2019届高考一轮复习备考讲义(全国用)人教A版 第九章 9.3 圆的方程含答案
高考数学统考一轮复习第九章9-3圆的方程课件文新人教版

1.[2021·石家庄质检]若圆C的半径为1,点C与点(2,0)关于点(1,
0)对称,则圆C的标准方程为( )
A.x2+y2=1
B.(x-3)2+y2=1
C.(x-1)2+y2=1 D.x2+(y-3)2=1
解析:因为点C与点(2,0)关于点(1,0)对称,故由中点坐标公式 可得C(0,0),所以所求圆的标准方程为x2+y2=1.
3.点与圆的位置关系 圆的标准方程(x-a)2+(y-b)2=r2,圆心A(a,b),半径r,若点 M(x0,y0)在圆上,则(x0-a)2+(y0-b)2=⑥___r_2 ____; 若点M(x0,y0)在圆外,则(x0-a)2+(y0-b)2⑦__>__r2____; 若点M(x0,y0)在圆内,则(x0-a)2+(y0-b)2⑧__<__r_2 ___.
4.若方程x2+y2+mx-2y+3=0表,+∞)
B.(-∞,-2 2) ∪ (2 2,+∞)
C.(-∞,- 3) ∪ ( 3,+∞)
D.(-∞,-2 3) ∪ (2 3,+∞)
解析:将x2+y2+mx-2y+3=0化为圆的标准方程得
x+m
2.若圆C经过(1,0),(3,0)两点,且与y轴相切,则圆C的方程为 ()
A.(x-2)2+(y±2)2=3 B.(x-2)2+(y± 3)2=3 C.(x-2)2+(y±2)2=4 D.(x-2)2+(y± 3)2=4
解析:因为圆C经过(1,0),(3,0)两点,所以圆心在直线x=2上, 又圆与y轴相切,所以半径r=2,设圆心坐标为(2,b),则(2-1)2+b2 =4,b2=3,b=± 3,选D.
3.[2021·广东珠海联考]已知圆C与直线x-y=0及x-y-4=0都相 切,圆心在直线x+y=0上,则圆C的标准方程为( )
2019届高考大一轮复习备考资料之数学人教A版全国用讲

§9.3圆的方程圆的定义与方程知识拓展1.确定圆的方程的方法和步骤确定圆的方程主要方法是待定系数法,大致步骤:(1)根据题意,选择标准方程或一般方程.(2)根据条件列出关于a,b,r或D,E,F的方程组.(3)解出a,b,r或D,E,F代入标准方程或一般方程.2.点与圆的位置关系点和圆的位置关系有三种.已知圆的标准方程(x-a)2+(y-b)2=r2,点M(x0,y0)(1)点在圆上:(x0-a)2+(y0-b)2=r2;(2)点在圆外:(x0-a)2+(y0-b)2>r2;(3)点在圆内:(x0-a)2+(y0-b)2<r2.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)确定圆的几何要素是圆心与半径.(√)(2)已知点A(x1,y1),B(x2,y2),则以AB为直径的圆的方程是(x-x1)(x-x2)+(y-y1)(y-y2)=0.(√)(3)方程Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆的充要条件是A=C≠0,B=0,D2+E2-4AF>0.(√)(4)方程x2+2ax+y2=0一定表示圆.(×)(5)若点M(x0,y0)在圆x2+y2+Dx+Ey+F=0外,则x20+y20+Dx0+Ey0+F>0.(√)(6)方程(x+a)2+(y+b)2=t2(t∈R)表示圆心为(a,b),半径为t的圆.(×)题组二教材改编2.[P132A组T3](2018·南昌模拟)以点(3,-1)为圆心,并且与直线3x+4y=0相切的圆的方程是()A.(x-3)2+(y+1)2=1B.(x-3)2+(y-1)2=1C.(x+3)2+(y-1)2=1D.(x+3)2+(y+1)2=1答案 A3.[P124A组T4]圆C的圆心在x轴上,并且过点A(-1,1)和B(1,3),则圆C的方程为_______.答案(x-2)2+y2=10解析设圆心坐标为C(a,0),∵点A(-1,1)和B(1,3)在圆C上,∴|CA|=|CB|,即(a+1)2+1=(a-1)2+9,解得a=2,∴圆心为C(2,0),半径|CA|=(2+1)2+1=10,∴圆C的方程为(x-2)2+y2=10.题组三易错自纠4.若方程x2+y2+mx-2y+3=0表示圆,则m的取值范围是()A.(-∞,-2)∪(2,+∞)B.(-∞,-22)∪(22,+∞)C .(-∞,-3)∪(3,+∞)D .(-∞,-23)∪(23,+∞) 答案 B解析 将x 2+y 2+mx -2y +3=0化为圆的标准方程得⎝⎛⎭⎫x +m 22+(y -1)2=m24-2. 由其表示圆可得m 24-2>0,解得m <-22或m >2 2.5.若点(1,1)在圆(x -a )2+(y +a )2=4的内部,则实数a 的取值范围是( ) A .-1<a <1 B .0<a <1 C .a >1或a <-1 D .a =±4答案 A解析 ∵点(1,1)在圆内,∴(1-a )2+(a +1)2<4,即-1<a <1.6.若圆C 的半径为1,圆心在第一象限,且与直线4x -3y =0和x 轴都相切,则该圆的标准方程是( )A .(x -2)2+(y -1)2=1B .(x -2)2+(y +1)2=1C .(x +2)2+(y -1)2=1D .(x -3)2+(y -1)2=1 答案 A解析 由于圆心在第一象限且与x 轴相切,可设圆心为(a,1)(a >0),又圆与直线4x -3y =0相切, ∴|4a -3|5=1,解得a =2或a =-12(舍去). ∴圆的标准方程为(x -2)2+(y -1)2=1. 故选A.题型一 圆的方程典例 (1)过点A (4,1)的圆C 与直线x -y -1=0相切于点B (2,1),则圆C 的方程为__________. 答案 (x -3)2+y 2=2解析 方法一 由已知k AB =0,所以AB 的中垂线方程为x =3.①过点B 且垂直于直线x -y -1=0的直线方程为y -1=-(x -2),即x +y -3=0,②联立①②,解得⎩⎪⎨⎪⎧x =3,y =0,所以圆心坐标为(3,0),半径r =(4-3)2+(1-0)2=2, 所以圆C 的方程为(x -3)2+y 2=2.方法二 设圆方程为(x -a )2+(y -b )2=r 2(r >0), 因为点A (4,1),B (2,1)都在圆上,故⎩⎪⎨⎪⎧(4-a )2+(1-b )2=r 2,(2-a )2+(1-b )2=r 2, 又因为b -1a -2=-1,解得a =3,b =0,r =2,故所求圆的方程为(x -3)2+y 2=2.(2)已知圆C 经过P (-2,4),Q (3,-1)两点,且在x 轴上截得的弦长等于6,则圆C 的方程为______________.答案 x 2+y 2-2x -4y -8=0或x 2+y 2-6x -8y =0解析 设圆的方程为x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0), 将P ,Q 两点的坐标分别代入得⎩⎪⎨⎪⎧2D -4E -F =20,①3D -E +F =-10. ② 又令y =0,得x 2+Dx +F =0.③ 设x 1,x 2是方程③的两根,由|x 1-x 2|=6,即(x 1+x 2)2-4x 1x 2=36, 得D 2-4F =36,④由①②④解得D =-2,E =-4,F =-8或D =-6,E =-8,F =0. 故所求圆的方程为x 2+y 2-2x -4y -8=0或x 2+y 2-6x -8y =0.思维升华 (1)直接法:直接求出圆心坐标和半径,写出方程. (2)待定系数法①若已知条件与圆心(a ,b )和半径r 有关,则设圆的标准方程,求出a ,b ,r 的值; ②选择圆的一般方程,依据已知条件列出关于D ,E ,F 的方程组,进而求出D ,E ,F 的值. 跟踪训练 (2017·广东七校联考)一个圆与y 轴相切,圆心在直线x -3y =0上,且在直线y =x 上截得的弦长为27,则该圆的方程为______________________. 答案 x 2+y 2-6x -2y +1=0或x 2+y 2+6x +2y +1=0解析 方法一 ∵所求圆的圆心在直线x -3y =0上, ∴设所求圆的圆心为(3a ,a ), 又所求圆与y 轴相切,∴半径r =3|a |,又所求圆在直线y =x 上截得的弦长为27,圆心(3a ,a )到直线y =x 的距离d =|2a |2,∴d 2+(7)2=r 2,即2a 2+7=9a 2,∴a =±1.故所求圆的方程为(x -3)2+(y -1)2=9或(x +3)2+(y +1)2=9,即x 2+y 2-6x -2y +1=0或x 2+y 2+6x +2y +1=0.方法二 设所求圆的方程为(x -a )2+(y -b )2=r 2, 则圆心(a ,b )到直线y =x 的距离为|a -b |2,∴r 2=(a -b )22+7,即2r 2=(a -b )2+14.①由于所求圆与y 轴相切,∴r 2=a 2,②又∵所求圆的圆心在直线x -3y =0上,∴a -3b =0,③ 联立①②③,解得⎩⎪⎨⎪⎧a =3,b =1,r 2=9或⎩⎪⎨⎪⎧a =-3,b =-1,r 2=9.故所求圆的方程为(x -3)2+(y -1)2=9或(x +3)2+(y +1)2=9,即x 2+y 2-6x -2y +1=0或x 2+y 2+6x +2y +1=0.方法三 设所求圆的方程为x 2+y 2+Dx +Ey +F =0,则圆心坐标为⎝⎛⎭⎫-D 2,-E2, 半径r =12D 2+E 2-4F .在圆的方程中,令x =0,得y 2+Ey +F =0. 由于所求圆与y 轴相切,∴Δ=0,则E 2=4F .① 圆心⎝⎛⎭⎫-D 2,-E2到直线y =x 的距离为 d =⎪⎪⎪⎪-D 2+E 22,由已知得d 2+(7)2=r 2,即(D -E )2+56=2(D 2+E 2-4F ).② 又圆心⎝⎛⎭⎫-D 2,-E2在直线x -3y =0上, ∴D -3E =0.③联立①②③,解得⎩⎪⎨⎪⎧D =-6,E =-2,F =1或⎩⎪⎨⎪⎧D =6,E =2,F =1.故所求圆的方程为x 2+y 2-6x -2y +1=0或x 2+y 2+6x +2y +1=0. 题型二 与圆有关的最值问题典例 已知点(x ,y )在圆(x -2)2+(y +3)2=1上,求x +y 的最大值和最小值. 解 设t =x +y ,则y =-x +t ,t 可视为直线y =-x +t 在y 轴上的截距,∴x +y 的最大值和最小值就是直线与圆有公共点时直线纵截距的最大值和最小值,即直线与圆相切时在y 轴上的截距.由直线与圆相切得圆心到直线的距离等于半径, 即|2+(-3)-t |2=1, 解得t =2-1或t =-2-1.∴x +y 的最大值为2-1,最小值为-2-1. 引申探究1.在本例的条件下,求yx的最大值和最小值.解 y x 可视为点(x ,y )与原点连线的斜率,y x 的最大值和最小值就是与该圆有公共点的过原点的直线斜率的最大值和最小值,即直线与圆相切时的斜率.设过原点的直线的方程为y =kx ,由直线与圆相切得圆心到直线的距离等于半径,即|2k +3|k 2+1=1,解得k =-2+233或k =-2-233,∴y x 的最大值为-2+233,最小值为-2-233.2.在本例的条件下,求x 2+y 2+2x -4y +5的最大值和最小值. 解x 2+y 2+2x -4y +5=(x +1)2+(y -2)2,求它的最值可视为求点(x ,y )到定点(-1,2)的距离的最值,可转化为求圆心(2,-3)到定点(-1,2)的距离与半径的和或差.又圆心到定点 (-1,2)的距离为34,∴x 2+y 2+2x -4y +5的最大值为34+1,最小值为34-1. 思维升华 与圆有关的最值问题的常见类型及解题策略(1)与圆有关的长度或距离的最值问题的解法.一般根据长度或距离的几何意义,利用圆的几何性质数形结合求解.(2)与圆上点(x ,y )有关代数式的最值的常见类型及解法.①形如u =y -bx -a型的最值问题,可转化为过点(a ,b )和点(x ,y )的直线的斜率的最值问题;②形如t =ax +by 型的最值问题,可转化为动直线的截距的最值问题;③形如(x -a )2+(y -b )2型的最值问题,可转化为动点到定点(a ,b )的距离的平方的最值问题. 跟踪训练 已知点P (x ,y )在圆C :x 2+y 2-6x -6y +14=0上. (1)求yx 的最大值和最小值;(2)求x +y 的最大值与最小值.解 (1)方程x 2+y 2-6x -6y +14=0可变形为(x -3)2+(y -3)2=4.yx表示圆上的点P 与原点连线的斜率,显然当PO (O 为原点)与圆相切时,斜率最大或最小,如图①所示.设切线方程为y =kx ,即kx -y =0, 由圆心C (3,3)到切线的距离等于半径2, 可得|3k -3|k 2+1=2,解得k =9±2145,所以yx 的最大值为9+2145,最小值为9-2145.(2)设x +y =b ,则b 表示动直线y =-x +b 在y 轴上的截距,显然当动直线y =-x +b 与圆(x -3)2+(y -3)2=4相切时,b 取得最大值或最小值,如图②所示.由圆心C (3,3)到切线x +y =b 的距离等于圆的半径2,可得|3+3-b |12+12=2,即|b -6|=22,解得b =6±22,所以x +y 的最大值为6+22,最小值为6-2 2. 题型三 与圆有关的轨迹问题典例 (2017·潍坊调研)已知圆x 2+y 2=4上一定点A (2,0),B (1,1)为圆内一点,P ,Q 为圆上的动点.(1)求线段AP 中点的轨迹方程;(2)若∠PBQ =90°,求线段PQ 中点的轨迹方程. 解 (1)设AP 的中点为M (x ,y ),由中点坐标公式可知,P 点坐标为(2x -2,2y ). 因为P 点在圆x 2+y 2=4上, 所以(2x -2)2+(2y )2=4,故线段AP 中点的轨迹方程为(x -1)2+y 2=1. (2)设PQ 的中点为N (x ,y ), 在Rt △PBQ 中,|PN |=|BN |.设O 为坐标原点,连接ON ,则ON ⊥PQ , 所以|OP |2=|ON |2+|PN |2=|ON |2+|BN |2, 所以x 2+y 2+(x -1)2+(y -1)2=4.故线段PQ 中点的轨迹方程为x 2+y 2-x -y -1=0.思维升华 求与圆有关的轨迹问题时,根据题设条件的不同常采用以下方法 (1)直接法:直接根据题目提供的条件列出方程. (2)定义法:根据圆、直线等定义列方程. (3)几何法:利用圆的几何性质列方程.(4)代入法:找到要求点与已知点的关系,代入已知点满足的关系式等.跟踪训练 (2017·河北衡水中学调研)已知Rt △ABC 的斜边为AB ,且A (-1,0),B (3,0).求: (1)直角顶点C 的轨迹方程; (2)直角边BC 的中点M 的轨迹方程.解 (1)方法一 设C (x ,y ),因为A ,B ,C 三点不共线,所以y ≠0. 因为AC ⊥BC ,所以k AC ·k BC =-1,又k AC =y x +1,k BC =y x -3,所以y x +1·y x -3=-1,化简得x 2+y 2-2x -3=0.因此,直角顶点C 的轨迹方程为x 2+y 2-2x -3=0(y ≠0).方法二 设AB 的中点为D ,由中点坐标公式得D (1,0),由直角三角形的性质知|CD |=12|AB |=2.由圆的定义知,动点C 的轨迹是以D (1,0)为圆心,2为半径的圆(由于A ,B ,C 三点不共线,所以应除去与x 轴的交点).所以直角顶点C 的轨迹方程为(x -1)2+y 2=4(y ≠0).(2)设M (x ,y ),C (x 0,y 0),因为B (3,0),M 是线段BC 的中点,由中点坐标公式得x =x 0+32,y =y 0+02,所以x 0=2x -3,y 0=2y .由(1)知,点C 的轨迹方程为(x -1)2+y 2=4(y ≠0),将x 0=2x -3,y 0=2y 代入得(2x -4)2+(2y )2=4,即(x -2)2+y 2=1.因此动点M 的轨迹方程为(x -2)2+y 2=1(y ≠0).利用几何性质巧设方程求半径典例 在平面直角坐标系xOy 中,曲线y =x 2-6x +1与坐标轴的交点都在圆C 上,求圆C 的方程.思想方法指导 本题可采用两种方法解答,即代数法和几何法.(1)一般解法(代数法):可以求出曲线y =x 2-6x +1与坐标轴的三个交点,设圆的方程为一般式,代入点的坐标求解析式.(2)巧妙解法(几何法):利用圆的性质,知道圆心一定在圆上两点连线的垂直平分线上,从而设圆的方程为标准式,简化计算,显然几何法比代数法的计算量小,因此平时训练多采用几何法解题. 规范解答解 一般解法 (代数法)曲线y =x 2-6x +1与y 轴的交点为(0,1),与x 轴的交点为(3+22,0),(3-22,0),设圆的方程是x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0),则有⎩⎨⎧1+E +F =0,(3+22)2+D (3+22)+F =0,(3-22)2+D (3-22)+F =0,解得⎩⎪⎨⎪⎧D =-6,E =-2,F =1,故圆的方程是x 2+y 2-6x -2y +1=0.巧妙解法 (几何法)曲线y =x 2-6x +1与y 轴的交点为(0,1),与x 轴的交点为(3+22,0),(3-22,0).故可设C 的圆心为(3,t ),则有32+(t -1)2=(22)2+t 2,解得t =1. 则圆C 的半径为32+(t -1)2=3, 所以圆C 的方程为(x -3)2+(y -1)2=9.1.已知点A (-4,-5),B (6,-1),则以线段AB 为直径的圆的方程为( ) A .(x +1)2+(y -3)2=29 B .(x -1)2+(y +3)2=29 C .(x +1)2+(y -3)2=116 D .(x -1)2+(y +3)2=116答案 B解析 由题意可知A (-4,-5),B (6,-1),则以线段AB 为直径的圆的圆心为点⎝⎛⎭⎫-4+62,-5-12,即(1,-3),半径为(6+4)2+(-1+5)22=29,故以线段AB 为直径的圆的方程是 (x -1)2+(y +3)2=29. 故选B.2.圆心在y 轴上,且过点(3,1)的圆与x 轴相切,则该圆的方程是( ) A .x 2+y 2+10y =0 B .x 2+y 2-10y =0 C .x 2+y 2+10x =0 D .x 2+y 2-10x =0答案 B解析 根据题意,设圆心坐标为(0,r ),半径为r , 则32+(r -1)2=r 2,解得r =5,可得圆的方程为x 2+y 2-10y =0.3.(2017·豫北名校联考)圆(x -2)2+y 2=4关于直线y =33x 对称的圆的方程是( ) A .(x -3)2+(y -1)2=4 B .(x -2)2+(y -2)2=4 C .x 2+(y -2)2=4 D .(x -1)2+(y -3)2=4答案 D解析 设圆(x -2)2+y 2=4的圆心(2,0)关于直线y =33x 对称的点的坐标为(a ,b ),则有⎩⎪⎨⎪⎧b a -2·33=-1,b 2=33·a +22,解得a =1,b =3,从而所求圆的方程为(x -1)2+(y -3)2=4.故选D.4.(2017·福建厦门联考)若a ∈⎩⎨⎧⎭⎬⎫-2,0,1,34,则方程x 2+y 2+ax +2ay +2a 2+a -1=0表示的圆的个数为( ) A .0 B .1 C .2 D .3答案 B解析 方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆的条件为a 2+4a 2-4(2a 2+a -1)>0,即3a 2+4a -4<0,解得-2<a <23.又a ∈⎩⎨⎧⎭⎬⎫-2,0,1,34,∴仅当a =0时,方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆,故选B.5.(2018·长沙二模)圆x 2+y 2-2x -2y +1=0上的点到直线x -y =2的距离的最大值是( )A .1+ 2B .2C .1+22D .2+2 2答案 A解析 将圆的方程化为(x -1)2+(y -1)2=1,圆心坐标为(1,1),半径为1,则圆心到直线x -y=2的距离d =|1-1-2|2=2,故圆上的点到直线x -y =2的距离的最大值为d +1=2+1,故选A.6.点P (4,-2)与圆x 2+y 2=4上任一点连线的中点的轨迹方程是( )A .(x -2)2+(y +1)2=1B .(x -2)2+(y +1)2=4C .(x +4)2+(y -2)2=4D .(x +2)2+(y -1)2=1答案 A解析 设圆上任一点坐标为(x 0,y 0),x 20+y 20=4,连线中点坐标为(x ,y ),则⎩⎪⎨⎪⎧ 2x =x 0+4,2y =y 0-2,解得⎩⎪⎨⎪⎧x 0=2x -4,y 0=2y +2, 代入x 20+y 20=4中,得(x -2)2+(y +1)2=1. 7.已知a ∈R ,方程a 2x 2+(a +2)y 2+4x +8y +5a =0表示圆,则圆心坐标是________,半径是________.答案 (-2,-4) 5解析 由已知方程表示圆,则a 2=a +2,解得a =2或a =-1.当a =2时,方程不满足表示圆的条件,故舍去.当a =-1时,原方程为x 2+y 2+4x +8y -5=0,化为标准方程为(x +2)2+(y +4)2=25,表示以(-2,-4)为圆心,5为半径的圆.8.若圆C 经过坐标原点与点(4,0),且与直线y =1相切,则圆C 的方程是__________________.答案 (x -2)2+⎝⎛⎭⎫y +322=254解析 因为圆的弦的垂直平分线必过圆心且圆经过点(0,0)和(4,0),所以设圆心为(2,m ). 又因为圆与直线y =1相切,所以22+m 2=|1-m |,解得m =-32. 所以圆C 的方程为(x -2)2+⎝⎛⎭⎫y +322=254. 9.(2017·广州模拟)已知圆C :x 2+y 2+kx +2y =-k 2,当圆C 的面积取最大值时,圆心C 的坐标为__________.答案 (0,-1)解析 圆C 的方程可化为⎝⎛⎭⎫x +k 22+(y +1)2=-34k 2+1,所以当k =0时,圆C 的面积最大,此时圆心C 的坐标为(0,-1).10.已知点M (1,0)是圆C :x 2+y 2-4x -2y =0内的一点,那么过点M 的最短弦所在直线的方程是__________.答案 x +y -1=0解析 过点M 的最短弦与CM 垂直,圆C :x 2+y 2-4x -2y =0的圆心为C (2,1),∵k CM =1-02-1=1, ∴最短弦所在直线的方程为y -0=-(x -1),即x +y -1=0.11.在平面直角坐标系xOy 中,已知圆P 在x 轴上截得的线段长为22,在y 轴上截得的线段长为2 3.(1)求圆心P 的轨迹方程;(2)若P 点到直线y =x 的距离为22,求圆P 的方程. 解 (1)设P (x ,y ),圆P 的半径为r ,则y 2+2=r 2,x 2+3=r 2.∴y 2+2=x 2+3,即y 2-x 2=1.∴P 点的轨迹方程为y 2-x 2=1.(2)设P 点的坐标为(x 0,y 0), 则|x 0-y 0|2=22,即|x 0-y 0|=1. ∴y 0-x 0=±1,即y 0=x 0±1.①当y 0=x 0+1时,由y 20-x 20=1,得(x 0+1)2-x 20=1.∴⎩⎪⎨⎪⎧x 0=0,y 0=1,∴r 2=3.∴圆P 的方程为x 2+(y -1)2=3.②当y 0=x 0-1时,由y 20-x 20=1,得(x 0-1)2-x 20=1.∴⎩⎪⎨⎪⎧x 0=0,y 0=-1,∴r 2=3. ∴圆P 的方程为x 2+(y +1)2=3.综上所述,圆P 的方程为x 2+(y ±1)2=3.12.已知M 为圆C :x 2+y 2-4x -14y +45=0上任意一点,且点Q (-2,3).(1)求|MQ |的最大值和最小值;(2)若M (m ,n ),求n -3m +2的最大值和最小值. 解 (1)由圆C :x 2+y 2-4x -14y +45=0,可得(x -2)2+(y -7)2=8,所以圆心C 的坐标为(2,7),半径r =2 2.又|QC |=(2+2)2+(7-3)2=42>2 2.所以点Q 在圆C 外,所以|MQ |max =42+22=62,|MQ |min =42-22=2 2.(2)可知n -3m +2表示直线MQ 的斜率, 设直线MQ 的方程为y -3=k (x +2),即kx -y +2k +3=0,则n -3m +2=k . 因为直线MQ 与圆C 有交点, 所以|2k -7+2k +3|1+k 2≤22, 可得2-3≤k ≤2+3,所以n -3m +2的最大值为2+3,最小值为2- 3.13.已知圆C :(x -3)2+(y -4)2=1,设点P 是圆C 上的动点.记d =|PB |2+|P A |2,其中A (0,1),B (0,-1),则d 的最大值为________.答案 74解析 设P (x 0,y 0),d =|PB |2+|P A |2=x 20+(y 0+1)2+x 20+(y 0-1)2=2(x 20+y 20)+2.x 20+y 20为圆上任一点到原点距离的平方,∴(x 20+y 20)max =(5+1)2=36,∴d max =74.14.(2017·运城二模)已知圆C 截y 轴所得的弦长为2,圆心C 到直线l :x -2y =0的距离为55,且圆C 被x 轴分成的两段弧长之比为3∶1,则圆C 的方程为_________________. 答案 (x +1)2+(y +1)2=2或(x -1)2+(y -1)2=2解析 设圆C 的方程为(x -a )2+(y -b )2=r 2,则点C 到x 轴、y 轴的距离分别为|b |,|a |. 由题意可知⎩⎪⎨⎪⎧ r 2=2b 2,r 2=a 2+1,|a -2b |5=55, ∴⎩⎪⎨⎪⎧ a =-1,b =-1,r 2=2或⎩⎪⎨⎪⎧ a =1,b =1,r 2=2.故所求圆C 的方程为(x +1)2+(y +1)2=2或(x -1)2+(y -1)2=2.15.(2017·广东七校联考)圆x 2+y 2+2x -6y +1=0关于直线ax -by +3=0(a >0,b >0)对称,则1a +3b的最小值是( ) A .2 3B.203 C .4D.163答案 D解析 由圆x 2+y 2+2x -6y +1=0知,其标准方程为(x +1)2+(y -3)2=9,∵圆x 2+y 2+2x -6y +1=0关于直线ax -by +3=0(a >0,b >0)对称,∴该直线经过圆心(-1,3),即-a -3b +3=0,∴a +3b =3(a >0,b >0),∴1a +3b =13(a +3b )⎝⎛⎭⎫1a +3b =13⎝⎛⎭⎫1+3a b +3b a +9≥13⎝⎛⎭⎫10+23a b ·3b a =163, 当且仅当3b a =3a b,即a =b 时取等号,故选D. 16.已知平面区域⎩⎪⎨⎪⎧ x ≥0,y ≥0,x +2y -4≤0恰好被面积最小的圆C :(x -a )2+(y -b )2=r 2及其内部所覆盖,则圆C 的方程为______________.答案 (x -2)2+(y -1)2=5解析 由题意知,此平面区域表示的是以O (0,0),P (4,0),Q (0,2)所构成的三角形及其内部,∴覆盖它的且面积最小的圆是其外接圆.∵△OPQ 为直角三角形,∴圆心为斜边PQ 的中点(2,1),半径r =|PQ |2=5, 因此圆C 的方程为(x -2)2+(y -1)2=5.。
高考数学一轮复习 9.3圆的方程配套课件 理 新人教A版

是
.
【答案】(-∞,4)
【解析】由题得圆心(1,-3),且(-2)2+62-4×5a>0,即 a<2.
由圆心在直线上,可得 b=-2,故 a-b<4.
T 题型一求
圆的方程
方程.
例 1 求经过点 A(5,2),B(3,-2),且圆心在直线 2x-y-3=0 上的圆的
根据题目条件,既可以选择利用圆的几何特征求圆的方程, 也可以选择待定系数法求圆的方程.
【解】方法一:∵圆过 A(5,2),B(3,-2)两点, ∴圆心一定在线段 AB 的垂直平分线上.
线段 AB 的垂直平分线方程为 y=-12(x-4).
设所求圆的圆心坐标为 C(a,b),则有
2������-������-3 = 0,
������
=
-
1 2
解得 (a-4),
������ ������
方法二 :方程配方后可化为(x+2)2+(y-3)2=16, 所以圆心坐标为(-2,3),半径为 4.
2.若方程 x2+y2-x+y+m=0 表示圆,则实数 m 的取值范围是( )
A.m<12
B.m<10
C.m>12
D.m≤12
【答案】A 【解析】若方程表示圆,则必须满足 12+12-4m>0,
故 m<12.
1.圆的定义及方程
定义 平面内与定点的距离等于定长的点的集合(轨迹)
标准 方程 (x-a)2r
限定条件 r>0
一般 方程 x2+y2+Dx+Ey+F=0
圆心:
-
D 2
,-
高考数学一轮复习讲义(新高考版) 第9章 第3讲 圆的方程

第3讲圆的方程一、知识梳理1.圆的方程标准方程(x-a)2+(y-b)2=r2(r>0)圆心(a,b)半径为r 一般方程x2+y2+Dx+Ey+F=0条件:D2+E2-4F>0圆心:⎝⎛⎭⎪⎫-D2-E2半径:r=12D2+E2-4F2.点M(x0,y0)与圆(x-a)2+(y-b)2=r2的位置关系.(1)若M(x0,y0)在圆外,则(x0-a)2+(y0-b)2>r2.(2)若M(x0,y0)在圆上,则(x0-a)2+(y0-b)2=r2.(3)若M(x0,y0)在圆内,则(x0-a)2+(y0-b)2<r2.常用结论1.以A(x1,y1),B(x2,y2)为直径端点的圆的方程为(x-x1)(x-x2)+(y-y1)(y-y2)=0. 2.二元二次方程表示圆的条件对于方程x2+y2+Dx+Ey+F=0表示圆时易忽视D2+E2-4F>0这一条件.二、教材衍化1.圆x2+y2-2x+4y-6=0的圆心坐标________,半径________.答案:(1,-2)112.若圆的圆心为(-8,3),且经过点(-5,0),则圆的标准方程为________.答案:(x+8)2+(y-3)2=183.在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为________.答案:x2+y2-2x=0一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)确定圆的几何要素是圆心与半径.()(2)方程x 2+y 2=a 2表示半径为a 的圆.( ) (3)方程x 2+y 2+4mx -2y +5m =0表示圆.( )(4)方程Ax 2+Bxy +Cy 2+Dx +Ey +F =0表示圆的充要条件是A =C ≠0,B =0,D 2+E 2-4AF >0.( )答案:(1)√ (2)× (3)× (4)√ 二、易错纠偏常见误区| (1)忽视方程表示圆的条件D 2+E 2-4F >0; (2)错用点与圆的位置关系判定.1.方程x 2+y 2+4mx -2y +5m =0表示圆的充要条件是( ) A .14<m <1B .m <14或m >1C .m <14D .m >1解析:选B .由(4m )2+4-4×5m >0,得m <14或m >1.2.点(1,1)在圆(x -a )2+(y +a )2=4内,则实数a 的取值范围是________. 解析:因为点(1,1)在圆的内部, 所以(1-a )2+(1+a )2<4, 所以-1<a <1. 答案:(-1,1)考点一 求圆的方程(基础型)复习指导| 回顾确定圆的几何要素,在平面直角坐标系中,探索并掌握圆的标准方程与一般方程.核心素养:数学运算(1)圆心在x 轴上,半径长为2,且过点A (2,1)的圆的方程是( ) A .(x -2-3)2+y 2=4 B .(x -2+3)2+y 2=4 C .(x -2±3)2+y 2=4D .(x -2)2+(y -1)2=4(2)(一题多解)圆心在直线x -2y -3=0上,且过点A (2,-3),B (-2,-5)的圆的方程为________.【解析】 (1)根据题意可设圆的方程为(x -a )2+y 2=4,因为圆过点A (2,1),所以(2-a )2+12=4,解得a =2±3,所以所求圆的方程为(x -2±3)2+y 2=4.(2)法一:设点C 为圆心,因为点C 在直线x -2y -3=0上,所以可设点C 的坐标为(2a +3,a ).又该圆经过A ,B 两点,所以|CA |=|CB |, 即(2a +3-2)2+(a +3)2=(2a +3+2)2+(a +5)2,解得a =-2, 所以圆心C 的坐标为(-1,-2),半径r =10, 故所求圆的方程为(x +1)2+(y +2)2=10. 法二:设所求圆的标准方程为(x -a )2+(y -b )2=r 2,由题意得⎩⎪⎨⎪⎧(2-a )2+(-3-b )2=r 2(-2-a )2+(-5-b )2=r 2a -2b -3=0解得a =-1,b =-2,r 2=10,故所求圆的方程为(x +1)2+(y +2)2=10. 法三:设圆的一般方程为x 2+y 2+Dx +Ey +F =0,则圆心坐标为⎝ ⎛⎭⎪⎫-D2-E 2,由题意得⎩⎨⎧-D2-2×⎝⎛⎭⎫-E 2-3=04+9+2D -3E +F =04+25-2D -5E +F =0解得D =2,E =4,F =-5.故所求圆的方程为x 2+y 2+2x +4y -5=0.【答案】 (1)C (2)x 2+y 2+2x +4y -5=0求圆的方程的两种方法(1)直接法根据圆的几何性质,直接求出圆心坐标和半径,进而写出方程. (2)待定系数法①若已知条件与圆心(a ,b )和半径r 有关,则设圆的标准方程,依据已知条件列出关于a ,b ,r 的方程组,从而求出a ,b ,r 的值;②若已知条件没有明确给出圆心或半径,则选择圆的一般方程,依据已知条件列出关于D ,E ,F 的方程组,进而求出D ,E ,F 的值.[提醒] 解答圆的有关问题,应注意数形结合,充分运用圆的几何性质.1.(2020·内蒙古巴彦淖尔月考)在平面直角坐标系中,点O (0,0),A (2,4),B (6,2),则三角形OAB 的外接圆方程是________.解析:设三角形OAB 的外接圆方程是x 2+y 2+Dx +Ey +F =0,由点O (0,0),A (2,4),B (6,2)在圆上可得⎩⎪⎨⎪⎧F =04+16+2D +4E +F =036+4+6D +2E +F =0解得⎩⎪⎨⎪⎧F =0D =-6E =-2故三角形的外接圆方程为x 2+y 2-6x -2y =0.答案:x 2+y 2-6x -2y =02.若圆C 经过坐标原点与点(4,0),且与直线y =1相切,则圆C 的方程是________. 解析:因为圆的弦的垂直平分线必过圆心且圆经过点(0,0)和(4,0),设圆心为(2,m ),又因为圆与直线y =1相切,所以22+m 2=|1-m |,解得m =-32,所以圆C的方程为(x -2)2+⎝⎛⎭⎫y +322=254. 答案:(x -2)2+⎝⎛⎭⎫y +322=254考点二 与圆有关的最值问题(综合型)复习指导| 求解此类问题常利用数形结合思想或函数思想. 角度一 借助几何性质求最值已知实数x ,y 满足方程x 2+y 2-4x +1=0. (1)求yx 的最大值和最小值;(2)求y -x 的最大值和最小值; (3)求x 2+y 2的最大值和最小值.【解】 原方程可化为(x -2)2+y 2=3,表示以(2,0)为圆心,3为半径的圆. (1)yx 的几何意义是圆上一点与原点连线的斜率, 所以设yx=k ,即y =kx .当直线y =kx 与圆相切时,斜率k 取最大值或最小值,此时|2k -0|k 2+1=3,解得k =±3(如图1).所以yx的最大值为3,最小值为- 3.(2)y -x 可看作是直线y =x +b 在y 轴上的截距,当直线y =x +b 与圆相切时,纵截距b 取得最大值或最小值,此时|2-0+b |2=3,解得b =-2±6(如图2).所以y -x 的最大值为-2+6,最小值为-2- 6.(3)x 2+y 2表示圆上的一点与原点距离的平方,由平面几何知识知,在原点和圆心连线与圆的两个交点处取得最大值和最小值(如图3).又圆心到原点的距离为(2-0)2+(0-0)2=2,所以x 2+y 2的最大值是(2+3)2=7+43,x 2+y 2的最小值是(2-3)2=7-4 3.与圆有关的最值问题的三种几何转化法(1)形如μ=y -bx -a 形式的最值问题可转化为动直线斜率的最值问题.(2)形如t =ax +by 形式的最值问题可转化为动直线截距的最值问题.(3)形如m =(x -a )2+(y -b )2形式的最值问题可转化为动点到定点的距离的平方的最值问题.角度二 建立函数关系求最值设点P (x ,y )是圆:(x -3)2+y 2=4上的动点,定点A (0,2),B (0,-2),则|P A →+PB →|的最大值为________.【解析】 由题意,知P A →=(-x ,2-y ),PB →=(-x ,-2-y ),所以P A →+PB →=(-2x ,-2y ),由于点P (x ,y )是圆上的点,故其坐标满足方程(x -3)2+y 2=4,故y 2=-(x -3)2+4,所以|P A →+PB →|=4x 2+4y 2=26x -5.由圆的方程(x -3)2+y 2=4,易知1≤x ≤5,所以当x =5时,|P A →+PB →|的值最大,最大值为26×5-5=10.【答案】 10建立函数关系式求最值根据已知条件列出相关的函数关系式,再根据关系式的特征选用基本不等式、函数单调性等方法求最值.1.(2020·厦门模拟)设点P (x ,y )是圆:x 2+(y -3)2=1上的动点,定点A (2,0),B (-2,0),则P A →·PB →的最大值为________.解析:由题意,知P A →=(2-x ,-y ),PB →=(-2-x ,-y ),所以P A →·PB →=x 2+y 2-4,由于点P (x ,y )是圆上的点,故其坐标满足方程x 2+(y -3)2=1,故x 2=-(y -3)2+1,所以P A →·PB →=-(y -3)2+1+y 2-4=6y -12.易知2≤y ≤4,所以,当y =4时,P A →·PB →的值最大,最大值为6×4-12=12.答案:122.已知实数x ,y 满足(x -2)2+(y -1)2=1,则z =y +1x 的最大值与最小值分别为________和________.解析:由题意,得y +1x 表示过点A (0,-1)和圆(x -2)2+(y -1)2=1上的动点P (x ,y )的直线的斜率.当且仅当直线与圆相切时,直线的斜率分别取得最大值和最小值.设切线方程为y =kx -1,即kx -y -1=0,则|2k -2|k 2+1=1,解得k =4±73,所以z max =4+73,z min =4-73. 答案:4+73 4-73考点三 与圆有关的轨迹问题(综合型)已知A (2,0)为圆x 2+y 2=4上一定点,B (1,1)为圆内一点,P ,Q 为圆上的动点. (1)求线段AP 中点的轨迹方程;(2)若∠PBQ =90°,求线段PQ 中点的轨迹方程. 【解】 (1)设AP 的中点为M (x ,y ),由中点坐标公式可知,P 点坐标为(2x -2,2y ). 因为P 点在圆x 2+y 2=4上, 所以(2x -2)2+(2y )2=4.故线段AP 中点的轨迹方程为(x -1)2+y 2=1. (2)设PQ 的中点为N (x ,y ), 在Rt △PBQ 中,|PN |=|BN |,设O 为坐标原点,连接ON ,则ON ⊥PQ , 所以|OP |2=|ON |2+|PN |2=|ON |2+|BN |2, 所以x 2+y 2+(x -1)2+(y -1)2=4.故线段PQ 中点的轨迹方程为x 2+y 2-x -y -1=0.与圆有关的轨迹问题的四种求法已知Rt △ABC 的斜边为AB ,且A (-1,0),B (3,0).求:(1)直角顶点C 的轨迹方程;(2)直角边BC 的中点M 的轨迹方程. 解:(1)法一:设C (x ,y ),因为A ,B ,C 三点不共线,所以y ≠0. 因为AC ⊥BC ,所以k AC ·k BC =-1, 又k AC =y x +1,k BC =y x -3,所以y x +1·yx -3=-1,化简得x 2+y 2-2x -3=0.因此,直角顶点C 的轨迹方程为x 2+y 2-2x -3=0(y ≠0).法二:设AB 的中点为D ,由中点坐标公式得D (1,0),由直角三角形的性质知|CD |=12|AB |=2.由圆的定义知,动点C 的轨迹是以D (1,0)为圆心,2为半径的圆(由于A ,B ,C 三点不共线,所以应除去与x 轴的交点).所以直角顶点C 的轨迹方程为(x -1)2+y 2=4(y ≠0). (2)设M (x ,y ),C (x 0,y 0),因为B (3,0),M 是线段BC 的中点, 由中点坐标公式得x =x 0+32,y =y 0+02,所以x 0=2x -3,y 0=2y .由(1)知,点C 的轨迹方程为(x -1)2+y 2=4(y ≠0), 将x 0=2x -3,y 0=2y 代入得(2x -4)2+(2y )2=4, 即(x -2)2+y 2=1.因此动点M 的轨迹方程为(x -2)2+y 2=1(y ≠0).[基础题组练]1.已知圆C 的圆心为(2,-1),半径长是方程(x +1)(x -4)=0的解,则圆C 的标准方程为( )A .(x +1)2+(y -2)2=4B .(x -2)2+(y -1)2=4C .(x -2)2+(y +1)2=16D .(x +2)2+(y -1)2=16解析:选C .根据圆C 的半径长是方程(x +1)(x -4)=0的解,可得半径长为4,故要求的圆的标准方程为(x -2)2+(y +1)2=16.2.(2020·河北九校第二次联考)圆C 的半径为2,圆心在x 轴的正半轴上,直线3x +4y +4=0与圆C 相切,则圆C 的方程为( )A .x 2-y 2-2x -3=0B .x 2+y 2+4x =0C .x 2+y 2-4x =0D .x 2+y 2+2x -3=0解析:选C .由题意设所求圆的方程为(x -m )2+y 2=4(m >0),则|3m +4|32+42=2,解得m =2或m =-143(舍去),故所求圆的方程为(x -2)2+y 2=4,即x 2+y 2-4x =0,故选C .3.方程|x |-1=1-(y -1)2所表示的曲线是( ) A .一个圆 B .两个圆 C .半个圆D .两个半圆解析:选D .由题意得⎩⎪⎨⎪⎧(|x |-1)2+(y -1)2=1|x |-1≥0即⎩⎨⎧(x -1)2+(y -1)2=1x ≥1或⎩⎨⎧(x +1)2+(y -1)2=1x ≤-1.故原方程表示两个半圆.4.(2020·湖南长沙模拟)圆x 2+y 2-2x -2y +1=0上的点到直线x -y =2距离的最大值是( )A .1+ 2B .2C .1+22D .2+2 2解析:选A .将圆的方程化为(x -1)2+(y -1)2=1,圆心坐标为(1,1),半径为1,则圆心到直线x -y =2的距离d =|1-1-2|2=2,故圆上的点到直线x -y =2距离的最大值为d +1=2+1,选A .5.点P (4,-2)与圆x 2+y 2=4上任一点连线的中点的轨迹方程是( ) A .(x -2)2+(y +1)2=1 B .(x -2)2+(y +1)2=4 C .(x +4)2+(y -2)2=4D .(x +2)2+(y -1)2=1解析:选A .设圆上任一点为Q (x 0,y 0),PQ 的中点为M (x ,y ),则⎩⎪⎨⎪⎧x =4+x 02y =-2+y 02解得⎩⎨⎧x 0=2x -4y 0=2y +2.因为点Q 在圆x 2+y 2=4上,所以x 20+y 20=4,即(2x -4)2+(2y +2)2=4,化简得(x -2)2+(y +1)2=1.6.已知a ∈R ,方程a 2x 2+(a +2)y 2+4x +8y +5a =0表示圆,则圆心坐标是________,半径是________.解析:已知方程表示圆,则a 2=a +2, 解得a =2或a =-1.当a =2时,方程不满足表示圆的条件,故舍去. 当a =-1时,原方程为x 2+y 2+4x +8y -5=0, 化为标准方程为(x +2)2+(y +4)2=25, 表示以(-2,-4)为圆心,半径为5的圆. 答案:(-2,-4) 57.过两点A (1,4),B (3,2)且圆心在直线y =0上的圆的标准方程为________.解析:设圆的标准方程为(x -a )2+(y -b )2=r 2.因为圆心在直线y =0上,所以b =0,所以圆的方程为(x -a )2+y 2=r 2.又因为该圆过A (1,4),B (3,2)两点,所以⎩⎪⎨⎪⎧(1-a )2+16=r 2(3-a )2+4=r 2解得⎩⎨⎧a =-1r 2=20.所以所求圆的方程为(x +1)2+y 2=20.答案:(x +1)2+y 2=208.若圆C 与圆x 2+y 2+2x =0关于直线x +y -1=0对称,则圆C 的方程是________. 解析:设C (a ,b ),因为已知圆的圆心为A (-1,0),由点A ,C 关于x +y -1=0对称得⎩⎪⎨⎪⎧ba +1×(-1)=-1a -12+b2-1=0解得⎩⎨⎧a =1b =2.又因为圆的半径是1,所以圆C 的方程是(x -1)2+(y -2)2=1, 即x 2+y 2-2x -4y +4=0. 答案:x 2+y 2-2x -4y +4=0 9.求适合下列条件的圆的方程.(1)圆心在直线y =-4x 上,且与直线l :x +y -1=0相切于点P (3,-2); (2)过三点A (1,12),B (7,10),C (-9,2).解:(1)法一:设圆的标准方程为(x -a )2+(y -b )2=r 2,则有⎩⎨⎧b =-4a(3-a )2+(-2-b )2=r2|a +b -1|2=r解得a =1,b =-4,r =2 2.所以圆的方程为(x -1)2+(y +4)2=8.法二:过切点且与x +y -1=0垂直的直线为y +2=x -3,与y =-4x 联立可求得圆心为(1,-4).所以半径r =(1-3)2+(-4+2)2=22,所以所求圆的方程为(x -1)2+(y +4)2=8.(2)设圆的一般方程为x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0),则⎩⎨⎧1+144+D +12E +F =049+100+7D +10E +F =081+4-9D +2E +F =0.解得D =-2,E =-4,F =-95.所以所求圆的方程为x 2+y 2-2x -4y -95=0.10.已知以点P 为圆心的圆经过点A (-1,0)和B (3,4),线段AB 的垂直平分线交圆P 于点C 和D ,且|CD |=410.(1)求直线CD 的方程; (2)求圆P 的方程.解:(1)由题意知,直线AB 的斜率k =1,中点坐标为(1,2). 则直线CD 的方程为y -2=-(x -1),即x +y -3=0. (2)设圆心P (a ,b ),则由点P 在CD 上得a +b -3=0.① 又因为直径|CD |=410,所以|P A |=210, 所以(a +1)2+b 2=40.②由①②解得⎩⎪⎨⎪⎧a =-3b =6或⎩⎨⎧a =5b =-2.所以圆心P (-3,6)或P (5,-2).所以圆P 的方程为(x +3)2+(y -6)2=40或(x -5)2+(y +2)2=40.[综合题组练]1.自圆C :(x -3)2+(y +4)2=4外一点P (x ,y )引该圆的一条切线,切点为Q ,PQ 的长度等于点P 到原点O 的距离,则点P 的轨迹方程为( )A .8x -6y -21=0B .8x +6y -21=0C .6x +8y -21=0D .6x -8y -21=0解析:选D .由题意得,圆心C 的坐标为(3,-4),半径r =2,如图.因为|PQ|=|PO|,且PQ⊥CQ,所以|PO|2+r2=|PC|2,所以x2+y2+4=(x-3)2+(y+4)2,即6x-8y-21=0,所以点P的轨迹方程为6x-8y-21=0,故选D.2.设点P是函数y=-4-(x-1)2的图象上的任意一点,点Q(2a,a-3)(a∈R),则|PQ|的最小值为()A.855-2 B. 5C.5-2 D.755-2解析:选C.如图所示,点P在半圆C(实线部分)上,且由题意知,C(1,0),点Q在直线l:x-2y -6=0上.过圆心C作直线l的垂线,垂足为点A,则|CA|=5,|PQ|min=|CA|-2=5-2.故选C.3.(应用型)已知平面区域⎩⎨⎧x≥0y≥0x+2y-4≤0恰好被面积最小的圆C:(x-a)2+(y-b)2=r2及其内部所覆盖,则圆C的方程为________.解析:由题意知,此平面区域表示的是以O(0,0),P(4,0),Q(0,2)所构成的三角形及其内部,所以覆盖它的且面积最小的圆是其外接圆.因为△OPQ为直角三角形,所以圆心为斜边PQ的中点(2,1),半径r=|PQ|2=5,因此圆C的方程为(x-2)2+(y-1)2=5.答案:(x-2)2+(y-1)2=54.(应用型)已知A (0,2),点P 在直线x +y +2=0上,点Q 在圆C :x 2+y 2-4x -2y =0上,则|P A |+|PQ |的最小值是________.解析:因为圆C :x 2+y 2-4x -2y =0,故圆C 是以C (2,1)为圆心,半径r =5的圆.设点A (0,2)关于直线x +y +2=0的对称点为A ′(m ,n ),故⎩⎪⎨⎪⎧m +02+n +22+2=0n -2m -0=1 解得⎩⎪⎨⎪⎧m =-4n =-2故A ′(-4,-2). 连接A ′C 交圆C 于Q ,由对称性可知|P A |+|PQ |=|A ′P |+|PQ |≥|A ′Q |=|A ′C |-r =2 5.答案:2 55.(2018·高考全国卷Ⅱ)设抛物线C :y 2=4x 的焦点为F ,过F 且斜率为k (k >0)的直线l 与C 交于A ,B 两点,|AB |=8.(1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.解:(1)由题意得F (1,0),l 的方程为y =k (x -1)(k >0).设A (x 1,y 1),B (x 2,y 2).由⎩⎨⎧y =k (x -1)y 2=4x得k 2x 2-(2k 2+4)x +k 2=0. Δ=16k 2+16>0,故x 1+x 2=2k 2+4k 2. 所以|AB |=|AF |+|BF |=(x 1+1)+(x 2+1)=4k 2+4k 2. 由题设知4k 2+4k 2=8,解得k =-1(舍去),k =1. 因此l 的方程为y =x -1.(2)由(1)得AB 的中点坐标为(3,2),所以AB 的垂直平分线方程为y -2=-(x -3),即y =-x +5.设所求圆的圆心坐标为(x 0,y 0),则⎩⎪⎨⎪⎧y 0=-x 0+5(x 0+1)2=(y 0-x 0+1)22+16. 解得⎩⎨⎧x 0=3y 0=2或⎩⎨⎧x 0=11y 0=-6.因此所求圆的方程为(x -3)2+(y -2)2=16或(x -11)2+(y +6)2=144.6.已知圆C 的方程为x 2+(y -4)2=1,直线l 的方程为2x -y =0,点P 在直线l 上,过点P 作圆C 的切线P A ,PB ,切点分别为A ,B .(1)若∠APB =60°,求点P 的坐标;(2)求证经过A ,P ,C (其中点C 为圆C 的圆心)三点的圆必经过定点,并求出所有定点的坐标.解:(1)由条件可得圆C 的圆心坐标为(0,4),|PC |=2,设P (a ,2a ),则a 2+(2a -4)2=2,解得a =2或a =65, 所以点P 的坐标为(2,4)或⎝ ⎛⎭⎪⎫65125. (2)证明:设P (b ,2b ),过点A ,P ,C 的圆即是以PC 为直径的圆,其方程为x (x -b )+(y -4)(y -2b )=0,整理得x 2+y 2-bx -4y -2by +8b =0,即(x 2+y 2-4y )-b (x +2y -8)=0. 由⎩⎨⎧x 2+y 2-4y =0x +2y -8=0解得⎩⎨⎧x =0y =4或⎩⎪⎨⎪⎧x =85y =165所以该圆必经过定点(0,4)和⎝ ⎛⎭⎪⎫85165.。
2019届高考数学人教A版理科第一轮复习课件:第九章 解析几何 9.3

-12-
考点1
考点2
考点3
对点训练1(1)过点A(4,1)的圆C与直线x-y-1=0相切于点B(2,1),则 圆C的方程为 . (2)(2017河南百校联盟)经过点A(5,2),B(3,-2),且圆心在直线2x-y3=0上的圆的方程为 .
关闭
关闭
-6解析
答案
知识梳理
双基自测
1 2 3 4 5
4.(2017湖南邵阳一模)已知A(-1,4),B(3,-2),以AB为直径的圆的标 准方程为 .
关闭
以AB为直径的圆的方程为(x+1)(x-3)+(y-4)(y+2)=0,整理得(x-1)2+(y1)2=13. (x-1)2+(y-1)2=13
答案: (1)B (2)x2+y2-2x-4y-8=0或x2+y2-6x-8y=0
-9-
考点1
考点2
考点3
解析: (1)(方法一)设出圆心坐标,根据该圆与两条直线都相切列 方程即可. 即|a|=|a-2|,解得a=1,
故圆C的方程为(x-1)2+(y+1)2=2. (方法二)题目给出的圆的两条切线是平行线,故圆的直径就是这 两条平行线之间的距离 ;圆心是直线x+y=0被这两条平 行线所截线段的中点,直线x+y=0与直线x-y=0的交点坐标是(0,0), 与直线x-y-4=0的交点坐标是(2,-2),故所求圆的圆心坐标是(1,-1),所 求圆C的方程是(x-1)2+(y+1)2=2.
-10-
考点1
考点2
考点3
(方法三)作为选择题也可以验证解答.圆心在x+y=0上,排除选项 C,D,再验证选项A,B中圆心到两直线的距离是否等于半径2即可. (2)设圆的方程为x2+y2+Dx+Ey+F=0, 将P,Q两点的坐标分别代入得
高考数学一轮总复习 9.3 圆的方程精品课件 理 新人教版

考点一 考点二 考点三
探究突破
-14-
举一反三 1 圆心在抛物线 x2=2y(x>0)上,并且与抛物线的准线及 y 轴
都相切的圆的方程是(
)
A.x2+y2-x-2y+1=0
B.x2+y2-2x-y+1=0
设圆C心.x坐2+标y2为-x-2������y0+, ���2���1402=0(x0>0),∵抛物线 x2=2y 的准线方程为 y=-12,
叫做
梳理自测
-4-
3.圆的一般方程 对于方程 x2+y2+Dx+Ey+F=0,
(1)当
D2+E2-4F>0
时,表示圆心为
-
������ 2
,-
������ 2
,半径长为
1 2
������2 + ������2-4F的圆;
(2)当
D2+E2-4F=0
时,表示一个点
-
������ 2
,-
������ 2
|������|-1 ≥ 0.
故原方程表示两个半圆.
D
-9-
关闭
关闭
解析 答案
梳理自测
-10-
4.圆心在原点且与直线 x+y-2=0 相切的圆的方程为 .
设圆的方程为 x2+y2=a2(a>0),由 |1-2+|1=a,∴a= 2. ∴x2+y2=2. x2+y2=2
关闭
关闭
解析 答案
梳理自测
5.圆 C:x2+y2-2x-4y+4=0 的圆心到直线 3x+4y+4=0 的距离 d=
2019届高考数学一轮复习第九章平面解析几何9_3圆的方
1+2 3 32=
21 3.
(2)由题意知该圆的半径为 1,设圆心坐标为 C(-1,a)(a>0), 则 A(0,a),又 F(1,0),所以A→C=(-1,0),A→F=(1,-a),由题意 得A→C与A→F的夹角为 120°,得 cos120°=1×-11+a2=-12,解得 a = 3,所以圆的方程为(x+1)2+(y- 3)2=1.
→
结合图形设 出圆心、半径
→
利用向量夹 角列式求解
→ 得结果
[解析] (1)解法一:设圆的一般方程为 x2+y2+Dx+Ey+F =0,
1+D+F=0, ∴3+ 3E+F=0,
7+2D+ 3E+F=0,
D=-2,
∴E=-4
3
3,
F=1,
∴△ABC 外接圆的圆心为1,233,故△ABC 外接圆的圆心
[答案] x2+y2-2x-12=0
5.已知直角三角形 ABC 的斜边为 AB,且 A(-1,0),B(3,0), 则直角顶点 C 的轨迹方程为__________.
[解析] AB 的中点 D 坐标为(1,0),由直角三角形的性质可知, |CD|=12|AB|=2,所以 C 的轨迹是以 D 为圆心,以 2 为半径的圆, 其方程为(x-1)2+y2=4,即 x2+y2-2x-3=0,其中 x≠3 且 x≠ -1.
第
九
平面解析几何
章
第三节
圆的方程
高考概览 1.掌握确定圆的几何要素,掌握圆的标准方程与一般方程; 2.初步了解用代数方法处理几何问题的思想.
吃透教材 夯双基
填一填 记一记 厚积薄发
1.圆的定义及方程
[知识梳理]
[温馨提示] 二元二次方程表示圆的条件: 在二元二次方程 x2+y2+Dx+Ey+F=0 中,若 D2+E2-4F =0,则方程表示一个点-D2 ,-E2;当 D2+E2-4F<0 时,方程 不表示任何图形,只有 D2+E2-4F>0,方程才表示圆.如: 如果方程 x2+y2-4x+2y+5k=0 表示圆,那么 k 的取值范围 是 (-∞,1) .
2019届高考数学一轮复习第九章平面解析几何第三节圆的方程课件文
解析 设圆心为P(a,b),由点A(1,3),C(1,-7)在圆上,知b= 3 =7-2.再由|PA|
2
=|PB|,得a=1,则P(1,-2),|PA|= (=15,1于)2 是 (圆3 P2的)2 方程为(x-1)2+ (y+2)2=25.令x=0,得y=-2±2 6 ,则|MN|=|(-2+2 6)-(-2-2 )6|=4 . 6
3.圆的标准方程
(x-a)2+(y-b)2=r2(r>0),其中⑥ (a,b) 为圆心,⑦ r 为半径.
4.圆的一般方程
x2+y2+Dx+Ey+F=0表示圆的充要条件是⑧ D2+E2-4F>0 ,其中圆心为
⑨
Dຫໍສະໝຸດ 2,E 2
,半径r=⑩
D2 E2 4F
2
.
5.点与圆的位置关系
解析 因为点A(-1,1)和B(1,3)为圆C直径的两个端点,则圆心C的坐标为 (0,2), 半径|CA|= (2 1)2 [0 (1)]2 = 2 , 所以圆C的方程为x2+(y-2)2=2.
5.方程x2+y2+ax+2ay+2a2+a-1=0表示圆,则a的取值范围是
2,
2 3
点与圆的位置关系有三种:(圆的标准方程为(x-a)2+(y-b)2=r2,点为(x0,y0)) (1)点在圆上: (x0-a)2+(y0-b)2=r2 ; (2)点在圆外: (x0-a)2+(y0-b)2>r2 ; (3)点在圆内: (x0-a)2+(y0-b)2<r2 .
1.圆心坐标为(1,1)且过原点的圆的方程是 ( D )
高考理科数学一轮总复习课标通用版课件:第9章平面解析几何9-3圆的方程
经典品质/超出梦想
高考总复习/新课标版 数学·理
[强化训练 2.1] △ABC 的三个顶点分别为 A(-1,5),B(-2,-2),C(5,5),则其
外接圆的方程为________.
解析:解法 1:设所求圆的方程为 x2+y2+Dx+Ey+F=0,则由题意有
-D+5E+F+26=0, D=-4, -2D-2E+F+8=0,解得E=-2,
(2)点 M 在圆外:_______________________________;
(3)点 M 在圆内:__________________________________________.
4.确定圆的方程的方法和步骤
确定圆的方程的主要方法是待定系数法,大致步骤为
(1)根据题意,选择标准方程或一般方程;
要素是________和________.
2.圆的标准方程与一般方程 (1)圆的标准方程:方程(x-a)2+(y-b)2=r2(r>0)叫做以点________为圆心,________
为半径长的圆的标准方程.
(2)圆的一般方程:方程 x2+y2+Dx+Ey+F=0(________)叫做圆的一般方程. 注:将上述一般方程配方得x+D2 2+y+E22=D2+E42-4F,此为该一般方程对应的 标准方程,表示的是以________为圆心,________为半径长的圆.
高频考点透析 直通高考202X 第4页
经典品质/超出梦想
高考总复习/新课标版 数学·理
命题规律分析
考纲原文下载
命题规律分析
知识梳理整合
挖教材赢高考
高频考点透析 直通高考202X 第5页
经典品质/超出梦想
高考总复习/新课标版 数学·理
高考数学大一轮复习 9.3圆的方程配套课件 理 新人教A版
难点正本 疑点清源
5.确定圆的方程的方法和步骤 确定圆的方程主要方法是待定系数法, 大致步骤为 (1) 根 据 题 意 , 选 择 标 准 方 程 或 一 般 方程; (2)根据条件列出关于 a,b,r 或 D、E、 F 的方程组; (3)解出 a、b、r 或 D、E、F 代入标准
2.圆的一般方程的特征
并且在 x 轴上截得的弦长等于 6; (2)圆心在直线 y=-4x 上,且与直 线 l:x+y-1=0 相切于点 P(3,
准方程. (2)设圆的一般方程,利用待定 系数法求解.
-2).
动画展示
题型分类·深度剖析
题型一
求圆的方程
【例 1】根据下列条件,求圆的方程: 思维启迪
解析
探究提高
(1)经过 P(-2,4)、Q(3,-1)两点, 解 (1)设圆的方程为 x2+y2+Dx
-2).
圆的方程,用待定系数法求解.
动画展示
动画展示
y0=-4x0, |x30-+xy020-2+1|=-r2,-y02=r2,
x0=1, 解得y0=-4,
r=2 2.
因此所求圆的方程为(x-1)2+
(y+4)2=8.
题型分类·深度剖析
题型一
求圆的方程
【例 1】根据下列条件,求圆的方程: 思维启迪
解析
探究提高
动画展示
由|x1-x2|=6 有 D2-4F=36,④
由①、②、④解得 D=-2,E=
-4,F=-8,或 D=-6,E=
-8,F=0.
题型分类·深度剖析
题型一
求圆的方程
【例 1】根据下列条件,求圆的方程: 思维启迪
解析
探究提高
故所求圆的方程为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§9.3圆的方程圆的定义与方程知识拓展1.确定圆的方程的方法和步骤确定圆的方程主要方法是待定系数法,大致步骤:(1)根据题意,选择标准方程或一般方程.(2)根据条件列出关于a,b,r或D,E,F的方程组.(3)解出a,b,r或D,E,F代入标准方程或一般方程.2.点与圆的位置关系点和圆的位置关系有三种.已知圆的标准方程(x-a)2+(y-b)2=r2,点M(x0,y0)(1)点在圆上:(x0-a)2+(y0-b)2=r2;(2)点在圆外:(x0-a)2+(y0-b)2>r2;(3)点在圆内:(x0-a)2+(y0-b)2<r2.题组一思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)确定圆的几何要素是圆心与半径.(√)(2)已知点A(x1,y1),B(x2,y2),则以AB为直径的圆的方程是(x-x1)(x-x2)+(y-y1)(y-y2)=0.(√)(3)方程Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆的充要条件是A=C≠0,B=0,D2+E2-4AF>0.(√)(4)方程x2+2ax+y2=0一定表示圆.(×)(5)若点M(x0,y0)在圆x2+y2+Dx+Ey+F=0外,则x20+y20+Dx0+Ey0+F>0.(√)(6)方程(x+a)2+(y+b)2=t2(t∈R)表示圆心为(a,b),半径为t的圆.(×)题组二教材改编2.[P132A组T3](2018·南昌模拟)以点(3,-1)为圆心,并且与直线3x+4y=0相切的圆的方程是()A.(x-3)2+(y+1)2=1B.(x-3)2+(y-1)2=1C.(x+3)2+(y-1)2=1D.(x+3)2+(y+1)2=1答案 A3.[P124A组T4]圆C的圆心在x轴上,并且过点A(-1,1)和B(1,3),则圆C的方程为_______.答案(x-2)2+y2=10解析设圆心坐标为C(a,0),∵点A(-1,1)和B(1,3)在圆C上,∴|CA|=|CB|,即(a+1)2+1=(a-1)2+9,解得a=2,∴圆心为C(2,0),半径|CA|=(2+1)2+1=10,∴圆C的方程为(x-2)2+y2=10.题组三易错自纠4.若方程x2+y2+mx-2y+3=0表示圆,则m的取值范围是()A.(-∞,-2)∪(2,+∞)B.(-∞,-22)∪(22,+∞)C .(-∞,-3)∪(3,+∞)D .(-∞,-23)∪(23,+∞) 答案 B解析 将x 2+y 2+mx -2y +3=0化为圆的标准方程得⎝⎛⎭⎫x +m 22+(y -1)2=m24-2. 由其表示圆可得m 24-2>0,解得m <-22或m >2 2.5.若点(1,1)在圆(x -a )2+(y +a )2=4的内部,则实数a 的取值范围是( ) A .-1<a <1 B .0<a <1 C .a >1或a <-1 D .a =±4答案 A解析 ∵点(1,1)在圆内,∴(1-a )2+(a +1)2<4,即-1<a <1.6.若圆C 的半径为1,圆心在第一象限,且与直线4x -3y =0和x 轴都相切,则该圆的标准方程是( )A .(x -2)2+(y -1)2=1B .(x -2)2+(y +1)2=1C .(x +2)2+(y -1)2=1D .(x -3)2+(y -1)2=1 答案 A解析 由于圆心在第一象限且与x 轴相切,可设圆心为(a,1)(a >0),又圆与直线4x -3y =0相切, ∴|4a -3|5=1,解得a =2或a =-12(舍去). ∴圆的标准方程为(x -2)2+(y -1)2=1. 故选A.题型一 圆的方程典例 (1)过点A (4,1)的圆C 与直线x -y -1=0相切于点B (2,1),则圆C 的方程为__________. 答案 (x -3)2+y 2=2解析 方法一 由已知k AB =0,所以AB 的中垂线方程为x =3.①过点B 且垂直于直线x -y -1=0的直线方程为y -1=-(x -2),即x +y -3=0,②联立①②,解得⎩⎪⎨⎪⎧x =3,y =0,所以圆心坐标为(3,0),半径r =(4-3)2+(1-0)2=2, 所以圆C 的方程为(x -3)2+y 2=2.方法二 设圆方程为(x -a )2+(y -b )2=r 2(r >0), 因为点A (4,1),B (2,1)都在圆上,故⎩⎪⎨⎪⎧(4-a )2+(1-b )2=r 2,(2-a )2+(1-b )2=r 2, 又因为b -1a -2=-1,解得a =3,b =0,r =2,故所求圆的方程为(x -3)2+y 2=2.(2)已知圆C 经过P (-2,4),Q (3,-1)两点,且在x 轴上截得的弦长等于6,则圆C 的方程为______________.答案 x 2+y 2-2x -4y -8=0或x 2+y 2-6x -8y =0解析 设圆的方程为x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0), 将P ,Q 两点的坐标分别代入得⎩⎪⎨⎪⎧2D -4E -F =20,①3D -E +F =-10. ② 又令y =0,得x 2+Dx +F =0.③ 设x 1,x 2是方程③的两根,由|x 1-x 2|=6,即(x 1+x 2)2-4x 1x 2=36, 得D 2-4F =36,④由①②④解得D =-2,E =-4,F =-8或D =-6,E =-8,F =0. 故所求圆的方程为x 2+y 2-2x -4y -8=0或x 2+y 2-6x -8y =0.思维升华 (1)直接法:直接求出圆心坐标和半径,写出方程. (2)待定系数法①若已知条件与圆心(a ,b )和半径r 有关,则设圆的标准方程,求出a ,b ,r 的值; ②选择圆的一般方程,依据已知条件列出关于D ,E ,F 的方程组,进而求出D ,E ,F 的值. 跟踪训练 (2017·广东七校联考)一个圆与y 轴相切,圆心在直线x -3y =0上,且在直线y =x 上截得的弦长为27,则该圆的方程为______________________. 答案 x 2+y 2-6x -2y +1=0或x 2+y 2+6x +2y +1=0解析 方法一 ∵所求圆的圆心在直线x -3y =0上, ∴设所求圆的圆心为(3a ,a ), 又所求圆与y 轴相切,∴半径r =3|a |,又所求圆在直线y =x 上截得的弦长为27,圆心(3a ,a )到直线y =x 的距离d =|2a |2,∴d 2+(7)2=r 2,即2a 2+7=9a 2,∴a =±1.故所求圆的方程为(x -3)2+(y -1)2=9或(x +3)2+(y +1)2=9,即x 2+y 2-6x -2y +1=0或x 2+y 2+6x +2y +1=0.方法二 设所求圆的方程为(x -a )2+(y -b )2=r 2, 则圆心(a ,b )到直线y =x 的距离为|a -b |2,∴r 2=(a -b )22+7,即2r 2=(a -b )2+14.①由于所求圆与y 轴相切,∴r 2=a 2,②又∵所求圆的圆心在直线x -3y =0上,∴a -3b =0,③ 联立①②③,解得⎩⎪⎨⎪⎧a =3,b =1,r 2=9或⎩⎪⎨⎪⎧a =-3,b =-1,r 2=9.故所求圆的方程为(x -3)2+(y -1)2=9或(x +3)2+(y +1)2=9,即x 2+y 2-6x -2y +1=0或x 2+y 2+6x +2y +1=0.方法三 设所求圆的方程为x 2+y 2+Dx +Ey +F =0,则圆心坐标为⎝⎛⎭⎫-D 2,-E2, 半径r =12D 2+E 2-4F .在圆的方程中,令x =0,得y 2+Ey +F =0. 由于所求圆与y 轴相切,∴Δ=0,则E 2=4F .① 圆心⎝⎛⎭⎫-D 2,-E2到直线y =x 的距离为 d =⎪⎪⎪⎪-D 2+E 22,由已知得d 2+(7)2=r 2,即(D -E )2+56=2(D 2+E 2-4F ).② 又圆心⎝⎛⎭⎫-D 2,-E2在直线x -3y =0上, ∴D -3E =0.③联立①②③,解得⎩⎪⎨⎪⎧D =-6,E =-2,F =1或⎩⎪⎨⎪⎧D =6,E =2,F =1.故所求圆的方程为x 2+y 2-6x -2y +1=0或x 2+y 2+6x +2y +1=0. 题型二 与圆有关的最值问题典例 已知点(x ,y )在圆(x -2)2+(y +3)2=1上,求x +y 的最大值和最小值. 解 设t =x +y ,则y =-x +t ,t 可视为直线y =-x +t 在y 轴上的截距,∴x +y 的最大值和最小值就是直线与圆有公共点时直线纵截距的最大值和最小值,即直线与圆相切时在y 轴上的截距.由直线与圆相切得圆心到直线的距离等于半径, 即|2+(-3)-t |2=1, 解得t =2-1或t =-2-1.∴x +y 的最大值为2-1,最小值为-2-1. 引申探究1.在本例的条件下,求yx的最大值和最小值.解 y x 可视为点(x ,y )与原点连线的斜率,y x 的最大值和最小值就是与该圆有公共点的过原点的直线斜率的最大值和最小值,即直线与圆相切时的斜率.设过原点的直线的方程为y =kx ,由直线与圆相切得圆心到直线的距离等于半径,即|2k +3|k 2+1=1,解得k =-2+233或k =-2-233,∴y x 的最大值为-2+233,最小值为-2-233.2.在本例的条件下,求x 2+y 2+2x -4y +5的最大值和最小值. 解x 2+y 2+2x -4y +5=(x +1)2+(y -2)2,求它的最值可视为求点(x ,y )到定点(-1,2)的距离的最值,可转化为求圆心(2,-3)到定点(-1,2)的距离与半径的和或差.又圆心到定点 (-1,2)的距离为34,∴x 2+y 2+2x -4y +5的最大值为34+1,最小值为34-1. 思维升华 与圆有关的最值问题的常见类型及解题策略(1)与圆有关的长度或距离的最值问题的解法.一般根据长度或距离的几何意义,利用圆的几何性质数形结合求解.(2)与圆上点(x ,y )有关代数式的最值的常见类型及解法.①形如u =y -bx -a型的最值问题,可转化为过点(a ,b )和点(x ,y )的直线的斜率的最值问题;②形如t =ax +by 型的最值问题,可转化为动直线的截距的最值问题;③形如(x -a )2+(y -b )2型的最值问题,可转化为动点到定点(a ,b )的距离的平方的最值问题. 跟踪训练 已知点P (x ,y )在圆C :x 2+y 2-6x -6y +14=0上. (1)求yx 的最大值和最小值;(2)求x +y 的最大值与最小值.解 (1)方程x 2+y 2-6x -6y +14=0可变形为(x -3)2+(y -3)2=4.yx表示圆上的点P 与原点连线的斜率,显然当PO (O 为原点)与圆相切时,斜率最大或最小,如图①所示.设切线方程为y =kx ,即kx -y =0, 由圆心C (3,3)到切线的距离等于半径2, 可得|3k -3|k 2+1=2,解得k =9±2145,所以yx 的最大值为9+2145,最小值为9-2145.(2)设x +y =b ,则b 表示动直线y =-x +b 在y 轴上的截距,显然当动直线y =-x +b 与圆(x -3)2+(y -3)2=4相切时,b 取得最大值或最小值,如图②所示.由圆心C (3,3)到切线x +y =b 的距离等于圆的半径2,可得|3+3-b |12+12=2,即|b -6|=22,解得b =6±22,所以x +y 的最大值为6+22,最小值为6-2 2. 题型三 与圆有关的轨迹问题典例 (2017·潍坊调研)已知圆x 2+y 2=4上一定点A (2,0),B (1,1)为圆内一点,P ,Q 为圆上的动点.(1)求线段AP 中点的轨迹方程;(2)若∠PBQ =90°,求线段PQ 中点的轨迹方程. 解 (1)设AP 的中点为M (x ,y ),由中点坐标公式可知,P 点坐标为(2x -2,2y ). 因为P 点在圆x 2+y 2=4上, 所以(2x -2)2+(2y )2=4,故线段AP 中点的轨迹方程为(x -1)2+y 2=1. (2)设PQ 的中点为N (x ,y ), 在Rt △PBQ 中,|PN |=|BN |.设O 为坐标原点,连接ON ,则ON ⊥PQ , 所以|OP |2=|ON |2+|PN |2=|ON |2+|BN |2, 所以x 2+y 2+(x -1)2+(y -1)2=4.故线段PQ 中点的轨迹方程为x 2+y 2-x -y -1=0.思维升华 求与圆有关的轨迹问题时,根据题设条件的不同常采用以下方法 (1)直接法:直接根据题目提供的条件列出方程. (2)定义法:根据圆、直线等定义列方程. (3)几何法:利用圆的几何性质列方程.(4)代入法:找到要求点与已知点的关系,代入已知点满足的关系式等.跟踪训练 (2017·河北衡水中学调研)已知Rt △ABC 的斜边为AB ,且A (-1,0),B (3,0).求: (1)直角顶点C 的轨迹方程; (2)直角边BC 的中点M 的轨迹方程.解 (1)方法一 设C (x ,y ),因为A ,B ,C 三点不共线,所以y ≠0. 因为AC ⊥BC ,所以k AC ·k BC =-1,又k AC =y x +1,k BC =y x -3,所以y x +1·y x -3=-1,化简得x 2+y 2-2x -3=0.因此,直角顶点C 的轨迹方程为x 2+y 2-2x -3=0(y ≠0).方法二 设AB 的中点为D ,由中点坐标公式得D (1,0),由直角三角形的性质知|CD |=12|AB |=2.由圆的定义知,动点C 的轨迹是以D (1,0)为圆心,2为半径的圆(由于A ,B ,C 三点不共线,所以应除去与x 轴的交点).所以直角顶点C 的轨迹方程为(x -1)2+y 2=4(y ≠0).(2)设M (x ,y ),C (x 0,y 0),因为B (3,0),M 是线段BC 的中点,由中点坐标公式得x =x 0+32,y =y 0+02,所以x 0=2x -3,y 0=2y .由(1)知,点C 的轨迹方程为(x -1)2+y 2=4(y ≠0),将x 0=2x -3,y 0=2y 代入得(2x -4)2+(2y )2=4,即(x -2)2+y 2=1.因此动点M 的轨迹方程为(x -2)2+y 2=1(y ≠0).利用几何性质巧设方程求半径典例 在平面直角坐标系xOy 中,曲线y =x 2-6x +1与坐标轴的交点都在圆C 上,求圆C 的方程.思想方法指导 本题可采用两种方法解答,即代数法和几何法.(1)一般解法(代数法):可以求出曲线y =x 2-6x +1与坐标轴的三个交点,设圆的方程为一般式,代入点的坐标求解析式.(2)巧妙解法(几何法):利用圆的性质,知道圆心一定在圆上两点连线的垂直平分线上,从而设圆的方程为标准式,简化计算,显然几何法比代数法的计算量小,因此平时训练多采用几何法解题. 规范解答解 一般解法 (代数法)曲线y =x 2-6x +1与y 轴的交点为(0,1),与x 轴的交点为(3+22,0),(3-22,0),设圆的方程是x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0),则有⎩⎨⎧1+E +F =0,(3+22)2+D (3+22)+F =0,(3-22)2+D (3-22)+F =0,解得⎩⎪⎨⎪⎧D =-6,E =-2,F =1,故圆的方程是x 2+y 2-6x -2y +1=0.巧妙解法 (几何法)曲线y =x 2-6x +1与y 轴的交点为(0,1),与x 轴的交点为(3+22,0),(3-22,0).故可设C 的圆心为(3,t ),则有32+(t -1)2=(22)2+t 2,解得t =1. 则圆C 的半径为32+(t -1)2=3, 所以圆C 的方程为(x -3)2+(y -1)2=9.1.已知点A (-4,-5),B (6,-1),则以线段AB 为直径的圆的方程为( ) A .(x +1)2+(y -3)2=29 B .(x -1)2+(y +3)2=29 C .(x +1)2+(y -3)2=116 D .(x -1)2+(y +3)2=116答案 B解析 由题意可知A (-4,-5),B (6,-1),则以线段AB 为直径的圆的圆心为点⎝⎛⎭⎫-4+62,-5-12,即(1,-3),半径为(6+4)2+(-1+5)22=29,故以线段AB 为直径的圆的方程是 (x -1)2+(y +3)2=29. 故选B.2.圆心在y 轴上,且过点(3,1)的圆与x 轴相切,则该圆的方程是( ) A .x 2+y 2+10y =0 B .x 2+y 2-10y =0 C .x 2+y 2+10x =0 D .x 2+y 2-10x =0答案 B解析 根据题意,设圆心坐标为(0,r ),半径为r , 则32+(r -1)2=r 2,解得r =5,可得圆的方程为x 2+y 2-10y =0.3.(2017·豫北名校联考)圆(x -2)2+y 2=4关于直线y =33x 对称的圆的方程是( ) A .(x -3)2+(y -1)2=4 B .(x -2)2+(y -2)2=4 C .x 2+(y -2)2=4 D .(x -1)2+(y -3)2=4答案 D解析 设圆(x -2)2+y 2=4的圆心(2,0)关于直线y =33x 对称的点的坐标为(a ,b ),则有⎩⎪⎨⎪⎧b a -2·33=-1,b 2=33·a +22,解得a =1,b =3,从而所求圆的方程为(x -1)2+(y -3)2=4.故选D.4.(2017·福建厦门联考)若a ∈⎩⎨⎧⎭⎬⎫-2,0,1,34,则方程x 2+y 2+ax +2ay +2a 2+a -1=0表示的圆的个数为( ) A .0 B .1 C .2 D .3答案 B解析 方程x 2+y 2+ax +2ay +2a 2+a -1=0表示圆的条件为a 2+4a 2-4(2a 2+a -1)>0,即。