应用随机过程讲义(习题4)

合集下载

随机过程习题集-第四章马尔可夫过程

随机过程习题集-第四章马尔可夫过程

1第四章 马尔可夫过程内容提要1. 马尔可夫过程的概念 (1)马尔可夫过程给定随机过程{}(),X t t T ∈,如果对122,∀≥∀<<<∈n n t t t T ,有11221111{()|(),(),,()}{()|()}n n n n n n n n P X t x X t x X t x X t x P X t x X t x ----<====<=则称{}(),X t t T ∈为马尔可夫过程。

称(){}:,==∈E x X t x t T 为状态空间。

参数集和状态空间都是离散的马尔可夫过程称为离散参数马氏链. 参数连续、状态空间离散的马尔可夫过程称为连续参数马氏链. (2)k 步转移概率设{}(),0,1,2,=X n n 为离散参数马氏链,称()(),(,){|},0,1=+==≥≥i j p n k P X n k j X n i n k为{}(),0,1,2,=X n n 在时刻n 的k 步转移概率,称(),(,)((,)),P =∈i j n k p n k i j E为{}(),0,1,2,=X n n 在时刻n 的k 步转移概率矩阵. 特别地,当1k =时,在时刻n 的一步转移概率和一步转移概率矩阵分别简记为()ij p n 和()n P . (3)初始分布、绝对分布称((0)),,==∈i p P X i i E 为离散参数马氏链{}(),0,1,2,=X n n 的初始分布,记为0P ,称()(){},,==∈j p n P X n j j E 为马尔可夫链{}0n X n ≥的绝对分布,记为P n . (4)离散参数齐次马氏链设{}(),0,1,2,=X n n 是一离散参数马氏链,如果其一步转移概率()ij p n 恒与起始时刻n 无关,记为ij p ,则称{}(),0,1,2,=X n n 为离散参数齐次马氏链。

若{}(),0,1,2,=X n n2是离散参数齐次马氏链,则其k 步转移概率记为(),i j p k ,一步转移概率矩阵和k 转移概率矩阵分别记为P 和().P k(5) 离散参数齐次马氏链的遍历性离散参数齐次马氏链{X (n ) ,n=0,1,2… },若对一切状态i ,j ,存在与i 无关的极限()()lim 0,ij j n p n i j E →+∞=π>∈则称此马氏链具有遍历性.0,1j j j Ej E ππ∈>∈=∑若且则称{},j j E π∈为离散参数齐次马氏链{X (n ) ,n=0,1,2… }的极限分布,或称为最终分布,记为{},j j E ∏=∈π(6)离散参数齐次马氏链的平稳分布离散参数齐次马氏链{X (n ) ,n=0,1,2… },若存在{v j , j ∈E } 满足条件:1)0,2)13)j jj Ej i iji Ev j E vv v p ∈∈≥∈==∑∑则称此马氏链是平稳的,称 { v j , j ∈E } 为此马氏链的平稳分布。

[应用随机过程][习题][02]

[应用随机过程][习题][02]

上海理工大学
2010-7-30
第四章习题
G X (ω ) = ∫ 2e e
∞ ∞ ∞ ∞ τ j (ω +π )τ
dτ + ∫ 2e e j (ω π )τ dτ


τ
+ ∫ (cos 2πτ )e jωτ dτ 4 4 = + + π [δ (ω 2π ) + δ (ω + 2π )] 2 2 1 + (ω + π ) 1 + (ω π )
2 Aα ( Ae 2 ) 2 α +ω ( cos ω 0 t π [δ (ω + ω 0 ) + δ (ω ω 0 )] )
α t
Page 5
上海理工大学
2010-7-30
第四章习题
补充:设两个随机过程X(t)和Y(t)联合平稳,其
互相关函数为
9e 3τ , τ ≥ 0 R XY (τ ) = τ <0 0, 求互谱密度 GXY (ω ) 和 GYX (ω )
Page 10 上海理工大学 2010-7-30
第五章习题
5.10设表5.1中系统一栏的第二行所示的线性电
路,输入X(t)为白噪声,其功率谱密为 N 0 2 求输出Y(t)的功率谱密度及自相关函数 解: H (ω ) = jωRC
1 + jωRC
功率谱密度
N 0ω 2 R 2 C 2 GY (ω ) = G X (ω ) H (ω ) = 2(1 + ω 2 R 2 C 2 )
t3 t 2 RC
t t
t 3 > t1
t 2 t1 RC
RY (t3 t 2 ) RY (t 2 t1 ) N = 0 e 4 RC RY (0)

应用随机过程课后习题解答 毛用才 胡奇英

应用随机过程课后习题解答 毛用才 胡奇英

第一章习题解答1. 设随机变量X 服从几何分布,即:(),0,1,2,k P X k pq k ===L 。

求X 的特征函数,EX 及DX 。

其中01,1p q p <<=-是已知参数。

解 0()()jtxjtkk X k f t E eepq ∞===∑Q()k jtkk p q e∞==∑ =0()1jt kjtk pp qe qe ∞==-∑又200()kkk k q qE X kpq p kq p p p ∞∞======∑∑Q222()()[()]q D X E X E X P =-=(其中 00(1)nnn n n n nxn x x ∞∞∞====+-∑∑∑)令 0()(1)n n S x n x ∞==+∑则 1000()(1)1xxnn k n xS t dt n t dt x x∞∞+===+==-∑∑⎰⎰202201()()(1)11(1)1(1)xn n dS x S t dt dxx xnx x x x ∞=∴==-∴=-=---⎰∑同理 2(1)2kkkk k k k k k x k x kx x ∞∞∞∞=====+--∑∑∑∑令20()(1)k k S x k x ∞==+∑ 则211()(1)(1)xkk k k k k S t dt k t dt k xkx ∞∞∞+====+=+=∑∑∑⎰)W2、(1) 求参数为(,)p b 的Γ分布的特征函数,其概率密度函数为1,0()0,0()0,0p p bxb x e x p x b p p x --⎧>⎪=>>Γ⎨⎪≤⎩(2) 其期望和方差;(3) 证明对具有相同的参数的b 的Γ分布,关于参数p 具有可加性。

解 (1)设X 服从(,)p b Γ分布,则10()()p jtxp bxX b f t ex e dx p ∞--=Γ⎰ 1()0()p p jt b x b x e dx p ∞--=Γ⎰101()()()()(1)p u p p p p p b e u b u jt b x du jt p b jt b jt b∞----==Γ---⎰ 1(())x p p e x dx ∞--Γ=⎰Q (2)'1()(0)X p E X f j b∴== 2''221(1)()(0)X p p E X f j b +== 222()()()PD XE X E X b∴===(4) 若(,)i i X p b Γ: 1,2i = 则121212()()()()(1)P P X X X X jt f t f t f t b-++==-1212(,)Y X X P P b ∴=+Γ+:同理可得:()()iiP X b f t b jt∑=∑- W3、设X 是一随机变量,()F x 是其分布函数,且是严格单调的,求以下随机变量的特征函数。

应用随机过程课后习题解答 毛用才 胡奇英

应用随机过程课后习题解答 毛用才 胡奇英

f X1 , X 2
Xn
(t1 , t2
2 2 tn ) f (ti ) exp{ ( jati 1 2 ti )} i 1 i 1
n
n


均值向量为 { , , } 协方差矩阵为 B diag ( 2 , 2 , 2 )
6
f X (t ) f ( , ,
0
x
1
2
1 1 x (1 x) 2 1 x (1 x ) 2

同理
k
k 0

2
x k (k 1)x k 2 kx k x k
k 0 k 0 k 0
令 S ( x) (k 1)2 x k
k 0
x



2 k k 1 k S (t )dt (k 1) t dt (k 1)x kx ) 0 k 0 k 0 k 1
3
fZ (k ) (t ) (1)k k ! j k (1 jt )(k 1)
E (Z k ) 1 (k ) f Z (0) (1) k k ! k j
n
4、设 X1,X 2, X n 相互独立,且有相同的几何分布,试求 X k 的分布。
Байду номын сангаасk 1

f

k 1
e jti e jti e jti {1 ( jtk )(1 jtk n n e jtk e e jt = i 1 k 1 e i n(1 jtk ) e
)}
i k
1 n n n j (ti tk ) l ] i k = [e n i 1 k 1 l 1

(解答)《随机过程》第四章习题

(解答)《随机过程》第四章习题

第四章 二阶矩过程、平稳过程和随机分析 习题解答1、 设∑=-=Nk k k kn U n X 1)cos(2ασ,其中k σ和k α为正常数,)2,0(~πU U k ,且相互独立,N k ,,2,1 =,试计算},1,0,{ ±=n X n 的均值函数和相关函数,并说明其是否是平稳过程。

解:计算均值函数和相关函数如下0)}{cos(2)cos(2}{)(11=-=⎭⎬⎫⎩⎨⎧-==∑∑==Nk k k k N k k k k n X U n E U n E X E n ασασμ∑∑∑∑∑∑======-=--=--=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎦⎤⎢⎣⎡-⋅⎥⎦⎤⎢⎣⎡-=Ni i i N i i i i i i Ni Nj j j i i j i N j j j j N i i i i X m n U m U n E U m U n E U m U n E m n R 12121111)](cos[)}cos(){cos(2)}cos(){cos(2)cos(2)cos(2),(ασαασαασσασασ因此可知,},1,0,{ ±=n X n 是平稳随机过程。

2、 设有随机过程))(cos()(t t A t X πηω+=,其中0>ω为常数,}0),({≥t t η是泊松过程,A 是与)(t η独立的随机变量,且2/1}1{}1{===-=A P A P 。

(1) 试画出此过程的样本函数,并问样本函数是否连续? (2) 试求此过程的相关函数,并问该过程是否均方连续? 解:(1)样本函数不连续。

(2)令:012≥>t t ,下面求相关函数:)(221)(212210)(1212211212121211212212122112221122121121212cos cos )]}(cos[)]({cos[21!)]([)]}(cos[)]({cos[)1(21))]}()(()(cos[))]()(()(2)({cos[21))]}()(()(cos[))]()(()({cos[21))}(cos())({cos(}{))}(cos())(cos({)}()({),(t t t t k t t k kX e t t e t t t t e k t t t t t t t t t t t t t t t E t t t t t t t t E t t t t E A E t t t t A E t X t X E t t R ----∞=--⋅=⋅-++=⋅-⋅-++-=-+-+-+++=-+-++++=++⋅=++==∑λλλωωωωλωωηηπωηηππηωηηπωηηπωπηωπηωπηωπηω因为:t t t R ωξ2cos ),(=因此该过程是均方连续的随机过程。

应用随机过程PPT课件

应用随机过程PPT课件

k
EX kP(X k) (1)P(X k)
k0
k1 i1
P(X k)
交换求和顺序
k1
2021/7/1
60
同理,对连续型随机变量有相似的结论成立
若X0
x
EX0 xd(PXx)0 (0 dy)dP(Xx)
0 P(Xx)dx
2021/7/1
61
2021/7/1
62
2021/7/1
63
2021/7/1
2021/7/1
概率
16
1 .古典概型
A
P(A)
(A) ( )
A 中的样本点数目 中的样本点数目
隐含了等可能条件
2 .几何概型
P(A)
A 点集的面积 点集的面积
隐含了等可能条件
2021/7/1
17
概率是满足 1) 非负性; 2) 归一性; 3) 可列可加性; 的集函数。
可测集 粗略地说,可以定义长度(面积、体积)的 点集即为可测集;反之称为不可测集。
64
2021/7/1
65
Chebyshev不等式
0,
P(|
X
EX
|
)
DX
2
P(|
X
EX
|
)
E
|
X EX
p
|p
( p1)
2021/7/1
66
条件数学期望
2021/7/1
(iN)
67
2021/7/1
68
2021/7/1
69
用示性函数的线性组合表示离散型随机变量 (见前面“随机变量”部分 )
2021/7/1
70
例: 随机变量 X I A ,Y I B , A, B ,

随机过程-习题-第4章

随机过程-习题-第4章-02(总9页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除设有图题4-19所示的电路,其中W 0(t )为输入的随机过程,W 0(t )为标准维纳过程(即中的z (t ),且其1=β);其输出为)(t ξ=W 0(t )-W 0(t -1)。

求)(t ξ的均值和相关函数。

图题4-19解:由于W 0(t )为标准维纳过程,则E [W 0(t )]=0。

因此0)]1()([)]([00=--=t W t W E t E ξ)(t ξ的相关函数为)]}1()()][1()({[),(2020101021----=t W t W t W t W E t t R ξ)(t W假设t 1<t 2。

当t 1<t 2-1时,[t 1-1, t 1]和[t 2-1, t 2]是两个互不交叠的区间,由标准维纳过程为独立增量过程的性质可得0)]}1()([)]1()({[),(2020101021=----=t W t W E t W t W E t t R ξ当t 1>t 2-1时,[t 1-1, t 1]和[t 2-1, t 2]是两个交叠的区间。

分别用A ,B ,C 表示区间[t 1-1,t 2-1]、[t 2-1,t 1]和[t 1,t 2]。

于是)](1[)1,min(2)1()]1()([2)]1([)]([})]1()({[][][][][][][][]E[)])(E[(),(1221212010220120220102221t t t t t t t W t W E t W E t W E t W t W E B E C E B E B E C E A E B E A C B B A t t R --=---+=---+=--==+++=++=ββββξ即⎪⎩⎪⎨⎧<<-=1||,01|||]|1[),(21τττβξt t R其中,12t t -=τ。

随机过程第4章习题

⎧2 x (0 ≤ x < 1) 对于 当给定 ξ ( n-1) = x 时 ξ ( n ) 的条件概率密度均与分布 n = 1,2,3, L, f 0 ( x) = ⎨ ⎩0 (其他)
于 (1 - x, 1) 之间。问 ξ ( n ), n = 0,1,2,L , 是否满足严平稳的条件? 解(待补充)
= E e j (ωt +θ ( t ) ) = e jωt
{
} ⋅ E {e ( ) }
jθ t
= e jωt ∫ e jx dF ( x, t )
由于 θ (t ) 是一个二阶严平稳过程,故
mξ ( t ) = e jωt ∫ e jx dF ( x, t ) = e jωt ∫ e jx dF ( x ) = e jωt ⋅ E e jθ ( 0)
条件数学期望
E (Y | xi ) = ∑ y j p j / i = ∑ y j p{ Y = y j | X = xi }
j j
全期望公式
E ( X ) = E{E [X / Y ]} = ∑ p Y = y j E (X / y j )
j
[
]
注意到
η ( t1 ) = m, η ( t2 ) = n η ( t1 ) − η ( t2 ) = k , η ( t1 ) + η ( t2 ) = η ( t1 ) − η ( t2 ) + 2η ( t2 ) = k + 2n
且 P{ξ (0) = 1} =
p1 p1 + p 2

p2 试证明该过程为严平稳过程。 p1 + p 2
解(提示) : 给出初始时刻的概率分布,给出任意时刻的概率分布,证明它们示相同的; 给出任意 N 个时刻的概率分布,证明它们具有平移不变性。

《随机过程及其在金融领域中的应用》习题四答案

第四章 习题41、对泊松过程{},0t N t ≥(1)证明:当s t <时,{}1,0,1,,kn ks t n s s P N k N n k n k t t -⎛⎫⎛⎫⎛⎫===-= ⎪⎪⎪⎝⎭⎝⎭⎝⎭(2)当2λ=时,试求:()()()112112;1,3;21P N P N N P N N ≤==≥≥(3)设顾客到达某商店是泊松事件,平均每小时以30人的速度到达。

求下列事件的概率:相继到达的两顾客的时间间隔为大于2分钟、小于2分钟、在1分钟到3分钟之间。

答:(1)证明:{}()()()()()()()()()()()()()()()()()()(),,!!!!!!!1!!s t s t s s t s s t t t t n kkt s sk n kn k nk n ktn kk n kk nP N k N n P N k N n k P N k P N n k P N k N n P N n P N n P N n t s s e ek n k s t s n k n k t t t e n n s t s n s s k t k n k t t λλλλλλλλλλ------------====-==-========-⎡⎤⎣⎦--==--⎛⎫⎛⎫⎛⎫==- ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭(2)()()()()()()()()11110121112222201211120!1!2!225P N P N N N e e e e e e e λλλλλλλ-------≤==+=+==++-=++=()()()()12121224111,31,3112224P N N P N N P N P N ee e----=====-=====()()()()()()()()()()111111121112112,122111121011311101P N N P N P N N P N P N P N P N P N e P N P N e --≥≥≥≥≥==≥≥-<-=-=-===-<-=-(3) 解法一:顾客到达事件间隔服从参数为λ的指数分布:()()()30,03030,0x x Z Z f t e x f t e x λλλ--=≥=⇒=≥①()30301111303023030106030x x P Z e dx e e e ∞∞----⎧⎫>===--=⎨⎬-⎩⎭⎰②()11303011303000230301116030x x P Z e dx e e e ----⎧⎫<===--=-⎨⎬-⎩⎭⎰ ③1131133030202022221160601330301606030x x P Z e dx e e e e e ------⎛⎫⎧⎫<<===--=-⎨⎬ ⎪-⎩⎭⎝⎭⎰解法二:()3030==0.560λ∴平均每小时有人到达人/分钟根据齐次Poisson 过程的到达时间间隔{},1,2,n X n =是独立同分布于均值为1λ的指数分布的,故可有: 相继到达的顾客的时间间隔大于2分钟的概率为:()12t n P X e e λ-->== 相继到达的顾客的时间间隔小于2分钟的概率为:()1211t n P X e e λ--<=-=-相继到达的顾客的时间间隔在1分钟到3分钟之间的概率为:()()()()1.50.50.5 1.5133111n n n P X P X P X e e e e ----<<=<-<=---=-2、{},0t N t ≥是强度为λ的泊松过程。

随机过程及应用习题课四

1. 设{(),0,1,2,}X n n =为马氏链,证明12312{(1)|(2),(3),,()}{(1)|(2)}n P X x X x X x X n x P X x X x =======即马氏链的逆序也构成一个马氏链. 2. 如果马氏链的转移概率矩阵为0110P ⎛⎫= ⎪⎝⎭证明:此马氏链不是遍历的马氏链,但具有平稳分布.3. 一个开关有两种状态:开或关,设它现在开着时,经过单位时间(s )后,它仍然开着的概率为12,关上的概率为12;当它现在关着时,经过单位时间(s )后它仍然关着的概率为34,它打开的概率为14. 假设开关的状态转移只在0,1,2,3,…(s )时进行. 设0t =时,开关开着. 求3t =时,开关关着和开关开着的概率.4. 甲乙两人进行比赛,设每局比赛甲胜的概率为p ,乙胜的概率为q ,和局的概率为r ,1p q r ++=,设每局比赛后胜者记“1”,分负者记“-1”分,和局记“0”分. 当两人中有一个获得2分时,结束比赛. 以()X n 表示比赛至第n 局时,甲获得的分数. {(),0,1,2,}X n n =是一个齐次马氏链.(1)写出此马氏链的状态空间; (2)写出状态转移矩阵; (3)计算2步转移矩阵;(4)问在甲获得1分的情况下,再赛2局就结束比赛的概率为多少?5. A 、B 、C 三家公司决定在某一时间推销一新产品. 当时它们各拥有13的市场,然而一年后,情况发生了如下的变化:(1)A 保住40%的顾客,而失去30%给B ,失去30%给C ; (2)B 保住30%的顾客,而失去60%给A ,失去10%给C ; (3)C 保住30%的顾客,而失去60%给A ,失去10%给B .如果这种趋势继续下去,试问第2年底各公司拥有多少份额的市场?(从长远来看,情况又如何?)6. 一质点沿圆周游动,圆周上按顺时针等距排列五个点0,1,2,3,4,把圆周分成五格。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档