018=0, 得(x -1)(x +2018)=0, 解得x =1(舍去)或x =-2018;当x >0时,设g (x )=x -2,h (x )=ln x ,如图,分别作出两个函数的图象, 由图可知,两函数图象有两个交点,所以函数f (x )在x >0时有两个零点. 综上,函数f (x )有3个零点,故选C. [答案] C[快速审题] 看到函数的零点,想到求方程的根或转化为函数图象的交点.[解析] 在平面直角坐标系中作出函数y =f (x )的图象,如图,而函数y =mx -12恒过定点⎝ ⎛⎭⎪⎫0,-12,设过点⎝ ⎛⎭⎪⎫0,-12与函数y =ln x 的图象相切的直线为l 1,切点坐标为(x 0,ln x 0).因为y =ln x 的导函数y ′=1x ,所以图中y =ln x 的切线l 1的斜率为k =1x 0,则1x 0=ln x 0+12x 0-0,解得x 0=e ,所以k =1e.又图中l 2的斜率为12,故当方程f (x )=mx -12恰有四个不相等的实数根时,实数m 的取值范围是⎝ ⎛⎭⎪⎫12,e e .[答案] ⎝ ⎛⎭⎪⎫12,e e[探究追问] 将例2中“方程f (x )=mx -12恰有四个不相等的实数根”改为“方程f (x )=m ⎝ ⎛⎭⎪⎫x -54恰有三个不相等的实数根”,结果如何?[解析] 在平面直角坐标系中作出函数y =f (x )的图象,如图.函数y =m ⎝ ⎛⎭⎪⎫x -54恒过定点⎝ ⎛⎭⎪⎫54,0,设过点⎝ ⎛⎭⎪⎫54,0与函数y =1-x 2的图象相切的直线为l 1,设切点坐标为(x 0,1-x 20),因为y =1-x 2(x ≤1)的导函数y ′=-2x 0,所以切线l 1斜率k =-2x 0,则-2x 0=1-x 20x 0-54,解得x 0=12或x 0=2(舍).所以直线l 1的斜率为-1,结合图可知,当方程f (x )=m ⎝ ⎛⎭⎪⎫x -54恰有三个不相等的实根时,实数m 的取值范围是(-1,0).[答案](-1,0)(1)判断函数零点个数的3种方法(2)利用函数零点的情况求参数值(或范围)的3种方法[对点训练]1.[角度1]已知函数f(x)=6x-log2x.在下列区间中,包含f(x)零点的区间是()A.(0,1) B.(1,2)C.(2,4) D.(4,+∞)[解析]易知f(x)是单调递减函数.∵f(1)=6-log21=6>0,f(2)=3-log22=2>0,f(4)=64-log24=32-2<0,∴选项中包含f(x)零点的区间是(2,4).[答案] C[解析]f(x)=k有三个不同的实数根,即函数y=f(x)的图象与函数y=k的图象有三个交点,如图所示.当-1<k<0时,y=f(x)与y=k有三个交点.故-1<k<0.[答案](-1,0)考点三函数的实际应用解决函数实际应用题的关键(1)认真读题,缜密地审题,确切地理解题意,明确问题的实际背景,然后进行科学地抽象概括,将实际问题归纳为相应的数学问题.(2)合理选取参变量,设定变量之后,就要寻找它们之间的内在联系,选用恰当的代数式表示问题中的关系,建立相应的函数模型,最终求解数学模型使实际问题获解.[对点训练]1.在某种新型材料的研制中,实验人员获得了下列一组实验数据,现准备用下列四个函数中的一个近似地表示这些数据的规律,其中最接近的一个是()A.y=2x-2 B.y=12(x2-1)C.y=log2x D.y=log12x[解析]由题中表可知函数在(0,+∞)上是增函数,且y的变化随x的增大而增大的越来越快,分析选项可知B符合,故选B.[答案] B2.(2018·西安四校联考)某大型民企为激励创新,计划逐年加大研发资金投入.若该民企2018年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该民企全年投入的研发资金开始超过200万元的年份是(参考数据:lg1.12≈0.05,lg1.3≈0.11,lg2≈0.30)()A.2019年B.2020年C.2021年D.2022年[解析]设从2018年起,过了n(n∈N*)年该民企全年投入的研发资金超过200万元,则130×(1+12%)n ≥200,则n ≥lg 2013lg1.12≈0.30-0.110.05=3.8,由题意取n =4,则n +2018=2022,故选D.[答案] D3.如图,某小区有一边长为2的正方形地块OABC ,其中阴影部分是一个游泳池,计划在地块OABC 内修一条与池边AE 相切的直路l (宽度不计),切点为M ,并把该地块分为两部分.现以点O 为坐标原点,以线段OC 所在直线为x 轴,建立如图所示的平面直角坐标系,若池边AE 为函数y =-x 2+2(0≤x ≤2)的图象,且点M 到边OA 的距离为t ⎝ ⎛⎭⎪⎫23≤t ≤43,则地块OABC 在直路l 不含泳池那侧的面积的最大 值为________.[解析] M (t ,-t 2+2),过切点M 的切线l :y -(-t 2+2)=-2t (x -t ),即y =-2tx +t 2+2,令y =2得x =t 2,故切线l 与AB 交于点⎝ ⎛⎭⎪⎫t 2,2;令y =0,得x=t 2+1t ,故切线l 与OC 交于点⎝ ⎛⎭⎪⎫t 2+1t ,0,又x =t 2+1t 在⎣⎢⎡⎦⎥⎤23,43上单调递减,所以x =t 2+1t ∈⎣⎢⎡⎦⎥⎤1712,116,所以地块OABC 在切线l 右上部分区域为直角梯形,面积S=12⎝ ⎛⎭⎪⎫2-t 2-1t +2-t 2×2=4-t -1t =4-⎝ ⎛⎭⎪⎫t +1t ≤2,当且仅当t =1时等号成立,故地块OABC 在直路l 不含泳池那侧的面积的最大值为2.[答案] 2[快速审题] 看到实际应用题,想到函数模型.应用函数模型解决实际问题的一般程序[解析][答案] A2.(2018·全国卷Ⅰ)已知函数f (x )=⎩⎨⎧e x,x ≤0,ln x ,x >0,g (x )=f (x )+x +a .若g (x )存在2个零点,则a 的取值范围是( )A .[-1,0)B .[0,+∞)C .[-1,+∞)D .[1,+∞)[解析] g (x )=f (x )+x +a 存在2个零点等价于函数f (x )=⎩⎨⎧e x,x ≤0,ln x ,x >0与h (x )=-x -a 的图象存在2个交点,如图,当x =0时,h (0)=-a ,由图可知要满足y =f (x )与y =h (x )的图象存在2个交点,需要-a ≤1,即a ≥-1,故选C.[答案] C3.(2017·北京卷)根据有关资料,围棋状态空间复杂度的上限M 约为3361,而可观测宇宙中普通物质的原子总数N 约为1080,则下列各数中与M N 最接近的是 ( )(参考数据:lg3≈0.48)A .1033B .1053C .1073D .1093 [解析] 因为lg3≈0.48,所以3≈100.48,所以M N =33611080≈(100.48)3611080=100.48×3611080=10173.281080=1093.28≈1093,故选D. [答案] D4.(2018·全国卷Ⅲ)函数f (x )=cos ⎝ ⎛⎭⎪⎫3x +π6在[0,π]的零点个数为________.[解析] 令f (x )=0,得cos ⎝ ⎛⎭⎪⎫3x +π6=0,解得x =k π3+π9(k ∈Z ).当k =0时,x=π9;当k =1时,x =4π9;当k =2时,x =7π9,又x ∈[0,π],所以满足要求的零点有3个.[答案] 35.(2018·天津卷)已知a >0,函数f (x )=⎩⎨⎧x 2+2ax +a ,x ≤0,-x 2+2ax -2a ,x >0.若关于x 的方程f (x )=ax 恰有2个互异的实数解,则a 的取值范围是________.[解析] 设g (x )=f (x )-ax =⎩⎨⎧x 2+ax +a ,x ≤0,-x 2+ax -2a ,x >0,方程f (x )=ax 恰有2个互异的实数解即函数y =g (x )有两个零点,即y =g (x )的图象与x 轴有2个交点,满足条件的y =g (x )的图象有以下两种情况:情况一:则⎩⎨⎧Δ1=a 2-4a >0,Δ2=a 2-8a <0,∴4<a <8. 情况二:则⎩⎨⎧Δ1=a 2-4a <0,Δ2=a 2-8a >0,不等式组无解. 综上,满足条件的a 的取值范围是(4,8). [答案] (4,8)1.基本初等函数作为高考的命题热点,多考查利用函数的性质比较大小,一般出现在第5~11题的位置,有时难度较大.2.函数的应用问题多体现在函数零点与方程根的综合问题上,近几年全国课标卷考查较少,但也要引起重视,题目可能较难.热点课题5 复合函数的零点[感悟体验]1.(2018·山西质量检测)已知f (x )=⎩⎨⎧2x +1,x ≤0,|ln x |,x >0,则方程f [f (x )]=3的根的个数是( )A .3B .4C .5D .6 [解析][答案] C2.(2018·安徽马鞍山一模)已知函数f (x )=⎩⎨⎧3|x -1|,x >0,-x 2-2x +1,x ≤0,若关于x的方程[f (x )]2+(a -1)f (x )-a =0有7个不等的实数根,则实数a 的取值范围是( ) A .[1,2] B .(1,2) C .(-2,-1) D .[-2,-1][解析]函数f (x )={ 3|x -1|,x >0,-x 2-2x +1,x ≤0的图象如图.关于x 的方程[f (x )]2+(a -1)f (x )-a =0有7个不等的实数根,即[f (x )+a ][f (x )-1]=0有7个不等的实数根,易知f (x )=1有3个不等的实数根,∴f (x )=-a必须有4个不相等的实数根,由函数f (x )的图象可知-a ∈(1,2),∴a ∈(-2,-1),故选C.[答案] C专题跟踪训练(十一)一、选择题[解析][答案] C2.(2018·广东揭阳一模)曲线y =⎝ ⎛⎭⎪⎫13x与y =x12 的交点横坐标所在区间为( )A.⎝ ⎛⎭⎪⎫0,13 B.⎝ ⎛⎭⎪⎫13,12 C.⎝ ⎛⎭⎪⎫12,23 D.⎝ ⎛⎭⎪⎫23,1 [解析]根据零点存在性定理可得函数零点所在区间为⎝ ⎛⎭⎪⎫13,12,即所求交点横坐标所在区间为⎝ ⎛⎭⎪⎫13,12,故选B.[答案] B3.(2018·孝感一模)若函数f (x )=(m -2)x 2+mx +(2m +1)的两个零点分别在区间(-1,0)和区间(1,2)内,则实数m 的取值范围是( )A.⎝ ⎛⎭⎪⎫-12,14 B.⎝ ⎛⎭⎪⎫-14,12 C.⎝ ⎛⎭⎪⎫14,12 D.⎣⎢⎡⎦⎥⎤-14,12 [解析] 依题意并结合函数f (x )的图象可知,[答案] C4.(2018·河南焦作二模)已知函数f (x )=⎩⎨⎧e x,x ≤0,x 2+ax +1,x >0,F (x )=f (x )-x -1,且函数F (x )有2个零点,则实数a 的取值范围为( ) A .(-∞,0] B .[1,+∞) C .(-∞,1)D .(0,+∞)[解析] 当x ≤0时,F (x )=e x -x -1,此时有一个零点0;当x >0时,F (x )=x [x +(a -1)],∵函数F (x )有2个零点,∴1-a >0,∴a <1,故选C. [答案] C5.(2018·湖南十三校二模)函数f (x )=ln x +e x (e 为自然对数的底数)的零点所在的区间是( )A.⎝ ⎛⎭⎪⎫0,1e B.⎝ ⎛⎭⎪⎫1e ,1 C .(1,e) D .(e ,+∞)[解析][答案] A6.(2018·河南郑州模拟)已知函数f (x )=x 2+m 与函数g (x )=-ln 1x -3x ⎝ ⎛⎭⎪⎫x ∈⎣⎢⎡⎦⎥⎤12,2的图象上至少存在一对关于x 轴对称的点,则实数m 的取值范围是( )A.⎣⎢⎡⎦⎥⎤54+ln2,2 B.⎣⎢⎡⎦⎥⎤2-ln2,54+ln2C.⎣⎢⎡⎦⎥⎤54+ln2,2+ln2 D .[2-ln2,2][解析] 由已知,得方程x 2+m =ln 1x +3x ,∴m =-ln x +3x -x 2在⎣⎢⎡⎦⎥⎤12,2上有解.设h (x )=-ln x +3x -x 2,求导,得h ′(x )=-1x +3-2x =-2x 2-3x +1x=-(2x -1)(x -1)x∵12≤x ≤2,令h ′(x )=0,解得x =12或x =1. 当h ′(x )>0时,12<x <1,函数单调递增, 当h ′(x )<0时,1<x <2,函数单调递减, ∴h (x )在x =1处有唯一的极值点. ∵h ⎝ ⎛⎭⎪⎫12=ln2+54,h (2)=-ln2+2,且知h (2)<h ⎝ ⎛⎭⎪⎫12,∴h (x )最大值=h (1)=2,h (x )min =2-ln2.故方程m =-ln x +3x -x 2在⎣⎢⎡⎦⎥⎤12,2上有解等价于2-ln2≤m ≤2.所以m 的取值范围是[2-ln2,2],故选D. [答案] D 二、填空题7.(2018·河北石家庄模拟)若函数f (x )=m +⎝ ⎛⎭⎪⎫13x 的零点是-2,则实数m =________.[解析] 由m +⎝ ⎛⎭⎪⎫13-2=0,得m =-9.[答案] -98.设二次函数f (x )=ax 2+2ax +1在[-3,2]上有最大值4,则实数a 的值为________.[解析] f (x )的对称轴为x =-1.当a >0时,f (2)=4a +4a +1=8a +1,f (-3)=3a +1.∴f (2)>f (-3),即f (x )max =f (2)=8a +1=4,∴a =38;当a <0时,f (x )max =f (-1)=a -2a +1=-a +1=4,∴a =-3.综上所述,a =38或a =-3.[答案] 38或-39.某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未出租的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元,要使租赁公司的月收益最大,则每辆车的月租金应定为________元.[解析] 设每辆车的月租金为x (x >3000)元,则租赁公司月收益为y =⎝⎛⎭⎪⎫100-x -300050·(x -150)-x -300050×50,整理得y =-x 250+162x -21000=-150(x-4050)2+307050.所以当x =4050时,y 取最大值为307050,即当每辆车的月租金定为4050元时,租赁公司的月收益最大为307050元.[答案] 4050 三、解答题10.(2018·唐山一中期末)已知函数f (x )=e x -e -x (x ∈R ,且e 为自然对数的底数).(1)判断函数f (x )的单调性与奇偶性;(2)是否存在实数t ,使不等式f (x -t )+f (x 2-t 2)≥0对一切x ∈R 都成立?若存在,求出t ;若不存在,请说明理由.[解] (1)∵f (x )=e x -⎝ ⎛⎭⎪⎫1e x ,∴f ′(x )=e x+⎝ ⎛⎭⎪⎫1e x,∴f ′(x )>0对任意x ∈R 都成立, ∴f (x )在R 上是增函数.又∵f (x )的定义域为R ,且f (-x )=e -x -e x =-f (x ),∴f (x )是奇函数.(2)存在.由(1)知f (x )在R 上是增函数和奇函数,则 f (x -t )+f (x 2-t 2)≥0对一切x ∈R 都成立, ⇔f (x 2-t 2)≥f (t -x )对一切x ∈R 都成立, ⇔x 2-t 2≥t -x 对一切x ∈R 都成立,⇔t 2+t ≤x 2+x =⎝ ⎛⎭⎪⎫x +122-14对一切x ∈R 都成立,⇔t 2+t ≤(x 2+x )min =-14⇔t 2+t +14 =⎝ ⎛⎭⎪⎫t +122≤0, 又⎝ ⎛⎭⎪⎫t +122≥0,∴⎝ ⎛⎭⎪⎫t +122=0, ∴t =-12.∴存在t =-12,使不等式f (x -t )+f (x 2-t 2)≥0对一切x ∈R 都成立. 11.(2018·江西三校联考)食品安全问题越来越引起人们的重视,农药、化肥的滥用给人民群众的健康带来一定的危害,为了给消费者带来放心的蔬菜,某农村合作社每年投入200万元,搭建甲、乙两个无公害蔬菜大棚,每个大棚至少要投入20万元,其中甲大棚种西红柿,乙大棚种黄瓜,根据以往的种菜经验,发现种西红柿的年收入P (单位:万元)、种黄瓜的年收入Q (单位:万元)与投入a (单位:万元)满足P =80+42a ,Q =14a +120,设甲大棚的投入为x (单位:万元),每年两个大棚的总收益为f (x )(单位:万元).(1)求f (50)的值;(2)试问如何安排甲、乙两个大棚的投入,才能使总收益f (x )最大? [解] (1)依题意f (x )=80+42x +14(200-x )+120=-14x +42x +250,其中⎩⎨⎧x ≥20,200-x ≥20,所以20≤x ≤180.故f (50)=-14×50+42×50+250=277.5.(2)由(1)知f (x )=-14x +42x +250(20≤x ≤180), 令x =t ,则25≤t ≤65,y =-14t 2+42t +250=-14(t -82)2+282,因此当t =82时,函数取得最大值282,此时x =128,故投入甲大棚128万元,乙大棚72万元时,总收益最大,最大总收益是282万元.12.(2018·江西吉安一中摸底)已知函数f (x )=⎩⎨⎧e x ,x ≥0,lg (-x ),x <0, 若关于x 的方程[f (x )]2+f (x )+t =0有三个不同的实数根,求实数t 的取值范围.[解] 原问题等价于[f (x )]2+f (x )=-t 有三个不同的实数根,即直线y =-t 与y =[f (x )]2+f (x )的图象有三个不同的交点.当x ≥0时,y =[f (x )]2+f (x )=e 2x +e x 为增函数,在x =0处取得最小值2,其图象与直线y =-t 最多只有一个交点.当x <0时,y =[f (x )]2+f (x )=[lg(-x )]2+lg(-x ),根据复合函数的单调性,其在(-∞,0)上先减后增,最小值为-14.所以要使函数的图象有三个不同的交点,只需-t ≥2,解得t ≤-2.。
2020高考数学《专题06 第二章 复习与检测》(知识精讲)(解析版)
专题六第二章复习与检测知识精讲一知识结构图二.学法指导1.不等式真假的判断,要依靠其适用范围和条件来确定,举反例是判断命题为假的一个好方法,用特例法验证时要注意,适合的不一定对,不适合的一定错,故特例只能否定选择项。
2. 基本不等式的主要应用是求函数的最值或范围,既适用于一个变量的情况,也适用于两个变量的情况.基本不等式具有将“和式”转化为“积式”和将“积式”转化为“和式”的放缩功能.解答此类问题关键是创设应用不等式的条件,合理拆分项或配凑因式是常用的解题技巧,而拆与凑的目的在于使等号能够成立.3.解一元二次不等式时,要注意数形结合,充分利用对应的二次函数图像、一元二次方程的解的关系.如果含有参数,则需按一定的标准对参数进行分类讨论.4.对于恒成立不等式求参数范围问题常见类型及解法有以下两种:1变更主元法根据实际情况的需要确定合适的主元,一般知道取值范围的变量要看作主元.2转化法求参数范围三.知识点贯通知识点1 不等式的性质不等式的基本性质(1)对称性:a>b⇔b<a.(2)传递性:a>b,b>c⇒a>c.(3)可加性:a>b⇔a+c>b+c.(4)可乘性:a>b,c>0⇒ac>bc;a>b,c<0⇒ac<bc.(5)加法法则:a>b,c>d⇒a+c>b+d.(6)乘法法则:a>b>0,c>d>0⇒ac>bd.(7)乘方法则:a>b>0⇒a n>b n>0(n∈N,n≥2).例1.如果a,b,c满足c<b<a且ac<0,则以下列选项中不一定成立的是() A.ab>ac B.c(b-a)>0C .cb 2<ab 2D .ac (a -c )<0【答案】C【解析】c <b <a ,ac <0⇒a >0,c <0.对于A :⎭⎪⎬⎪⎫b >c a >0⇒ab >ac ,A 正确. 对于B : ⎭⎪⎬⎪⎫b <a ⇒b -a <0c <0⇒c ·(b -a )>0,B 正确. 对于C :⎭⎪⎬⎪⎫c <a b 2≥0⇒cb 2≤ab 2cb 2<ab 2,C 错,即C 不一定成立.对于D :ac <0,a -c >0⇒ac (a -c )<0,D 正确,故选C. 知识点二 基本不等式 1.重要不等式∀a ,b ∈R ,有a 2+b 2≥2ab ,当且仅当a =b 时,等号成立. 2.基本不等式当a ,b 是任意正实数时,a ,b 的几何平均数不大于它们的算术平均数,即ab ≤a +b2,当且仅当a =b 时,等号成立. 3.已知x 、y 都是正数,(1)若x +y =S (和为定值),则当x =y 时,积xy 取得最大值S 24.(2)若xy =p (积为定值),则当x =y 时,和x +y 取得最小值2p . 上述命题可归纳为口诀:积定和最小,和定积最大. 例题2:设x <-1,求y =x +5x +2x +1的最大值.【答案】1【解析】 ∵x <-1,∴x +1<0.∴-(x +1)>0, ∴y =x +5x +2x +1=x 2+7x +10x +1=x +12+5x +1+4x +1=(x +1)+4x +1+5=-⎣⎡⎦⎤-x +1+4-x +1+5≤-24+5=1, 当(x +1)2=4,即x =-3时取“=”. 知识点三 一元二次不等式的解法1.三个“二次”的关系ab 【解析】 方程x 2+(1-a )x -a =0的解为x 1=-1,x 2=a . 函数y =x 2+(1-a )x -a 的图象开口向上,所以 (1)当a <-1时,原不等式解集为{x |a <x <-1}; (2)当a =-1时,原不等式解集为∅;(3)当a >-1时,原不等式解集为{x |-1<x <a }. 知识点四 不等式的恒成立1.对于不等式恒成立求参数范围问题常见类型及解法有以下两种:1变更主元法根据实际情况的需要确定合适的主元,一般知道取值范围的变量要看作主元. 2转化法求参数范围2.已知二次函数y =ax 2+bx +c 的函数值的集合为B ={y |m ≤y ≤n },则1y ≥k 恒成立⇒y min ≥k 即m ≥k ; 2y ≤k 恒成立⇒y max ≤k 即n ≤k .例题4.若不等式ax 2-2x +2>0对于满足1<x <4的一切实数x 恒成立,求实数a 的取值范围. 【解析】 ∵1<x <4,∴不等式ax 2-2x +2>0可化为a >2x -2x2.令y =2x -2x 2,且1<x <4,则y =2x -2x2=-2⎝⎛⎭⎫1x -122+12≤12, 当且仅当1x =12,即x =2时,函数y 取得最大值12,∴a >12即为所求.五 易错点分析易错一 基本不等式求最值满足“一正二定三相等”。
高考数学二轮复习专题练三核心热点突破专题六函数与导数第2讲基本初等函数函数的应用含解析
第2讲 基本初等函数、函数的应用高考定位 1.掌握二次函数、分段函数、幂函数、指数函数、对数函数的图象与性质;2.以基本初等函数为依托,考查函数与方程的关系、函数零点存在性定理;3.能利用函数解决简单的实际问题.真 题 感 悟1.(2020·全国Ⅲ卷)已知55<84,134<85.设a =log 53,b =log 85,c =log 138,则( ) A.a <b <c B.b <a <c C.b <c <aD.c <a <b解析 ∵log 53-log 85=log 53-1log 58=log 53·log 58-1log 58<⎝ ⎛⎭⎪⎫log 53+log 5822-1log 58=⎝⎛⎭⎫log 52422-1log 58<⎝⎛⎭⎫log 52522-1log 58=0,∴log 53<log 85.∵55<84,134<85,∴5log 85<4log 88=4=4log 1313<5log 138, ∴log 85<log 138,∴log 53<log 85<log 138, 即a <b <c .故选A. 答案 A2.(2020·全国Ⅰ卷)若2a +log 2a =4b +2log 4b ,则( ) A.a >2b B.a <2b C.a >b 2D.a <b 2解析 由指数和对数的运算性质可得 2a +log 2a =4b +2log 4b =22b +log 2b .令f (x )=2x +log 2x ,则f (x )在(0,+∞)上单调递增. 又∵22b +log 2b <22b +log 2b +1=22b +log 2(2b ),∴2a +log 2a <22b +log 2(2b ),即f (a )<f (2b ),∴a <2b . 故选B. 答案 B3.(2020·全国Ⅲ卷)Logistic 模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I (t )(t 的单位:天)的Logistic 模型:I (t )=K 1+e-0.23(t -53),其中K 为最大确诊病例数.当I (t *)=0.95K 时,标志着已初步遏制疫情,则t *约为(ln 19≈3)( ) A.60B.63C.66D.69解析 因为I (t )=K 1+e -0.23(t -53),所以当I (t *)=0.95K 时,K 1+e -0.23(t *-53)=0.95K ⇒11+e -0.23(t *-53)=0.95⇒1+e-0.23(t *-53)=10.95⇒e -0.23(t *-53)=10.95-1⇒e 0.23(t *-53)=19⇒0.23(t *-53)=ln 19⇒t *=ln 190.23+53≈30.23+53≈66.故选C. 答案 C4.(2020·天津卷)已知函数f (x )=⎩⎪⎨⎪⎧x 3,x ≥0,-x ,x <0.若函数g (x )=f (x )-|kx 2-2x |(k ∈R )恰有4个零点,则k 的取值范围是( ) A.⎝⎛⎭⎫-∞,-12∪(22,+∞) B.⎝⎛⎭⎫-∞,-12∪(0,22) C.(-∞,0)∪(0,22) D.(-∞,0)∪(22,+∞)解析 法一 注意到g (0)=0,所以要使g (x )恰有4个零点,只需方程|kx -2|=f (x )|x |恰有3个实根即可.令h (x )=f (x )|x |,即y =|kx -2|与h (x )=f (x )|x |的图象有3个交点.h (x )=f (x )|x |=⎩⎪⎨⎪⎧x 2,x >0,1,x <0.当k =0时,此时y =|kx -2|=2,如图①,y =2与h (x )=f (x )|x |的图象有1个交点,不满足题意;当k <0时,如图②,此时y =|kx -2|与h (x )=f (x )|x |的图象恒有3个交点,满足题意;当k >0时,如图③,由y =kx -2与y =x 2联立,得x 2-kx +2=0,令Δ>0,得k 2-8>0,解得k >22或k <-22(舍去),此时y =|kx -2|与h (x )=f (x )|x |的图象有3个交点.综上,k 的取值范围为(-∞,0)∪(22,+∞).故选D.法二 由法一知y =|kx -2|与h (x )=f (x )|x |的图象有3个交点,令k =-12,检验知符合题意,可排除选项A ,B ;令k =1,检验知不符合题意,可排除选项C.故选D. 答案 D考 点 整 合1.指数式与对数式的七个运算公式 (1)a m ·a n =a m +n ; (2)(a m )n =a mn ;(3)log a (MN )=log a M +log a N ;(4)log a MN =log a M -log a N ;(5)log a M n =n log a M ; (6)a log a N =N ;(7)log a N =log b Nlog b a (注:a ,b >0且a ,b ≠1,M >0,N >0).2.指数函数与对数函数的图象和性质指数函数y =a x (a >0,a ≠1)与对数函数y =log a x (a >0,a ≠1)的图象和性质,分0<a <1,a >1两种情况,当a >1时,两函数在定义域内都为增函数,当0<a <1时,两函数在定义域内都为减函数.3.函数的零点问题(1)函数F (x )=f (x )-g (x )的零点就是方程f (x )=g (x )的根,即函数y =f (x )的图象与函数y =g (x )的图象交点的横坐标.(2)确定函数零点的常用方法:①直接解方程法;②利用零点存在性定理;③数形结合,利用两个函数图象的交点求解.4.应用函数模型解决实际问题的一般程序 读题文字语言⇒建模数学语言⇒求解数学应用⇒反馈检验作答.热点一 基本初等函数的图象与性质【例1】 (1)在同一直角坐标系中,函数y =1ax ,y =log a ⎝⎛⎭⎫x +12(a >0,且a ≠1)的图象可能是( )(2)(2020·百校联盟考试)已知函数f (x )=log 12(x 2-ax +a )在⎝⎛⎭⎫12,+∞上为减函数,则实数a 的取值范围是( ) A.(-∞,1] B.⎣⎡⎦⎤-12,1 C.⎝⎛⎦⎤-12,1D.⎝⎛⎭⎫-12,+∞ 解析 (1)当a >1时,y =1ax 是减函数,y =log a ⎝⎛⎭⎫x +12是增函数,且y =log a ⎝⎛⎭⎫x +12的图象过定点⎝⎛⎭⎫12,0,则选项A ,B ,C ,D 均不符合.从而0<a <1,此时y =1ax 是增函数,y =log a ⎝⎛⎭⎫x +12是减函数,且y =log a ⎝⎛⎭⎫x +12的图象过定点⎝⎛⎭⎫12,0,只有选项D 适合. (2)∵f (x )在⎝⎛⎭⎫12,+∞上为减函数,且y =log 12t 在(0,+∞)上为减函数,∴t =x 2-ax +a 在⎝⎛⎭⎫12,+∞上为增函数,且t >0.因此--a 2≤12,且⎝⎛⎭⎫122-a 2+a ≥0,解得a ≤1且a ≥-12,则a 的取值范围为⎣⎡⎦⎤-12,1. 答案 (1)D (2)B探究提高 1.指数函数、对数函数的图象和性质受底数a 的影响,解决与指数、对数函数特别是与单调性有关的问题时,首先要看底数a 的范围.2.研究对数函数的性质,应注意真数与底数的限制条件.如本例(2)中易只考虑y =log 12t 与t =x 2-ax +a 的单调性,而忽视t >0恒成立的限制条件. 【训练1】 (1)(2020·天津卷)设a =30.7,b =⎝⎛⎭⎫13-0.8,c =log 0.70.8,则a ,b ,c 的大小关系为( ) A.a <b <c B.b <a <c C.b <c <aD.c <a <b(2)(2020·济南模拟)已知函数f (x )=⎩⎪⎨⎪⎧log a x ,x >0,|x +2|,-3≤x ≤0(a >0且a ≠1),若函数f (x )的图象上有且仅有两个点关于y 轴对称,则a 的取值范围是( ) A.(0,1)B.(1,3)C.(0,1)∪(3,+∞)D.(0,1)∪(1,3) 解析 (1)因为a =30.7>30=1,b =⎝⎛⎭⎫13-0.8=30.8>30.7,c =log 0.70.8<log 0.70.7=1,所以b >a >c .故选D.(2)y =log a x 的图象关于y 轴对称的图象对应的函数为y =log a (-x ),函数f (x )的图象上有且仅有两个点关于y 轴对称,等价于y =log a (-x )与y =|x +2|,-3≤x ≤0的图象有且仅有一个交点.当0<a <1时,显然符合题意(图略).当a >1时,只需log a 3>1,∴1<a <3,综上所述,a 的取值范围是(0,1)∪(1,3). 答案 (1)D (2)D热点二 函数的零点与方程 角度1 确定函数零点个数或范围【例2】 (1)函数f (x )=log 2x -1x 的零点所在的区间为( )A.⎝⎛⎭⎫0,12B.⎝⎛⎭⎫12,1 C.(1,2)D.(2,3)(2)(2020·武汉二模)函数f (x )=4cos 2x2cos ⎝⎛⎭⎫π2-x -2sin x -|ln(x +1)|的零点个数为________. 解析 (1)函数f (x )的定义域为(0,+∞),且函数f (x )在(0,+∞)上为增函数. f ⎝⎛⎭⎫12=log 212-112=-1-2=-3<0, f (1)=log 21-11=0-1<0,f (2)=log 22-12=1-12=12>0,f (3)=log 23-13>1-13=23>0,即f (1)·f (2)<0,∴函数f (x )=log 2x -1x的零点在区间(1,2)内.(2)f (x )=4cos 2x 2sin x -2sin x -|ln(x +1)|=2sin x ·⎝⎛⎭⎫2cos 2x 2-1-|ln(x +1)|=sin 2x -|ln(x +1)|,令f (x )=0,得sin 2x =|ln(x +1)|.在同一坐标系中作出两个函数y =sin 2x 与函数y =|ln(x +1)|的大致图象如图所示.观察图象可知,两函数图象有2个交点,故函数f (x )有2个零点. 答案 (1)C (2)2探究提高 判断函数零点个数的主要方法:(1)解方程f (x )=0,直接求零点;(2)利用零点存在定理;(3)数形结合法:对于给定的函数不能直接求解或画出图形,常会通过分解转化为两个能画出的函数图象交点问题.【训练2】 (1)(2019·全国Ⅲ卷)函数f (x )=2sin x -sin 2x 在[0,2π]的零点个数为( ) A.2B.3C.4D.5(2)函数y =|log 2x |-⎝⎛⎭⎫12x的零点个数是( ) A.0B.1C.2D.3解析 (1)令f (x )=0,得2sin x -sin 2x =0, 即2sin x -2sin x cos x =0,∴2sin x (1-cos x )=0,∴sin x =0或cos x =1. 又x ∈[0,2π],∴由sin x =0得x =0,π或2π,由cos x =1得x =0或2π. 故函数f (x )的零点为0,π,2π,共3个.(2)函数y =|log 2x |-⎝⎛⎭⎫12x的零点,即方程|log 2x |-⎝⎛⎭⎫12x=0的根,即函数y =|log 2x |与y =⎝⎛⎭⎫12x图象的交点,画出y =|log 2x |与y =⎝⎛⎭⎫12x的图象,易知交点有2个.选C. 答案 (1)B (2)C角度2 根据函数的零点数形结合求参数【例3】 (1)已知函数f (x )=⎩⎪⎨⎪⎧e x ,x ≤0,ln x ,x >0,g (x )=f (x )+x +a .若g (x )存在2个零点,则a 的取值范围是( ) A.[-1,0) B.[0,+∞) C.[-1,+∞)D.[1,+∞)(2)(2019·天津卷)已知函数f (x )=⎩⎪⎨⎪⎧2x ,0≤x ≤1,1x ,x >1.若关于x 的方程f (x )=-14x +a (a ∈R )恰有两个互异的实数解,则a 的取值范围为( ) A.⎣⎡⎦⎤54,94 B.⎝⎛⎦⎤54,94 C.⎝⎛⎦⎤54,94∪{1}D.⎣⎡⎦⎤54,94∪{1}解析 (1)函数g (x )=f (x )+x +a 存在2个零点,即关于x 的方程f (x )=-x -a 有2个不同的实根,即函数f (x )的图象与直线y =-x -a 有2个交点,作出直线y = -x -a 与函数f (x )的图象,如图所示,由图可知,-a ≤1,解得a ≥-1.(2)如图,分别画出两函数y =f (x )和y =-14x +a 的图象.①当0≤x ≤1时,直线y =-14x +a 与y =2x 的图象只有一个交点的情况.当直线y =-14x +a 过点B (1,2)时,则a =94.所以0≤a ≤94.②当x >1时,直线y =-14x +a 与y =1x 的图象只有一个交点的情况:ⅰ相切时,由y ′=-1x 2=-14,得x =2,此时切点为⎝⎛⎭⎫2,12,则a =1. ⅱ相交时,由图象可知直线y =-14x +a 从过点A 向右上方移动时与y =1x 的图象只有一个交点.过点A (1,1)时,1=-14+a ,解得a =54.所以a ≥54.结合图象可得,所求实数a 的取值范围为⎣⎡⎦⎤54,94∪{1}.故选D.答案(1)C(2)D探究提高解决由函数零点的存在情况求参数的值或取值范围问题,关键是利用函数方程思想或数形结合思想,构建关于参数的方程或不等式求解.【训练3】(1)若函数f(x)=|log a x|-3-x(a>0,a≠1)的两个零点是m,n,则()A.mn=1B.mn>1C.0<mn<1D.无法判断(2)(多选题)(2020·临沂调研)已知f(x)是定义在R上的偶函数,且f(x+3)=f(x-1),若x∈[0,2],f(x)=2x-1,则下列结论正确的是()A.当x∈[-2,0]时,f(x)=2-x-1B.f(2 019)=1C.y=f(x)的图象关于点(2,0)对称D.函数g(x)=f(x)-log2x有3个零点解析(1)令f(x)=0,得|log a x|=13x,则y=|log a x|与y=13x的图象有2个交点,不妨设a>1,m<n,作出两函数的图象(如图),∴13m>13n,即-log a m>log a n,∴log a(mn)<0,则0<mn<1.(2)已知f(x)是定义在R上的偶函数,且f(x+3)=f(x-1),则该函数的周期为4.当x∈[0,2]时,f(x)=2x-1,当x∈[-2,0]时,-x∈[0,2],f(x)=f(-x)=2-x-1,所以A正确.f(2 019)=f(4×505-1)=f(-1)=f(1)=1,所以B正确.若y=f(x)的图象关于点(2,0)对称,则f(3)+f(1)=0,但是f(3)=f(-1)=f(1)=1,f(3)+f(1)≠0,与f(3)+f(1)=0矛盾,所以C错误.作出函数y=f(x),y =log 2x 的大致图象,如图.由图可得函数g (x )=f (x )-log 2x 有3个零点,所以D 正确.故选ABD. 答案 (1)C (2)ABD 热点三 函数的实际应用【例4】 (2020·新高考山东卷)基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:I (t )=e rt 描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0=1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln 2≈0.69)( ) A.1.2天B.1.8天C.2.5天D.3.5天解析 由R 0=1+rT ,R 0=3.28,T =6, 得r =R 0-1T =3.28-16=0.38.由题意,累计感染病例数增加1倍,则I (t 2)=2I (t 1),即e0.38t 2=2e0.38t 1,所以e0.38(t 2-t 1)=2,即0.38(t 2-t 1)=ln 2, ∴t 2-t 1=ln 20.38≈0.690.38≈1.8.故选B. 答案 B探究提高 1.解决函数的实际应用问题时,首先要耐心、细心地审清题意,弄清各量之间的关系,再建立函数关系式,然后借助函数的知识求解,解答后再回到实际问题中去. 2.对函数模型求最值的常用方法:单调性法、基本不等式法及导数法.【训练4】 (2019·全国Ⅱ卷)2019年1月3日嫦娥四号探测器成功实现人类历史上首次月球背面软着陆,我国航天事业取得又一重大成就.实现月球背面软着陆需要解决的一个关键技术问题是地面与探测器的通信联系.为解决这个问题,发射了嫦娥四号中继星“鹊桥”,鹊桥沿着围绕地月拉格朗日L 2点的轨道运行.L 2点是平衡点,位于地月连线的延长线上.设地球质量为M 1,月球质量为M 2,地月距离为R ,L 2点到月球的距离为r ,根据牛顿运动定律和万有引力定律,r 满足方程: M 1(R +r )2+M 2r 2=(R +r )M 1R 3. 设α=rR .由于α的值很小,因此在近似计算中3α3+3α4+α5(1+α)2≈3α3,则r 的近似值为( ) A.M 2M 1R B.M 22M 1R C.33M 2M 1R D.3M 23M 1R 解析 由α=rR 得r =αR ,代入M 1(R +r )2+M 2r 2=(R +r )M 1R 3,整理得3α3+3α4+α5(1+α)2=M 2M 1.又3α3+3α4+α5(1+α)2≈3α3,即3α3≈M 2M 1,所以α≈3M 23M 1, 故r =αR ≈3M 23M 1R . 答案 DA 级 巩固提升一、选择题1.(2020·全国Ⅰ卷)设a log 34=2,则4-a =( ) A.116B.19C.18D.16解析 法一 因为a log 34=2,所以log 34a =2,所以4a =32=9,所以4-a =14a =19.故选B.法二 因为a log 34=2,所以a =2log 34=2log 43=log 432=log 49,所以4-a =4-log 49=4log 49-1=9-1=19.故选B.答案 B2.已知a =log 20.2,b =20.2,c =0.20.3,则( ) A.a <b <c B.a <c <b C.c <a <bD.b <c <a解析 由对数函数的单调性可得a =log 20.2<log 21=0,由指数函数的单调性可得b =20.2>20=1,0<c =0.20.3<0.20=1,所以a <c <b .故选B. 答案 B3.已知函数f (x )=⎩⎪⎨⎪⎧2x -1,x ≤1,1+log 2x ,x >1,则函数f (x )的零点为( )A.12,0 B.-2,0C.12D.0解析 当x ≤1时,令f (x )=2x -1=0,解得x =0; 当x >1时,令f (x )=1+log 2x =0,解得x =12,又因为x >1,所以此时方程无解.综上函数f (x )的零点只有0. 答案 D4.(2019·全国Ⅱ卷)若a >b ,则( ) A.ln(a -b )>0 B.3a <3b C.a 3-b 3>0D.|a |>|b |解析 法一 不妨设a =-1,b =-2,则a >b ,可验证A ,B ,D 错误,只有C 正确. 法二 由a >b ,得a -b >0.但a -b >1不一定成立, 则ln(a -b )>0不一定成立,故A 不一定成立.因为y =3x 在R 上是增函数,当a >b 时,3a >3b ,故B 不成立.因为y =x 3在R 上是增函数,当a >b 时,a 3>b 3,即a 3-b 3>0,故C 成立.因为当a =3,b =-6时,a >b ,但|a |<|b |,D 项不正确. 答案 C5.在天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m 2-m 1=52lg E 1E 2,其中星等为m k 的星的亮度为E k (k =1,2).已知太阳的星等是-26.7,天狼星的星等是-1.45,则太阳与天狼星的亮度的比值为( ) A.1010.1B.10.1C.lg 10.1D.10-10.1解析 设太阳的星等为m 1,天狼星的星等为m 2,则太阳与天狼星的亮度分别为E 1,E 2. 由题意知,m 1=-26.7,m 2=-1.45,代入所给公式得-1.45-(-26.7)=52lg E 1E 2,所以lg E 1E 2=10.1,所以E 1E 2=1010.1.答案 A6.(2020·广州模拟)已知函数f (x )是定义在R 上的偶函数,满足f (x +1)=-f (x ),当x ∈[0,1]时,f (x )=cos π2x ,则函数y =f (x )-|x |的零点个数是( )A.2B.3C.4D.5解析 由f (x +1)=-f (x ),得f (x +2)=f (x ),知周期T =2. 令f (x )-|x |=0,得f (x )=|x |.作出函数y =f (x )与g (x )=|x |的图象如图所示.由图象知,函数y =f (x )-|x |有两个零点. 答案 A 二、填空题7.已知λ∈R ,函数f (x )=⎩⎪⎨⎪⎧x -4,x ≥λ,x 2-4x +3,x <λ.若函数f (x )恰有2个零点,则λ的取值范围是________.解析 令f (x )=0,当x ≥λ时,x =4.当x <λ时,x 2-4x +3=0,则x =1或x =3.若函数f (x )恰有2个零点,结合图1与图2知,1<λ≤3或λ>4.答案 (1,3]∪(4,+∞)8.已知a >b >1,若log a b +log b a =52,a b =b a ,则a =______,b =________.解析 设log b a =t ,则t >1,因为t +1t =52,解得t =2,所以a =b 2,因此a b =(b 2)b =b 2b =b a ,∴a =2b ,b 2=2b ,又b >1,解得b =2,a =4. 答案 4 29.(2020·重庆质检)已知a ,b ,c 为正实数,且ln a =a -1,b ln b =1,c e c =1,则a ,b ,c 的大小关系是________.解析 ln a =a -1,ln b =1b ,e c =1c.依次作出y =e x ,y =ln x ,y =x -1,y =1x这四个函数的图象,如下图所示.由图象可知0<c <1,a =1,b >1,∴c <a <b . 答案 c <a <b 三、解答题10.已知偶函数f (x )满足f (x -1)=1f (x ),且当x ∈[-1,0]时,f (x )=x 2,若在区间[-1,3]内,函数g (x )=f (x )-log a (x +2)有3个零点,求实数a 的取值范围. 解 ∵偶函数f (x )满足f (x -1)=1f (x ),∴f (x -2)=f (x -1-1)=1f (x -1)=f (x ),∴函数f (x )的周期为2, 又x ∈[-1,0]时,f (x )=x 2,∴x ∈[0,1]时,f (x )=f (-x )=x 2,从而f (x )=x 2,x ∈[-1,1].在区间[-1,3]内函数g (x )=f (x )-log a (x +2)有3个零点等价于函数f (x )的图象与y =log a (x +2)的图象在区间[-1,3]内有3个交点.当0<a <1时,函数图象无交点,数形结合可得a >1且⎩⎪⎨⎪⎧log a 3<1,log a 5>1,解得3<a <5.故实数a 的取值范围为(3,5).B 级 能力突破11.(2020·贵阳质检)已知函数f (x )=⎩⎪⎨⎪⎧e x ,x <0,4x 3-6x 2+1,x ≥0,其中e 为自然对数的底数,则函数g (x )=3[f (x )]2-10f (x )+3的零点个数为( ) A.4B.5C.6D.3解析 当x ≥0时,f (x )=4x 3-6x 2+1的导数为f ′(x )=12x 2-12x , 当0<x <1时,f (x )单调递减,x >1时,f (x )单调递增,可得f (x )在x =1处取得最小值,最小值为-1,且f (0)=1,作出函数f (x )的图象,g (x )=3[f (x )]2-10f (x )+3,可令g (x )=0,t =f (x ),可得3t 2-10t +3=0, 解得t =3或13,当t =13,即f (x )=13时,g (x )有三个零点;当t =3时,可得f (x )=3有一个实根, 综上,g (x )共有四个零点. 答案 A12.记f ′(x ),g ′(x )分别为函数f (x ),g (x )的导函数.若存在x 0∈R ,满足f (x 0)=g (x 0)且f ′(x 0)=g ′(x 0),则称x 0为函数f (x )与g (x )的一个“S 点”.(1)证明:函数f (x )=x 与g (x )=x 2+2x -2不存在“S 点”; (2)若函数f (x )=ax 2-1与g (x )=ln x 存在“S 点”,求实数a 的值. (1)证明 函数f (x )=x ,g (x )=x 2+2x -2, 则f ′(x )=1,g ′(x )=2x +2. 由f (x )=g (x )且f ′(x )=g ′(x ),得⎩⎪⎨⎪⎧x =x 2+2x -2,1=2x +2,此方程组无解, 因此,f (x )与g (x )不存在“S 点”. (2)解 函数f (x )=ax 2-1,g (x )=ln x , 则f ′(x )=2ax ,g ′(x )=1x .设x 0为f (x )与g (x )的“S 点”, 由f (x 0)=g (x 0)且f ′(x 0)=g ′(x 0),得 ⎩⎪⎨⎪⎧ax 20-1=ln x 0,2ax 0=1x 0,即⎩⎪⎨⎪⎧ax 20-1=ln x 0,2ax 20=1, (*) 得ln x 0=-12,即x 0=e -12,则a =12⎝⎛⎭⎫e -122=e2. 当a =e 2时,x 0=e -12满足方程组(*),即x 0为f (x )与g (x )的“S 点”. 因此,a 的值为e 2.。
2020高考数学(文科)二轮专题精讲《基本初等函数、函数与方程》
+a(a∈R)恰有两个互异的实数解,则 a 的取值范围为( )
A.54,94
B.54,94
C.54,94∪{1}
D.54,94∪{1}
解析:选 D 如图,分别画出两函数 y=f(x)和 y=-14x+a 的图象.
①先研究当 0≤x≤1 时,直线 y=-14x+a 与 y=2 x的图象只有一个交点的情 况.当直线 y=-14x+a 过点 B(1,2)时,由 2=-14+a,解得 a=94;
B.
2.(2018·全国卷Ⅲ)下列函数中,其图象与函数 y=ln x 的图象关于直线 x=1 对称
的是( )
A.y=ln(1-x)
B.y=ln(2-x)
C.y=ln(1+x)
D.y=ln(2+x)
解析:选 B 解法一:y=ln x 图象上的点 P(1,0)关于直线 x=1 的对称点是它本身, 则点 P 在 y=ln x 图象关于直线 x=1 对称的图象上,结合选项可知,B 正确.故选 B.
称函数 f(x)具有 M 性质.下列函数中具有 M 性质的是( )
A.f(x)=2-x
B.f(x)=x2
C.f(x)=3-x
D.f(x)=cos x
[解析] (1)由于 y=a|x|的值域为{y|y≥1},∴a>1,则 y=logax 在(0,+∞)上是增 函数,又函数 y=loga|x|的图象关于 y 轴对称.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
- 1 -
A级 基础通关
一、选择题
1.(2019·北京卷)下列函数中,在区间(0,+∞)上单调递增的是
( )
A.y=x12 B.y=2-x
C.y=log12x D.y=1x
详细分析:易知y=2-x与y=log12x,在(0,+∞)上是减函数,由
幂函数性质,y=1x在(0,+∞)上递减,y=x12在(0,+∞)上递增.
答案:A
2.已知定义在R上的奇函数f(x)满足当x>0时,f(x)=2x+2x-
4,则f(x)的零点个数是( )
A.2 B.3 C.4 D.5
详细分析:由于函数f(x)是定义在R上的奇函数,
故f(0)=0.
由于f
1
2
·f(2)<0,
而函数f(x)在(0,+∞)上单调递增,
故当x>0时有1个零点,根据奇函数的对称性可知,
当x<0时,也有1个零点.故一共有3个零点.
- 2 -
答案:B
3.(2018·天津卷)已知a=log2e,b=ln 2,c=log1213,则a,b,c
的大小关系是( )
A.a>b>c B.b>a>c
C.c>b>a D.c>a>b
详细分析:c=log1213=log23,a=log2e,由y=log2x在(0,+∞)上
是增函数,知c>a>1.又b=ln 2<1,故c>a>b.
答案:D
4.若函数y=a|x|(a>0,且a≠1)的值域为{y|y≥1},则函数y=loga|x|
的图象大致是( )
详细分析:由于y=a|x|的值域为{y|y≥1},所以a>1,则y=logax
在(0,+∞)上是增函数,又函数y=log
a
|x|的图象关于y轴对称.因此
y=loga|x|的图象大致为选项B.
答案:B
5.(2019·衡水质检)若函数f(x)=|logax|-3-x(a>0,a≠1)的两个零
点是m,n,则( )
A.mn=1 B.mn>1
C.mn<1 D.无法判断
详细分析:令f(x)=0,
- 3 -
得|log
a
x|=13x,
则y=|log
a
x|与y=13x的图象有2个交点,
不妨设a>1,m<n,作出两函数的图象(如图).
所以
13m>1
3
n
,即-logam>logan,
所以log
a
(mn)<0,则mn<1.
答案:C
6.(2018·全国卷Ⅲ)设a=log0.20.3,b=log20.3,则( )
A.a+b<ab<0 B.ab<a+b<0
C.a+b<0<ab D.ab<0<a+b
详细分析:由a=log0.20.3得1a=log0.30.2,
由b=log20.3得1b=log
0.3
2.
所以1a+1b=log
0.30.2+log0.32=log0.3
0.4,
则0<1a+1b<1,即0<a+bab<1.
又a>0,b<0,知ab<0,
所以ab<a+b<0.
答案:B
二、填空题
- 4 -
7.(2018·全国卷Ⅲ)函数f(x)=cos3x+π6在[0,π]的零点个数为
________.
详细分析:由题意知,cos(3x+π6)=0,所以3x+
π6=π
2
+kπ,k∈Z,
所以x=π9+kπ3,k∈Z,当k=0时,x=π9;当k=1时,x=4π9;当k
=2时,x=7π9,均满足题意,所以函数f(x)在[0,π]的零点个数为3.
答案:3
8.将甲桶中的a升水缓慢注入空桶乙中,t min后甲桶剩余的水
量符合指数衰减曲线y=aent.假设过5 min后甲桶和乙桶的水量相等,
若再过m min甲桶中的水只有a4升,则m的值为________.
详细分析:因为5 min后甲桶和乙桶的水量相等,
所以函数y=f(t)=aent满足f(5)=ae5n=
1
2
a,
可得n=15ln 12,所以f(t)=a·12t5,
因此,当k min后甲桶中的水只有
a
4
L时,
f(k)=a·12k5=14a,即
1
2
k
5
=14,
所以k=10,由题可知m=k-5=5.
答案:5
9.设函数f(x)=ln(x2+1),则不等式f(2x)>f(x+1)的解集为
________.
- 5 -
详细分析:依题意ln[(2x)
2+1]>ln[(x+1)2
+1]
所以4x2>(x+1)2,解之得x>1或x<-
1
3
.
答案:-∞,-13∪(1,+∞)
三、解答题
10.经测算,某型号汽车在匀速行驶过程中每小时耗油量y(单位:
升)与速度x(单位:千米/时)(50≤x≤120)的关系可近似表示为:
y=175(x2-130x+4 900),x∈[50,80),12-x60,x∈[80,120].
(1)该型号汽车速度为多少时,可使得每小时耗油量最低?
(2)已知A,B两地相距120千米,假定该型号汽车匀速从A地驶
向B地,则汽车速度为多少时总耗油量最少?
解:(1)当x∈[50,80)时,
y=175(x2-130x+4 900)=175[(x-65)
2
+675],
当x=65时,y有最小值
1
75
×675=9.
当x∈[80,120]时,函数单调递减,故当x=120时,y有最小值
10.
因为9<10,故当x=65时每小时耗油量最低.
(2)设总耗油量为l,由题意可知l=y·120x.
①当x∈[50,80)时,
- 6 -
l=y·120x=85x+4 900x-130≥85(2
x×4 900
x
-130)=16,
当且仅当x=4 900x,即x=70时,l取得最小值16.
②当x∈[80,120]时,l=y·120x=1 440x-2为减函数,
当x=120时,l取得最小值10.
因为10<16,所以当速度为120千米/时时,总耗油量最少.
B级 能力提升
11.已知函数f(x)=ln x,x>0,2x+1,x≤0,若方程f(x)=ax有三个不同的
实数根,则a的取值范围是________.
详细分析:在同一坐标系内,作函数y=f(x)与y=ax的图象,当
y=ax是y=ln x的切线时,设切点P(x0,y0),所以y
0=ln x0
,a=(ln x)′|x
=x0=1x0,所以y0=ax0=1=ln x0,x0=e,故a=
1
e
.
故y=ax与y=f(x)的图象有三个交点时,0<a<
1
e
.
答案:0,1e
12.(2018·江苏卷节选)记f′(x),g′(x)分别为函数f(x),g(x)的导函
数.若存在x0∈R,满足f(x0)=g(x0)且f′(x0)=g′(x0),则称x0为函数f(x)
与g(x)的一个“S点”.
- 7 -
(1)证明:函数f(x)=x与g(x)=x2+2x-2不存在“S点”;
(2)若函数f(x)=ax2-1与g(x)=ln x存在“S点”,求实数a的值.
(1)证明:函数f(x)=x,g(x)=x
2
+2x-2,
则f′(x)=1,g′(x)=2x+2.
由f(x)=g(x)且f′(x)=g′(x),得
x=x
2
+2x-2,
1=2x+2,
此方程组无解,
因此,f(x)与g(x)不存在“S点”.
(2)解:函数f(x)=ax
2
-1,g(x)=ln x,
则f′(x)=2ax,g′(x)=
1
x
.
设x0为f(x)与g(x)的“S点”,由f(x
0)=g(x0)且f′(x0)=g′(x0
),得
ax
2
0-1=ln x0
,
2ax
0
=1x0,
即
ax
2
0-1=ln x0
,
2ax
2
0
=1,
(*)
得ln x0=-12,即x0=e-12,则a=12(e-12)2=
e
2
.
当a=e2时,x0=e-12满足方程组(*),
即x0为f(x)与g(x)的“S点”.
因此,a的值为
e
2
.