2019年初中毕业生中考数学模拟考试

合集下载

(完整版)2019年安徽中考数学模拟试题及答案

(完整版)2019年安徽中考数学模拟试题及答案

2019年安徽中考数学模拟试题及答案一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,注意可以用多种不同的方法来选取正确答案.1.(3分)(2008•淄博)的相反数是()A.﹣3 B.3C.D.2.(3分)(2001•安徽)下列运算正确的()A.a2=(﹣a)2B.a3=(﹣a)3C.﹣a2=|﹣a2| D.a3=|a3|3.(3分)(2013•上城区一模)对于一组统计数据:3,7,6,2,9,3,下列说法错误的是()A.众数是3 B.极差是7 C.平均数是5 D.中位数是44.(3分)(2013•温州模拟)选择用反证法证明“已知:在△ABC中,∠C=90°.求证:∠A,∠B中至少有一个角不大于45°.”时,应先假设()A.∠A>45°,∠B>45°B.∠A≥45°,∠B≥45°C.∠A<45°,∠B<45°D.∠A≤45°,∠B≤45°5.(3分)(2014•沙湾区模拟)如图是一个由7个同样的立方体叠成的几何体,则这一几何体的三视图中,既是轴对称图形又是中心对称图形的是()A.主视图和俯视图B.俯视图C.俯视图和左视图D.主视图6.(3分)(2013•上城区一模)已知m=1+,n=1﹣,则代数式的值为()A.9B.±3 C.3D.57.(3分)(2013•上城区一模)如图,在四边形ABCD中,E、F分别是AB、AD的中点,若EF=4,BC=10,CD=6,则sinC等于()A.B.C.D.8.(3分)(2011•金华)如图,在平面直角坐标系中,过格点A,B,C作一圆弧,点B与下列格点的连线中,能够与该圆弧相切的是()A.点(0,3)B.点(2,3)C.点(5,1)D.点(6,1)9.(3分)(2013•上城区一模)在平面直角坐标系中,经过二、三、四象限的直线l过点(﹣3,﹣2).点(﹣2,a),(0,b),(c,1),(d,﹣1)都在直线l上,则下列判断正确的是()A.a=﹣3 B.b>﹣2 C.c<﹣3 D.d=﹣210.(3分)(2014•江阴市二模)点A,B的坐标分别为(﹣2,3)和(1,3),抛物线y=ax2+bx+c(a<0)的顶点在线段AB上运动时,形状保持不变,且与x轴交于C,D两点(C在D的左侧),给出下列结论:①c<3;②当x<﹣3时,y随x的增大而增大;③若点D的横坐标最大值为5,则点C的横坐标最小值为﹣5;④当四边形ACDB为平行四边形时,.其中正确的是()A.②④B.②③C.①③④D.①②④二、认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.(4分)(2013•上城区一模)如图,△ABC中,,若△AEF的面积为1,则四边形EBCF的面积为_________.12.(4分)(2013•上城区一模)在一个口袋中有三个完全相同的小球,把它们分别标上数字﹣1,0,2,随机地摸出一个小球记录数字然后放回,再随机地摸出一个小球记录数字.则两次的数字和是正数的概率为_________.13.(4分)(2013•上城区一模)已知x=﹣1是一元二次方程ax2+bx﹣10=0的一个解,且a≠﹣b,则的值为_________.14.(4分)(2014•沙湾区模拟)某市居民用电价格改革方案已出台,为鼓励居民节约用电,对居民生活用电实行阶梯制价格(见表):“一户一表”用电量不超过a千瓦时超过a千瓦时的部分单价(元/千瓦时)0.5 0.6小芳家二月份用电200千瓦时,交电费105元,则a=_________.15.(4分)(2012•南通)无论a取什么实数,点P(a﹣1,2a﹣3)都在直线l上.Q(m,n)是直线l上的点,则(2m﹣n+3)2的值等于_________.16.(4分)(2013•上城区一模)如图,▱ABCD中,AC⊥AB.AB=6cm,BC=10cm,E是CD上的点,DE=2CE.点P从D点出发,以1cm/s的速度沿DA→AB→BC运动至C点停止.则当△EDP为等腰三角形时,运动时间为_________s.三、全面答一答(本题有8个小题,共66分)解答应写出文字说明、证明过程或推演步骤.如果觉得有的题目有点困难,你们把自己能写出的解答写出一部分也可以.17.(6分)(2014•沙湾区模拟)阅读材料,解答问题:观察下列方程:①;②;③;…;(1)按此规律写出关于x的第4个方程为_________,第n个方程为_________;(2)直接写出第n个方程的解,并检验此解是否正确.18.(8分)(2005•淮安)如图,在平面直角坐标系中,∠AOB=60°,点B坐标为(2,0),线段OA的长为6.将△AOB绕点O逆时针旋转60°后,点A落在点C处,点B落在点D处.(1)请在图中画出△COD;(2)求点A旋转过程中所经过的路程(精确到0.1);(3)求直线BC的解析式.19.(8分)(2010•济宁)如图,AD为△ABC外接圆的直径,AD⊥BC,垂足为点F,∠ABC的平分线交AD于点E,连接BD,CD.(1)求证:BD=CD;(2)请判断B,E,C三点是否在以D为圆心,以DB为半径的圆上?并说明理由.20.(10分)(2013•上城区一模)光明中学欲举办“校园吉尼斯挑战赛”,为此学校随机抽取男女学生各50名进行一次“你喜欢的挑战项目”的问卷调查,每名学生都选了一项.根据收集到的数据,绘制成如下统计图(不完整):根据统计图表中的信息,解答下列问题:(1)在本次随机调查中,女生最喜欢“踢毽子”项目的有_________人,男生最喜欢“乒乓球”项目的有_________人;(2)请将条形统计图补充完整;(3)若该校有男生400人,女生450人,请估计该校喜欢“羽毛球”项目的学生总人数.21.(10分)(2013•上城区一模)在直角梯形ABCD中,AB∥CD,∠ABC=90°,∠A=60°,AB=2CD,E,F分别为AB,AD的中点,连结EF,EC,BF,CF.(1)求证△CBE≌△CFE;(2)若CD=a,求四边形BCFE的面积.22.(12分)(2014•沙湾区模拟)如图,已知tan∠EOF=2,点C在射线OF上,OC=12.点M是∠EOF内一点,MC⊥OF于点C,MC=4.在射线CF上取一点A,连结AM并延长交射线OE于点B,作BD⊥OF于点D.(1)当AC的长度为多少时,△AMC和△BOD相似;(2)当点M恰好是线段AB中点时,试判断△AOB的形状,并说明理由;(3)连结BC.当S△AMC=S△BOC时,求AC的长.23.(12分)(2013•上城区一模)如图,已知一次函数y=kx+b的图象与x轴相交于点A,与反比例函数的图象相交于B(﹣1,5),C(,d)两点.(1)求k,b的值;(2)设点P(m,n)是一次函数y=kx+b的图象上的动点.①当点P在线段AB(不与A,B重合)上运动时,过点P作x轴的平行线与函数的图象相交于点D,求出△PAD面积的最大值.②若在两个实数m与n之间(不包括m和n)有且只有一个整数,直接写出实数m的取值范围.2019年安徽中考数学模拟试题及答案参考答案与试题解析一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,注意可以用多种不同的方法来选取正确答案.1.(3分)(2008•淄博)的相反数是()A.﹣3 B.3C.D.考点:相反数.分析:求一个数的相反数,即在这个数的前面加负号.解答:解:根据相反数的定义,得的相反数是.故选D.点评:本题考查的是相反数的求法.2.(3分)(2001•安徽)下列运算正确的()A.a2=(﹣a)2B.a3=(﹣a)3C.﹣a2=|﹣a2| D.a3=|a3|考点:幂的乘方与积的乘方;绝对值.专题:计算题.分析:相反数的平方相等,相反数的立方互为相反数,负数的绝对值等于它的相反数,a3的符号与它本身相同.解答:解:A、相反数的平方相等,故本选项正确;B、相反数的立方互为相反数,a3=﹣(﹣a)3,故本选项错误;C、负数的绝对值等于它的相反数,﹣a2=﹣|﹣a2|,故本选项错误;D、a3的符号与它本身相同,正负情况不能确定,而|a3|是非负数,故本选项错误.故选A.点评:幂运算时,指数的奇偶,直接影响结果的符号.3.(3分)(2013•上城区一模)对于一组统计数据:3,7,6,2,9,3,下列说法错误的是()A.众数是3 B.极差是7 C.平均数是5 D.中位数是4考点:极差;算术平均数;中位数;众数.分析:根据众数、极差、平均数及中位数的定义,结合数据进行判断即可.解答:解:A、众数为3,说法正确,故本选项错误;B、极差=9﹣2=7,说法正确,故本选项错误;C、平均数==5,说法正确,故本选项错误;D、中位数为4.5,说法错误,故本选项正确.故选D.点评:本题考查了极差、中位数、众数及平均数的知识,属于基础题,注意掌握各部分的定义是关键.4.(3分)(2013•温州模拟)选择用反证法证明“已知:在△ABC中,∠C=90°.求证:∠A,∠B中至少有一个角不大于45°.”时,应先假设()A.∠A>45°,∠B>45°B.∠A≥45°,∠B≥45°C.∠A<45°,∠B<45°D.∠A≤45°,∠B≤45°考点:反证法.分析:用反证法证明命题的真假,应先按符合题设的条件,假设题设成立,再判断得出的结论是否成立即可.解答:解:用反证法证明命题“∠A,∠B中至少有一个角不大于45°”时,应先假设∠A>45°,∠B>45°.故选:A.点评:此题主要考查了反证法,反证法证明数学命题的方法和步骤,把要证的结论进行否定,得到要证的结论的反面,是解题的突破口.5.(3分)(2014•沙湾区模拟)如图是一个由7个同样的立方体叠成的几何体,则这一几何体的三视图中,既是轴对称图形又是中心对称图形的是()A.主视图和俯视图B.俯视图C.俯视图和左视图D.主视图考点:简单组合体的三视图;轴对称图形;中心对称图形.分析:首先把此几何体的三视图画出来,然后根据轴对称图形和中心对称图形的定义矩形判断即可.解答:解:该几何体的主视图为既不是轴对称图形又不是中心对称图形;该几何体的左视图为是轴对称图形不是中心对称图形;该几何体的俯视图为既是轴对称图形又是中心对称图形;故选B.点评:此题主要考查了三视图的几何知识,考查了学生的空间思维想象能力.6.(3分)(2013•上城区一模)已知m=1+,n=1﹣,则代数式的值为()A.9B.±3 C.3D.5考点:二次根式的化简求值.专题:计算题.分析:原式变形为,由已知易得m+n=2,mn=(1+)(1﹣)=﹣1,然后整体代入计算即可.解答:解:m+n=2,mn=(1+)(1﹣)=﹣1,原式====3.故选C.点评:本题考查了二次根式的化简求值:先把被开方数变形,用两个数的和与积表示,然后利用整体代入的思想代入计算.7.(3分)(2013•上城区一模)如图,在四边形ABCD中,E、F分别是AB、AD的中点,若EF=4,BC=10,CD=6,则sinC等于()A.B.C.D.考点:三角形中位线定理;勾股定理的逆定理;锐角三角函数的定义.专题:压轴题.分析:连接BD,根据中位线的性质得出EF∥BD,且等于BD,进而利用勾股定理的逆定理得出△BDC是直角三角形,求解即可.解答:解:连接BD,∵E、F分别是AB、AD的中点,∴EF∥BD,且等于BD,∴BD=8,∵BD=8,BC=10,CD=6,∴△BDC是直角三角形,∴sinC===,故选D.点评:此题主要考查了锐角三角形的定义以及三角形中位线的性质以及勾股定理逆定理,根据已知得出△BDC是直角三角形是解题关键.8.(3分)(2011•金华)如图,在平面直角坐标系中,过格点A,B,C作一圆弧,点B与下列格点的连线中,能够与该圆弧相切的是()A.点(0,3)B.点(2,3)C.点(5,1)D.点(6,1)考点:切线的性质;坐标与图形性质;勾股定理;垂径定理.专题:压轴题;网格型.分析:根据垂径定理的性质得出圆心所在位置,再根据切线的性质得出,∠OBD+∠EBF=90°时F点的位置即可.解答:解:连接AC,作AC的垂直平分线BO′,交格点于点O′,则点O′就是所在圆的圆心,∵过格点A,B,C作一圆弧,∴三点组成的圆的圆心为:O(2,0),∵只有∠OBD+∠EBF=90°时,BF与圆相切,∴当△BO′D≌△FBE时,∴EF=BD=2,F点的坐标为:(5,1),∴点B与下列格点的连线中,能够与该圆弧相切的是:(5,1).故选:C.点评:此题主要考查了切线的性质以及垂径定理和坐标与图形的性质,得出△BOD≌△FBE时,EF=BD=2,即得出F点的坐标是解决问题的关键.9.(3分)(2013•上城区一模)在平面直角坐标系中,经过二、三、四象限的直线l过点(﹣3,﹣2).点(﹣2,a),(0,b),(c,1),(d,﹣1)都在直线l上,则下列判断正确的是()A.a=﹣3 B.b>﹣2 C.c<﹣3 D.d=﹣2考点:一次函数图象上点的坐标特征.专题:存在型.分析:设一次函数的解析式为y=kx+b(k≠0),根据直线l过点(﹣3,﹣2).点(﹣2,a),(0,b),(c,1),(d,﹣1)得出斜率k的表达式,再根据经过二、三、四象限判断出k的符号,由此即可得出结论.解答:解:设一次函数的解析式为y=kx+b(k≠0),∵直线l过点(﹣3,﹣2).点(﹣2,a),(0,b),(c,1),(d,﹣1),∴斜率k====,即k=a+2===,∵l经过二、三、四象限,∴k<0,∴a<﹣2,b<﹣2,c<﹣3,d<﹣3.故选C.点评:本题考查的是一次函数图象上点的坐标特点,即一次函数图象上各点的坐标一定适合此函数的解析式.10.(3分)(2014•江阴市二模)点A,B的坐标分别为(﹣2,3)和(1,3),抛物线y=ax2+bx+c(a<0)的顶点在线段AB上运动时,形状保持不变,且与x轴交于C,D两点(C在D的左侧),给出下列结论:①c<3;②当x<﹣3时,y随x的增大而增大;③若点D的横坐标最大值为5,则点C的横坐标最小值为﹣5;④当四边形ACDB 为平行四边形时,.其中正确的是()A.②④B.②③C.①③④D.①②④考点:二次函数综合题.专题:代数几何综合题.分析:根据顶点在线段AB上抛物线与y轴的交点坐标为(0,c)可以判断出c的取值范围,得到①错误;根据二次函数的增减性判断出②正确;先确定x=1时,点D的横坐标取得最大值,然后根据二次函数的对称性求出此时点C的横坐标,即可判断③错误;令y=0,利用根与系数的关系与顶点的纵坐标求出CD的长度的表达式,然后根据平行四边形的对边平行且相等可得AB=CD,然后列出方程求出a的值,判断出④正确.解答:解:∵点A,B的坐标分别为(﹣2,3)和(1,3),∴线段AB与y轴的交点坐标为(0,3),又∵抛物线的顶点在线段AB上运动,抛物线与y轴的交点坐标为(0,c),∴c≤3,(顶点在y轴上时取“=”),故①错误;∵抛物线的顶点在线段AB上运动,∴当x<﹣2时,y随x的增大而增大,因此,当x<﹣3时,y随x的增大而增大,故②正确;若点D的横坐标最大值为5,则此时对称轴为直线x=1,根据二次函数的对称性,点C的横坐标最小值为﹣2﹣4=﹣6,故③错误;根据顶点坐标公式,=3,令y=0,则ax2+bx+c=0,CD2=(﹣)2﹣4×=,根据顶点坐标公式,=3,∴=﹣12,∴CD2=×(﹣12)=,∵四边形ACDB为平行四边形,∴CD=AB=1﹣(﹣2)=3,∴=32=9,解得a=﹣,故④正确;综上所述,正确的结论有②④.故选A.点评:本题考查了二次函数的综合题型,主要利用了二次函数的顶点坐标,二次函数的对称性,根与系数的关系,平行四边形的对边平行且相等的性质,①要注意顶点在y轴上的情况.二、认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.(4分)(2013•上城区一模)如图,△ABC中,,若△AEF的面积为1,则四边形EBCF的面积为8.考点:相似三角形的判定与性质.分析:求出==,根据∠A=∠A推出△AEF∽△ABC,得出==,求出△ABC的面积是9,即可求出四边形EBCF的面积.解答:解:∵,∴==,∵∠A=∠A,∴△AEF∽△ABC,∴==,∵△AEF的面积为1,∴△ABC的面积是9,∴四边形EBCF的面积是9﹣1=8,故答案为:8.点评:本题考查了相似三角形的性质和判定的应用,注意:相似三角形的面积比等于相似比的平方.12.(4分)(2013•上城区一模)在一个口袋中有三个完全相同的小球,把它们分别标上数字﹣1,0,2,随机地摸出一个小球记录数字然后放回,再随机地摸出一个小球记录数字.则两次的数字和是正数的概率为.考点:列表法与树状图法.专题:图表型.分析:画出树状图,然后根据概率公式列式计算即可得解.解答:解:根据题意,画出树状图如下:一共有9种情况,和是正数的有5种,所以,P(和是正数)=.故答案为:.点评:本题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比,要注意0既不是正数也不是负数,这也是本题最容易出错的地方.13.(4分)(2013•上城区一模)已知x=﹣1是一元二次方程ax2+bx﹣10=0的一个解,且a≠﹣b,则的值为5.考点:一元二次方程的解.分析:方程的解是使方程左右两边成立的未知数的值.同时注意根据分式的基本性质化简分式.解答:解:∵x=﹣1是一元二次方程ax2+bx﹣10=0的一个解,∴a﹣b﹣10=0,∴a﹣b=10.∵a≠﹣b,∴a+b≠0,∴====5,故答案是:5.点评:本题考查了一元二次方程的定义,得到a﹣b的值,首先把所求的分式进行化简,并且本题利用了整体代入思想.14.(4分)(2014•沙湾区模拟)某市居民用电价格改革方案已出台,为鼓励居民节约用电,对居民生活用电实行阶梯制价格(见表):“一户一表”用电量不超过a千瓦时超过a千瓦时的部分单价(元/千瓦时)0.5 0.6小芳家二月份用电200千瓦时,交电费105元,则a=150.考点:一元一次方程的应用.分析:根据题意可得等量关系:不超过a千瓦时的电费+超过a千瓦时的电费=105元,根据等量关系列出方程,解出a的值即可.解答:解:由题意得:0.5a+0.6(200﹣a)=105,解得:a=150,故答案为:150.点评:此题主要考查了一元一次方程的应用,关键是正确找出题目中的等量关系,列出方程.15.(4分)(2012•南通)无论a取什么实数,点P(a﹣1,2a﹣3)都在直线l上.Q(m,n)是直线l上的点,则(2m﹣n+3)2的值等于16.考点:一次函数图象上点的坐标特征.专题:压轴题;探究型.分析:先令a=0,则P(﹣1,﹣3);再令a=1,则P(0,﹣1),由于a不论为何值此点均在直线l上,设此直线的解析式为y=kx+b(k≠0),把两点代入即可得出其解析式,再把Q(m,n)代入即可得出2m﹣n的值,进而可得出结论.解答:解:∵令a=0,则P(﹣1,﹣3);再令a=1,则P(0,﹣1),由于a不论为何值此点均在直线l上,∴设此直线的解析式为y=kx+b(k≠0),∴,解得,∴此直线的解析式为:y=2x﹣1,∵Q(m,n)是直线l上的点,∴2m﹣1=n,即2m﹣n=1,∴原式=(1+3)2=16.故答案为:16.点评:本题考查的是一次函数图象上点的坐标特点,即一次函数图象上点的坐标一定适合此函数的解析式.16.(4分)(2013•上城区一模)如图,▱ABCD中,AC⊥AB.AB=6cm,BC=10cm,E是CD上的点,DE=2CE.点P从D点出发,以1cm/s的速度沿DA→AB→BC运动至C点停止.则当△EDP为等腰三角形时,运动时间为或4或4.8或(27.2﹣)s.考点:平行四边形的性质;等腰三角形的性质;勾股定理.专题:动点型.分析:先求出DE、CE的长,再分①点P在AD上时,PD=DE,列式求解即可;PD=PE时,根据等腰三角形三线合一的性质,过点P作PF⊥CD于F,根据AC⊥AB可得AC⊥CD,然后求出△ACD和△PFD相似,根据相似三角形对应边成比例列式求出PD,从而得解;②点P在BC上时,利用勾股定理求出AC的长,过点A作AF⊥BC于F,过点E作EG⊥BC的延长线于G,根据三角形的面积求出AF的长,再利用勾股定理列式求出BF的长,然后求出△ABF和△ECG相似,根据相似三角形对应边成比例列式求出EG、CG,利用勾股定理列式求出PG,然后求出CP,再求出点P运动的路程,然后求出时间即可.解答:解:在▱ABCD中,∵AB=6cm,∴CD=AB=6cm,∵DE=2CE,∴DE=4cm,CE=2cm,①点P在AD上时,若PD=DE,则t=4,若PD=PE,如图1,过点P作PF⊥CD于F,∵AC⊥AB,∴AC⊥CD,∴△ACD∽△PFD,∴=,即=,解得PD=,若EP=ED=4,通过相似和三角形的三线合一可以解出当PD=4.8时候,△EPD是以EP和ED为等腰的一个等腰三角形.则t=4.8.②点P在BC上时PE=DE=4,∵AC⊥AB,AB=6cm,BC=10cm,∴AC===8,过点A作AF⊥BC于F,过点E作EG⊥BC的延长线于G,S△ABC=×6×8=×10AF,解得AF=4.8,根据勾股定理,BF===3.6,∵平行四边形ABCD的边AB∥CD,∴∠B=∠ECG,又∵∠AFB=∠EGC=90°,∴△ABF∽△ECG,∴==,即==,解得EG=1.6,CG=1.2,根据勾股定理,PG===,∴PC=PG﹣CG=﹣1.2,点P运动的路程为10+6+10﹣(﹣1.2)=27.2﹣,∵点P的速度为1cm/s,∴点P运动的时间为秒或4秒或27.2﹣秒.故答案为:或4或4.8或27.2﹣.点评:本题考查了平行四边形的性质,等腰三角形的性质,勾股定理的应用,相似三角形的判定与性质,综合题,难点在于要分情况讨论.三、全面答一答(本题有8个小题,共66分)解答应写出文字说明、证明过程或推演步骤.如果觉得有的题目有点困难,你们把自己能写出的解答写出一部分也可以.17.(6分)(2014•沙湾区模拟)阅读材料,解答问题:观察下列方程:①;②;③;…;(1)按此规律写出关于x的第4个方程为x+=9,第n个方程为x+=2n+1;(2)直接写出第n个方程的解,并检验此解是否正确.考点:分式方程的解.专题:规律型.分析:(1)观察一系列等式左边分子为连续两个整数的积,右边为从3开始的连续奇数,即可写出第4个方程及第n个方程;(2)归纳总结即可得到第n个方程的解为n与n+1,代入检验即可.解答:解:(1)x+=x+=9,x+=2n+1;(2)x+=2n+1,观察得:x1=n,x2=n+1,将x=n代入方程左边得:n+n+1=2n+1;右边为2n+1,左边=右边,即x=n是方程的解;将n+1代入方程左边得:n+1+n=2n+1;右边为2n+1,左边=右边,即x=n+1是方程的解,则经检验都为原分式方程的解.故答案为:x+=9;x+=2n+1.点评:此题考查了分式方程的解,属于规律型试题,弄清题中的规律是解本题的关键.18.(8分)(2005•淮安)如图,在平面直角坐标系中,∠AOB=60°,点B坐标为(2,0),线段OA的长为6.将△AOB绕点O逆时针旋转60°后,点A落在点C处,点B落在点D处.(1)请在图中画出△COD;(2)求点A旋转过程中所经过的路程(精确到0.1);(3)求直线BC的解析式.考点:弧长的计算;待定系数法求一次函数解析式;作图-旋转变换.分析:(1)将OA、OB分别旋转60度,(2)点A旋转过程中所经过的路程既是点A划过的弧长,(3)求出点C 作标,用待定系数法解答.解答:解:(1)见图(2分)(2)旋转时以OA为半径,60度角为圆心角,则=2π≈6.3;(5分)(3)过C作CE⊥x轴于E,则OE=3,CE=3,∴C(﹣3,3),(7分)设直线BC的解析式为y=kx+b,则;∴解得:(9分)∴解析式为y=﹣x+.(10分)点评:本题考查旋转变换作图,在找旋转中心时,要抓住“动”与“不动”,看图是关键,然后才是依据图形计算.19.(8分)(2010•济宁)如图,AD为△ABC外接圆的直径,AD⊥BC,垂足为点F,∠ABC的平分线交AD于点E,连接BD,CD.(1)求证:BD=CD;(2)请判断B,E,C三点是否在以D为圆心,以DB为半径的圆上?并说明理由.考点:确定圆的条件;圆心角、弧、弦的关系.专题:证明题;探究型.分析:(1)利用等弧对等弦即可证明.(2)利用等弧所对的圆周角相等,∠BAD=∠CBD再等量代换得出∠DBE=∠DEB,从而证明DB=DE=DC,所以B,E,C三点在以D为圆心,以DB为半径的圆上.解答:(1)证明:∵AD为直径,AD⊥BC,∴由垂径定理得:∴根据圆心角、弧、弦之间的关系得:BD=CD.(2)解:B,E,C三点在以D为圆心,以DB为半径的圆上.理由:由(1)知:,∴∠1=∠2,又∵∠2=∠3,∴∠1=∠3,∴∠DBE=∠3+∠4,∠DEB=∠1+∠5,∠4=∠5,∵BE是∠ABC的平分线,∴∠4=∠5,∴∠DBE=∠DEB,∴DB=DE.由(1)知:BD=CD∴DB=DE=DC.∴B,E,C三点在以D为圆心,以DB为半径的圆上.(7分)点评:本题主要考查等弧对等弦,及确定一个圆的条件.20.(10分)(2013•上城区一模)光明中学欲举办“校园吉尼斯挑战赛”,为此学校随机抽取男女学生各50名进行一次“你喜欢的挑战项目”的问卷调查,每名学生都选了一项.根据收集到的数据,绘制成如下统计图(不完整):根据统计图表中的信息,解答下列问题:(1)在本次随机调查中,女生最喜欢“踢毽子”项目的有10人,男生最喜欢“乒乓球”项目的有20人;(2)请将条形统计图补充完整;(3)若该校有男生400人,女生450人,请估计该校喜欢“羽毛球”项目的学生总人数.考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)总数减去喜欢跳绳、乒乓球、羽毛球、其他的人数,即可得出喜欢“踢毽子”项目的人数,先求出男生喜欢乒乓球的人数所占的百分比,继而可得出男生最喜欢“乒乓球”项目的人数;(2)由(1)的答案可补全统计图;(3)根据男生、女生喜欢乒乓球人数所占的百分比,即可得出计该校喜欢“羽毛球”项目的学生总人数.解答:解:(1)女生最喜欢“踢毽子”项目的有:50﹣15﹣9﹣9﹣7=10人,男生最喜欢“乒乓球”项目的有:50×(1﹣8%﹣10%﹣14%﹣28%)=20人;(2)补充条形统计图如右图:.(3)400×28%+450×=193,答:该校喜欢“羽毛球”项目的学生总人数为193人.点评:本题考查了扇形统计图及条形统计图的知识,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.(10分)(2013•上城区一模)在直角梯形ABCD中,AB∥CD,∠ABC=90°,∠A=60°,AB=2CD,E,F分别为AB,AD的中点,连结EF,EC,BF,CF.(1)求证△CBE≌△CFE;(2)若CD=a,求四边形BCFE的面积.考点:直角梯形;全等三角形的判定与性质.分析:连接DE,求出CD=BE,得出矩形BEDC,推出∠DEB=90°,根据直角三角形斜边上中线性质得出FE=AF,得出等边三角形EFA,求出EF=AE=BE,∠EFA=60°,求出∠DFC=30°,求出∠CFE=90°,根据HL证出直角三角形全等即可;(2)根据勾股定理求出DE,BC,求出△CBE面积,即可求出答案.解答:(1)证明:连接DE,∵E为AB的中点,∴AB=2AE=2BE,∵AB=2DC,∴CD=BE,∵CD∥AB,∠CBA=90°,∴四边形CBED是矩形,∵F为AD中点,∠DEA=90°,∴EF=AF,∵∠A=60°,∴△AEF是正三角形,∴AE=EF=AF,∠EFA=60°,∵AE=BE,DF=AF∴BE=EF=AF,CD=DF,∴∠CFE=90°=∠CBE,∵CD∥AB,∴∠CDF=180°﹣∠A=120°,∴∠DFC=30°,∴∠CFE=90°=∠CBE,∵在Rt△CBE和Rt△CFE中∴Rt△CBE≌Rt△CFE(HL);(2)解:∵CD=a,∴AE=BE=a,∵∠A=60°,∴,∴,∴S四边形BCFE=2S△BCE=a2.点评:本题考查了梯形性质,矩形的性质和判定,等边三角形的性质和判定,平行线的性质,三角形的内角和定理,等腰三角形的性质,勾股定理等知识点的应用,主要考查学生综合运用性质进行推理的能力,题目综合性比较强,难度偏大.22.(12分)(2014•沙湾区模拟)如图,已知tan∠EOF=2,点C在射线OF上,OC=12.点M是∠EOF内一点,MC⊥OF于点C,MC=4.在射线CF上取一点A,连结AM并延长交射线OE于点B,作BD⊥OF于点D.(1)当AC的长度为多少时,△AMC和△BOD相似;(2)当点M恰好是线段AB中点时,试判断△AOB的形状,并说明理由;(3)连结BC.当S△AMC=S△BOC时,求AC的长.考点:相似三角形的判定与性质.分析:(1)由于∠MCA=∠BDO=Rt∠,所以△AMC和△BOD相似时分两种情况:①△AMC∽△BOD;②△AMC∽△OBD.则两种情况都可以根据相似三角形对应边的比相等及tan∠EOF=2列出关于AC的方程,解方程即可求出AC的长度;(2)先由MC∥BD,得出△AMC∽△ABD,根据相似三角形对应边的比相等及三角形中位线的性质求出BD=2MC=8,OD=4,CD=8,AC=CD=8,再利用SAS证明△AMC≌△BOD,得到∠CAM=∠DBO,根据平行线的性质及三角形内角和定理求出∠ABO=90°,进而得出△ABO为直角三角形;(3)设OD=a,根据tan∠EOF=2得出BD=2a,由三角形的面积公式求出S△AMC=2AC,S△BOC=12a,根据S△AMC=S△BOC,得到AC=6a.由△AMC∽△ABD,根据相似三角形对应边的比相等列出关于a的方程,解方程求出a的值,进而得出AC的长.解答:解:(1)∵∠MCA=∠BDO=Rt∠,∴△AMC和△BOD中,C与D是对应点,∴△AMC和△BOD相似时分两种情况:①当△AMC∽△BOD时,=tan∠EOF=2,∵MC=4,∴=2,解得AC=8;②当△AMC∽△OBD时,=tan∠EOF=2,∵MC=4,∴=2,解得AC=2.故当AC的长度为2或8时,△AMC和△BOD相似;(2)△ABO为直角三角形.理由如下:∵MC∥BD,∴△AMC∽△ABD,∴,∠AMC=∠ABD,∵M为AB中点,∴C为AD中点,BD=2MC=8.∵tan∠EOF=2,∴OD=4,∴CD=OC﹣OD=8,∴AC=CD=8.在△AMC与△BOD中,,∴△AMC≌△BOD(SAS),∴∠CAM=∠DBO,∴∠ABO=∠ABD+∠DBO=∠AMC+∠CAM=90°,∴△ABO为直角三角形;(3)连结BC,设OD=a,则BD=2a.∵S△AMC=S△BOC,S△AMC=•AC•MC=2AC,S△BOC=•OC•BD=12a,∴2AC=12a,∴AC=6a.∵△AMC∽△ABD,∴,即,解得a1=3,a2=﹣(舍去),∴AC=6×3=18.点评:本题主要考查了相似三角形的判定与性质,锐角三角函数的定义,三角形的面积,三角形中位线定理,综合性较强,有一定难度.进行分类讨论是解决第一问的关键.23.(12分)(2013•上城区一模)如图,已知一次函数y=kx+b的图象与x轴相交于点A,与反比例函数的图象相交于B(﹣1,5),C(,d)两点.(1)求k,b的值;(2)设点P(m,n)是一次函数y=kx+b的图象上的动点.①当点P在线段AB(不与A,B重合)上运动时,过点P作x轴的平行线与函数的图象相交于点D,求出△PAD面积的最大值.②若在两个实数m与n之间(不包括m和n)有且只有一个整数,直接写出实数m的取值范围.考点:反比例函数综合题.专题:综合题.分析:(1)先把B点坐标代入y=可确定反比例函数解析式为y=﹣,再把点C(,d)代入y=﹣可计算出d,然后利用待定系数法确定一次函数的解析式,即求出k、b的值;(2)先确定A点坐标为(,0),再用n 表示P点坐标得到P(,n),由DP∥x轴得到D点坐标为(﹣,n),根据三角形面积公式得S△PAD=×(+)×n,配成顶点式得y=﹣(n﹣)2+,由于点P在线段AB(不与A,B重合)上的面积。

2019年最新版初三中考数学模拟试卷及答案0959941

2019年最新版初三中考数学模拟试卷及答案0959941

中考数学模拟试卷及答案解析学校:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息一、选择题1.如图 是一个自 由转动的转盘,转动这个转盘,当它停止转动时,指针最有可能停留的区域是( )A . A 区域B .B 区域C .C 区域D . D 区域2.下列调查方式合适的是( )A .为了了解炮弹的杀伤力,采用普查的方式B .为了了解全国中学生的睡眠状况,采用普查的方式C 为了了解人们保护水资源的意识,采用抽样调查方式D .对载人航天器“神舟六号”零部件的检查,采用抽样调查的方式3.下列各式是完全平方式的是( )A .412+-x xB .21x +C .1++xy xD .122-+x x4.如图,若△DEF 是由△ABC 经过平移后得到的,则平移的距离是( )A .线段BE 的长度B .线段EC 的长度 C .线段BC 的长度D .线段EF 的长度5.观察下面图案,在A 、B 、C 、D 四幅图案中,能通过图案(1)平移得到的是( )6.下列事件是必然事件的是( )A .明天是晴天B .打开电视,正在播放广告C .两个负数的和是正数D .三角形三个内角的和是180°7.已知三角形的三边长分别是3,8,x ,若x 的值为偶数,则x 的值有( )A .6个B .5个C .4个D .3个8. 一个三角形的三个内角中,至少有( )A . 一个锐角B . 两个锐角C . 一个钝角D .一个直角 9. 若216x mx ++是完全平方式,则m 的值等于( )A .-8B .8C .4D .8或一810.足球场平面示意图如图所示,它是轴对称图形,其对称轴条数为( )A .1条B .2条C .3条D .4条11.在下面四个图形中,既包含图形的旋转,又有图形的轴对称设计的是( )A .B .C .D .12.如图是一个可以自由转动的转盘,转动这个转盘,当它停止转动时,指针最可能停留的区域是( )A .1B . 2C . 3D . 4 13.不改变分式1.3120.7x x y --的值,把它的分子、分母的系数化为整数,其结果正确的是( )A . 13127x x y --B .131027x x y --C .1310207x x y --D .131207x x y --14.一个三角形的面积是22a b a b++,它的一条边长为1a b +,那么这条边上的高是( ) A .22a b + B .222()a b + C .222()a b a b ++ D .2222()()a b a b ++ 15.如图,AB ∥DE ,︒=∠65E ,则C B ∠+∠=( )A . ︒135B . ︒115C . ︒36D . ︒6516.下列说法中,错误的是( )A .同旁内角互补,两直线平行B .两直线平行,内错角相等C .对顶角相等D .同位角相等17.如图,EA ⊥AB ,BC ⊥AB ,AB=AE=2BC ,D 为AB 的中点,有以下判断:(1)DE=AC ;(2)DE ⊥AC ;(3)∠CAB=30°;(4)∠EAF=∠ADE ,其中不正确结论的个数有( )A .0个B .l 个C .2个D .以上选项均错误18.如图,在△ABC 中,AB=AC=5,BC=6,点M 为BC 中点,MN ⊥AC 于点N ,则MN 等于( )A .65B . 95C . 125D .16519.如图,CD 是Rt △ABC 斜边AB 上的高,∠A=40°,则∠1=( ) A .30° B .40°C .45°D .60°20.有四个三角形,分别满足下列条件:(1)一个内角的的度等于另两个内角的度数之和;(2)三个内角的度数之比为 3:4:5;(3)三边长之比为3:4:5;(4)三边长分别为 7、24、25. 其中直角三角形有( )A . 1个B .2个C .3个D .4个21.已知等腰三角形的周长为 12,一边长为 3、则它的腰长为( )A . 3B . 4.5C .3或4.5D . 以上都不正确22.下列各个图形中,可以围成长方体的共有 ( )A .1个B .2个C .3个D .4个23.下列图形中,不是正方体的表面展开图的是( )A MNC B24.中国人民银行宣布,从2007年6月5日起,上调人民币存款利率,一年定期存款利率上调到3.06%.某人于2007年6月5日存入定期为1年的人民币5000元(到期后银行将扣除20%的利息锐).设到期后银行应向储户支付现金x 元,则所列方程正确的是( )A .50005000 3.06%x -=⨯B .500020%5000(1 3.06%)x +⨯=⨯+C .5000 3.06%20%5000(1 3.06%)x +⨯⨯=⨯+D .5000 3.06%20%5000 3.06%x +⨯⨯=⨯25.231()2a b -的结果正确的是( ) A .4214a b B .6318a b C .6318a b - D .5318a b - 26.近几年来我国国民生产总值增长率的变化情况统计图如图所示,从图中看,下列结论中正确的是( )A .1995~2000年国民生产总值的年增长率逐渐降低B .2000年国民生产总值的年增长率逐渐降低C .这 7年中每年的国民生产总值不断增长D .这7年中每年的国民生产总值有增有减27.下列说法中:①如果两个三角形可以依据“AAS”来判定全等,那么一定也可以依据“ASA”来判定它们全等;②如果两个三角形都和第三个三角形不全等,那么这两个三角形也一定不全等;③要判断两个三角形全等,给出的条件中至少要有一对边对应相等.正确的是( )A .①和②B .②和③C .①和③D .①②③28.若火箭发射点火前5秒记为-5秒,那么火箭发射点火后10秒应记为( )A .-10秒B .-5秒C .+5秒D .+10秒29.如果两个数的积为零,那么这两个数( )A . 都为0B .至多有一个为 0C .不都为0D .至少有一个为030.某企业去年第一季度赚 82000 元,第二季度亏 5000 元,该企业去年上半年嫌的钱可用算式表示为()A.(+82000)+(+5000)B.(-82000) + (+5000)C.( -82000) +(-5000)D.(+82000) +(-5000)31.下列说法错误的是()A.任何有理数都有倒数B.互为倒数的两个数的积为1C.互为倒数的两数符号相同D.1 和-1 互为负倒数32.将0.36×45×105的计算结果用科学记数来表示,正确的是()A.16.2×105B. 1.62×106 C.16.2×106D.16.2×10000033.在实数227π中无理数的个数是()A.1 个B.2 个C.3 个D.4 个34.算术平方根等于它的立方根的数是()A.0 B.±1C.0和±1D.0和 135.方程1235x--=的解为()A.-5 B.-15 C.-25 D.-3536.方程11012xx-+=-去分母后,得()A.1-x+10=-x B.1-x+10=-12x C.1+x+10=-12x D.1-x+120=-l2x37.掷一枚均匀的骰子,骰子停止转动后朝上一面的点数出现以下情况的概率最小的是()A.偶数B.奇数C.比5小的数D.数638.要反映宁波市一周内每天的最高气温的变化情况,宜采用()A.条形统计图B.扇形统计图 C.折线统计图D.以上都可以39.下列调查工作需采用普查方式的是()A.环保部门对淮河某段水域的水污染情况的调查B.电视台对正在播出的某电视节目收视率的调查C.质检部门对各厂家生产的电池使用寿命的调查D.企业在给职工做工作服前进行的尺寸大小的调查40.用扇形统计圆统计全县50万人口的民族构成比例,其中表示少数民族的扇形的圆心角为 90°,则在这个县中,少数民族有()A.12.5万人B.13万人C.9万人D.10万人41.下列图形能比较大小的是 ( )A .直线与线段B .直线与射线C .两条线段D .射线与线段42.如图,∠AOC=∠BOD=90°,下列结论中正确的个数是( )①∠AOB=∠COD ;②∠AOD=3∠B0C ;③∠AOD+∠BOC=∠AOC+∠BODA .0个B .l 个C .2个D .3个43.以下四种说法:①对顶角相等;②相等的角是对顶角;③不是对顶角的两个角不相等;④不相等的两个角,不是对顶角.其中正确的有( )A .1个B .2个C .3个D .4个44.A 、B 是平面上两点,AB=10 cm ,P 为平面上一点,若PA+PB=20 cm ,则P 点 ( )A .只能在直线AB 外 B .只能在直线AB 上C .不能在直线AB 上D .不能在线段AB 上45.如果α∠和β∠互补,且αβ∠>∠,则下列表示β∠的余角的式子中:①90β-∠;②90α∠-;③1()2αβ∠+∠;④1()2αβ∠-∠.正确的有( ) A .4个 B .3个 C .2个 D .1个46.有一些乒乓球装在一个口袋中,不知其个数,先取出6个做上标记,放回袋中混合均匀后取出 20个,发现含有 2个做了标记的. 据此可以估计袋中乒乓球的数目约为( )A . 100个B .60个C . 40个 26个47.将如图所示的图形按照顺时针方向旋转90°后所得的图形是( )48.观察下面的图形,由图甲变为图乙,其中既不是通过平移也不是通过旋转得到的图案是 ( )49.6927x y -等于( )A .233(27)x y -B .33(3)x -C .233(3)x y -D .363(3)x y -50.一副三角板按如图方式摆放,且∠l 比∠2大50°.若设∠1=x ,则可列出方程( )A .x+(x+500)=180°B .x+(x-50°)=180°C . x+(x+500)=90°D .x+(x-50°)=90°51.已知⊙O 的半径为 r ,圆心0到直线l 的距离为 d. 若直线l 与⊙O 有交点,则下列结论正确的是( )A .d=rB .d ≤rC . d ≥rD . d <r52.数据5,3,2,1,4的平均数是( )A .2B .3C .4D .553. 如图,□ABCD 中,E 是 BC 上一点,BE :EC=2:1,AE 与 BD 相交于点 F ,则 F 到BC 、AD 的距离之比是( )A .1 : 2B .2 : 3C . 1: 4D .4 : 954.把一个多边形改成和它相似的多边形,如果面积缩小为原来的一,那么边长缩小为原来的( )A .1:3B .3:1C .D55.一张正方形的纸片,剪去两个一样的小矩形得到一个“E ”图案,如图所示,设小矩形的长和宽分别为x 、y ,剪去部分的面积为20,若2≤x ≤10,则y 与x 的函数图象是( )把Rt △ABC 各边的长度都扩大3倍得Rt △A ˊB ˊC ˊ,那么锐角A 、A ˊ的余弦值的关系为( )A .cosA =cosA ˊB .cosA =3cosA ˊC .3cosA =cosA ˊD .不能确定57. 下列不等式中能成立的是( )A . cos10<cosl00<cos200B .tan15O >tan250>tan350C . coslO O <tan700<tan600D . sin8O O >sin550>sin30058.一个物体从坡顶A 点出发,沿坡比为 1:7的斜坡直线运动到底端点 B ,当 AB=30m时,物体下降了( )A .307 mB .308mC .D . 以上均不对59.如图所示,CD 是平面镑,光线从A 点出发经 CD 上点E 反射后照射到B 点,若入射角为α(入射角等于反射角),AC ⊥CD ,BD ⊥CD ,垂足分别为 C .D ,且 AC= 3,BD=6,CD= 11,则tan α的值为( )A .113B .311C . 911D .11960.某飞机于空中 A 处探测到平面目标 B ,此时从飞机上看目标B 的俯角α=30°,飞行高度AC= 1200 m ,那么飞机到目标B 的距离AB 为( )A .2400mB .1200mC .D .61.从一定高度掷一个瓶盖,落地后,下列判断中正确的是( )A .盖面朝上的概率大B .盖面部下的概率大C .一样大D .无法判断62.小红把班级勤工助学挣得的班费 500 元按一年期存入银行,已知年利率为 x ,一年到期后, 银行将本金和利息自动按一年定期转存,设两年到期后,本利和为 y 元,则y 与x 之间的函数关系式为( )A .25y x x =+B .2500y x =+C .2500y x x =+D .2500(1)y x =+63. 现有一批产品共 10 件,其中正品 9件,次品1件,从中任取 2 件,取出的全是正品的概率为( )A .45B .89C .910D .192064. 在同一直角坐标系中,函数k y x=与函数2(1)y k x =-的图象大致是( )A.B.C.D.65.已知⊙O半径为 4 cm,直线l与圆心距离是3 cm,则直线l与⊙O公共点个数为()A.O 个B.1个C.2 个D.不能确定66.如图,点A在⊙O上,下列条件不能说明 PA 是⊙O的切线的是()A.222+= B. PA⊥OA C.∠P= 30°,∠0= 60°D.OP=2QA OA PA OP67.如图,点 0是△ABC 的内切圆的圆心,若∠BAC=80°,则∠BOCc=()A.130°B.100°C. 65°D. 50°68.已知圆A和圆B相切,两圆的圆心距为8cm,圆A的半径为3cm,则圆B的半径是()A.5cm B.11cm C.3cm D.5cm或11cm下列图形中,不是正方体平面展开图的是()70.如图是一个空心圆柱体. 在指定的方向上,视图正确的是()A. B. C. D.71.若干桶方便面摆放在桌子上,实物图片左边所给的是它的三视图,则这一堆方便面共有 ( )A .5桶B .6桶C .9桶D .12桶72.下面几何体的俯视图正确的是( )A .B .C .D . 73.由几个相同的小正方体搭成的几何体的视图如图所示,则搭成这个几何体的小正方体的个数是( )A .4 个B .5 个C .6 个D .7 个74.下列事件中,是必然事件的为( )A .我市夏季的平均气温比冬季的平均气温高;B .每周的星期日一定是晴天;C .打开电视机,正在播放动画片;D .掷一枚均匀硬币,正面一定朝上.75.设有 10 个型号相同的杯子,其中一等品 7个、二等品 2个、三等品 1 个,从中任取一个杯子是一等品的概率等于( )A .310B .70lC .37D .1776.下列图形是轴对称图形的是 ( )A .平行四边形B .直角三角形C .菱形D .任意三角形77.下列各组所述的几何图形中,一定全等的是( )A .有一个角是45°的两个等腰三角形B .两个等边三角形C .腰长相等的两个等腰直角三角形D .各有一个角是40°,腰长都为5cm 的两个等腰三角形78.二次函数21(2)32y x =--的二次项系数、一次项系数、常数项分别为( ) A . 12,-2,-3 B .12 ,-2,-1 C .12,4,-3 D .12,-4,`1 79.已知a>b>0,则下列不等式不一定成立的是( )A .ab>b 2B .a+c>b+cC . 1a < 1bD .ac>bc80.如图是某人骑自行车的行驶路程s (km )与行驶时间t (h )的函数图象,下列说法不正确的是( )A .从0 h 到3 h ,行驶了30 kmB .从l h 到2 h 匀速前进C .从l h 到2 h 在原地不动D .从0 h 到l h 与从2 h 到3 h 的行驶速度相同81.如图反映的过程是:小明从家跑步到体育馆,在那里锻炼了一阵后又走到新华书店去买书,然后散步走回家,其中t 表示时间,s 表示小明离家的距离,那么小明在体育馆锻炼和在新华书店买书共用去的时间是( )A .35minB .45minC .50minD .60min82.点(21)P -,关于x 轴的对称点的坐标为( )A .(21),B .(21)--,C .(21)-,D .(12)-,83.如图,OA ,BA 分别表示甲、乙两名学生运动的一次函数的图象,图中 s 和t 分别表示运动的路程和时间,根据图象判断快者的速度比慢者的速度每秒快( )A . 2.5mB .2mC .1.5 mD . 1m84. ( )A .2 个B .3 个C .4 个D .5 个85.如图,在锐角△ABC 中,CD 和BE 分别是AB 和AC 边上的高,且CD 和BE 交于点P ,若∠A=50°,则∠BPC 的度数是( )A .150°B .130°C .120°D .100°86.□ABCD 的周长为20 cm ,两邻边之比为3:2,则较长边为( )A .6 cmB .4 cmC .2 cmD .3 cm87.二次函数c bx ax y ++=2的图象如图所示,则下列关系式不正确的是( )A .a <0B .abc >0C .c b a ++>0D .ac b 42->088.如图所示,△ABC 中,D ,E 分别是边BC ,AC 的中点,若DE=3,则AB 等于( )A .32B .6C .9D .9489.今年我市约有36000名学生参加初中毕业会考,为了了解这36000名学生的数学成绩,准备从中随机抽取1200 名学生的数学成绩进行统计分析,那么你的数学成绩被抽中的概率为( )A .136000B .11200C .150D .13090.下列特征中,菱形具有而矩形不一定具有的特征是( )A .对边平行且相等B .对角线互相平分C .内角和等于外角和D .每一条对角线所在直线都是它的对称轴91.如图,在□ABCD 中,AB=BC ,对角线AC ,BD 相交于点0,E 为BC 的中点,则下列式子中 一定成立的是( )A .AC=20EB .BC=20EC .AD=DED .OB=OE92.正方形具有而菱形不一定具有特征是( )A .对角线互相垂直平分B .内角和为360°C .对角线相等D .对角线平分每一组对角93.一梯形两底为10和16,一腰长为8,则另一腰长a 的取值范围是( )A .2<a<14B .2<a<26C .6<a<18D .6<a<2694.矩形、正方形、菱形的共同性质是( )A .对角线相等B .对角线互相垂直C .对角线互相平分D .每一条对角线平分一组对角95.如图,将一张等腰直角三角形纸片沿中位线DE 剪开后,可以拼成的四边形是( )A .矩形或等腰梯形B .矩形或平行四边形C .平行四边形或等腰梯形D .矩形或等腰梯形或平行四边形 96.下列图形不是中心对称图形的是( )A .圆B .平行四边形C .菱形D .等腰梯形97.下列各点不在反比例函数4y x =的图象上的是( ) A . (-1,-4)B .(0. 5,8)C .(一2,2)D .(1a,4a ) (a ≠0) 98.当k>0,b>0 对,函数y kx b =+与k y x-=的图象在同一直角坐标系内可能是( )A .B .C .D . 99.反比例函数y =kx中,k 与x 的取值情况是( ) A .k ≠0,x 取全体实数 B .x ≠0, k 取全体实数C .k ≠0,x ≠0D .k 、x 都可取全体实数100.口ABCD 的周长为36 cm ,AB=BC=2cm ,则AD ,CD 的长度分别为( )A .12 cm ,6 cmB .8 cm ,10 cmC .6 cm ,12 cmD .10 cm ,8 cm【参考答案】***试卷处理标记,请不要删除一、选择题1.B2.C3.A4.A5.C6.D7.D8.B9.D10.B11.D12.B13.C14.B15.D16.D17.B18.C19.B20.C21.B22.C23.C24.C25.C26.C27.C28.D30.D 31.A 32.B 33.B 34.D 35.C 36.D 37.D 38.C 39.D 40.A 41.C 42.C 43.B 44.D 45.B 46.B 47.C 48.A 49.C 50.D 51.B 52.B 53.B 54.C 55.C 56.A 57.D 58.C 59.D 60.A 61.B 62.D64.B 65.C 66.D 67.A 68.D 69.D 70.C 71.B 72.B 73.B 74.A 75.B 76.C 77.C 78.B 79.D 80.B 81.C 82.B 83.C 84.B 85.B 86.A 87.C 88.B 89.D 90.D 91.B 92.C 93.A 94.C 95.D 96.D98.B 99.C 100.B。

2019年度初中数学中考模拟试卷02128

2019年度初中数学中考模拟试卷02128

2019年度初中数学中考模拟试卷
数学科目模拟测试
学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息
一、选择题
1.图象的顶点为(-2,-2 ),且经过原点的二次函数的关系式是()
A.y=1
2(x+2 )
2 -2 B y=1
2(x-2 )
2 -2. C y=2(x+2 )2 -2. D.y=2(x-2 )2 -2
2.在对50个数进行整理的频数分布表中,各组的频数之和与频率之和分别等于()A.50,1 B. 50,50 C.1,50 D.1,1
3.将直角三角形的三边都扩大3倍后,得到的三角形是()
A.直角三角形B.锐角三角形C.钝角三角形D.无法确定
4.如图,△A8C≌△BAD,A和B,C和D是对应点,若AB=4 cm,BD=3 cm,AD=2 cm,则BC的长度为()
A.4 cm B.3 cm C.2 cm D.不能确定
二、填空题
5.如图,△ABC是等边三角形,P是三角形内任一点,PD∥AB,PE∥BC,PF∥AC,若△ABC周长为12,PD+PE+PF= .
6.从围棋盒中抓出一大把棋子,所抓出棋子的个数是奇数的概率为.
7.如图,在△ABC中,AB=AC,AD、CE 分别平分∠BAC 与∠ACB,AD 与 CE相交于点 F .若∠B =62° , 则∠AFC = .。

最新2019年初中数学100题练习试卷 中考模拟试题737835

最新2019年初中数学100题练习试卷 中考模拟试题737835

数学模拟测试考试范围:xxx ;满分:***分;考试时间:100分钟;命题人:xxx 注意事项:1.答题前填写好自己的姓名、班级、考号等信息一、选择题1. 如图,AB ∥CD ,∠1=110°, ∠ECD =70°,∠E 等于( )A .30°B . 40°C . 50°D . 60°2.如果把分式ba ab 2 中的a ,b 都扩大10倍,那么分式的值( ) A .扩大为原来的10倍 B .缩小为原来的110 C .不变 D .无法确定 3.把一个图形先沿着一条直线进行轴对称变换,再沿着与这条直线平行的方向平移,我们把这样的图形变换叫做滑动对称变换. 在自然界和日常生活中,大量地存在这种图形变换(如图(1)). 结合轴对称变换和平移变换的有关性质,你认为在滑动对称变换过程中,两个对应三角形(如图(2))的对应点所具有的性质是( )A .对应点连线与对称轴垂直B .对应点连线被对称轴平分C .对应点连线被对称轴垂直平分D .对应点连线互相平行4.下列每组数分别是三根小木棒的长度,首尾顺次相接能组成三角形的是( )A .10 cm , 2 cm , 15 cmB .15 cm , 9 cm , 25 cmC .6 cm , 9 cm, 15 cmD .5 cm , 5 cm , 5 cm5.如图,对任意的五角星, 结论错误的是( )A .∠1=∠C+∠EB .∠2=∠A+∠DC .∠A+∠B+∠C+∠D+∠E=360°D .∠A+∠B+∠C+∠D+∠E=180°6.在下面四个图形中,既包含图形的旋转,又有图形的轴对称设计的是( )A .B .C .D .7.关于x 、y 的方程组232(1)10x y kx k y -=⎧⎨++=⎩的解互为相反数,则k 的值是( ) A . 8 B . 9 C .10 D . 118.已知甲数比乙数小 5,且甲数的3倍等于乙数的 2倍,则甲、乙两数分别为( )A . 10,15B . 15,10C . 5,10D . 10,59.把多项式22481a b -分解因式,其结果正确的是( )A . (49)(49)a b a b -+B .(92)(92)b a b a -+C .2(29)a b -D .(29)(29)a b a b -+10.化简229339x x x x -+-÷-+的结果是( ) A . 29x - B . 29x -+ C . 3x -- D . 3x -11.课间操时,小华、小军、小刚的位置如图所示,如果小华的位置用(0,O )表示,小军的位置用(2,1)表示,那么小刚的位置可以表示成( )A .(5,4)B .(4,5)C (3,4)D .(4,3)12.如图,如果 AB ∥CD ,∠C=60°,那么∠A+∠E=( )A .20B .30°C .40D .60°。

四川成都2019年中考数学模拟考试题(含答案)

四川成都2019年中考数学模拟考试题(含答案)

成都市2019 年高中阶段教育学校统一招生考试数学A 卷(共100分)一、一、选择题(本大题共10 个小题,每小题3 分,共30 分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上).1. 《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别 叫做正数与负数.若气温为零上010C 记作010C +,则03C -表示气温为 ( ) A .零上03C B .零下03C C .零上07C D .零下07C 2. 如图所示的几何体是由4 个大小相同的小立方体搭成,其俯视图是( )A .B .C .D .3. 总投资647 亿元的西域高铁预计2019 年11月竣工,届时成都到西安只需3 小时,上午游武侯区,晚上看大雁塔将成为现实.用科学计数法表示647 亿元为( )A .864710⨯ B .96.4710⨯ C .106.4710⨯ D . 116.4710⨯ 4. 二次根式1x -中,x 的取值范围是( )A .1x ≥B . 1x > C. 1x ≤ D .1x < 5. 下列图标中,既是轴对称图形,又是中心对称图形的是( )A .B .C. D .6. 下列计算正确的是 ( )A .5510a a a += B . 76a a a ÷= C. 326a a a = D .()236aa -=-7. 学习全等三角形时,数学兴趣小组设计并组织了“生活中的全等”的比赛,全班同学的比赛结果统计如下表: 得分(分) 60 70 80 90 100 人数(人)7121083则得分的众数和中位数分别为( )A .70 分,70 分B .80 分,80 分 C. 70 分,80 分 D .80 分,70 分 8. 如图,四边形ABCD 和A BCD '''' 是以点O 为位似中心的位似图形,若:2:3OA OA '= ,则四边形ABCD 与四边形A B C D ''''的面积比为( )A . 4:9B . 2:5 C. 2:3 D .2:3 9. 已知3x =是分式方程2121kx k x x--=-的解,那么实数k 的值为( ) A .-1 B . 0 C. 1 D .210. 在平面直角坐标系xOy 中,二次函数2y ax bx c =++的图像如图所示,下列说法正确的是 ( )A . 20,40abc b ac <->B .20,40abc b ac >-> C. 20,40abc b ac <-< D .20,40abc b ac >-<二、填空题(本大题共4 个小题,每小题4 分,共16 分,答案写在答题卡上).11.()20171-=________________.12. 在ABC ∆中,::2:3:4A B C ∠∠∠=,则A ∠的度数为______________.13.如图,正比例函数11y k x =和一次函数22y k x b =+的图像相交于点()2,1A .当2x <时,1y2y .(填“>”或“<”)14.如图,在平行四边形ABCD 中,按以下步骤作图:①以A 为圆心,任意长为半径作弧,分别交,AB AD 于点,M N ;②分别以,M N 为圆心,以大于12MN 的长为半径作弧,两弧相交于点P ;③作AP 射线,交边CD 于点Q ,若2,3DQ QC BC ==,则平行四边形ABCD 周长为 .三、解答题(本大题共6 个小题,共54 分,解答过程写在答题卡上)15.(1)计算:212182sin 452-⎛⎫--++ ⎪⎝⎭.(2)解不等式组:()2731423133x x x x ⎧-<-⎪⎨+≤-⎪⎩①② . 16.化简求值:2121211x x x x -⎛⎫÷- ⎪+++⎝⎭,其中31x =- . 17. 随着经济的快速发展,环境问题越来越受到人们的关注,某校学生会为了解节能减排、垃圾分类知识 的普及情况,随机调查了部分学生,调查结果分为“非常了解”“了解”“了解较少”“不了解”四类, 并将检查结果绘制成下面两个统计图.(1)本次调查的学生共有__________人,估计该校1200 名学生中“不了解”的人数是__________人. (2)“非常了解”的4 人有12,A A 两名男生,12,B B 两名女生,若从中随机抽取两人向全校做环保交流,请利用画树状图或列表的方法,求恰好抽到一男一女的概率.18. 科技改变生活,手机导航极大方便了人们的出行.如图,小明一家自驾到古镇C 游玩,到达A 地后, 导航显示车辆应沿北偏西60°方向行驶4 千米至B 地,再沿北偏东45°方向行驶一段距离到达古镇C ,小明发现古镇C 恰好在A 地的正北方向,求,B C 两地的距离.19. 如图,在平面直角坐标系xOy 中,已知正比例函数12y x =的图象与反比例函数ky x=的图象交于(),2,A a B -两点.(1)求反比例函数的表达式和点B 的坐标;(2)P 是第一象限内反比例函数图像上一点,过点P 作y 轴的平行线,交直线AB 于点C ,连接PO ,若POC ∆的面积为3,求点P 的坐标.20. 如图,在ABC ∆中,AB AC =,以AB 为直径作圆O ,分别交BC 于点D ,交CA 的延长线于点E ,过点D 作DH AC ⊥于点H ,连接DE 交线段OA 于点F . (1)求证:DH 是圆O 的切线; (2)若AE 为H 的中点,求EFFD的值;(3)若1EA EF ==,求圆O 的半径.B 卷(共50分)一、填空题(本大题共5 个小题,每小题4 分,共20 分,答案写在答题卡上)21. 如图,数轴上点A 表示的实数是_____________.22.已知12,x x 是关于x 的一元二次方程250x x a -+=的两个实数根,且221210x x -=,则a =___________. 23.已知O 的两条直径,AC BD 互相垂直,分别以,,,AB BC CD DA 为直径向外作半圆得到如图所示的图形.现随机地向该图形内掷一枚小针,记针尖落在阴影区域内的概率为1P ,针尖落在O 内的概率为2P ,则12P P =______________.24.在平面直角坐标系xOy 中,对于不在坐标轴上的任意一点(),P x y ,我们把点11,P x y ⎛⎫' ⎪⎝⎭称为点P 的 “倒影点”.直线1y x =-+上有两点,A B ,它们的倒影点,A B ''均在反比例函数ky x=的图像上.若22AB =,则k =____________.25.如图1,把一张正方形纸片对折得到长方形ABCD ,再沿ADC ∠的平分线DE 折叠,如图2,点C 落在点C '处,最后按图3所示方式折叠,使点A 落在DE 的中点A '处,折痕是FG .若原正方形纸片的边长为6cm ,则FG =_____________cm .二、解答题(共3个小题 ,共30分)26. 随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择,李华从文化宫站出发,先乘坐地铁,准备在离家较近的,,,,A B C D E 中的某一站出地铁,再骑共享单车回家,设他出地铁的站点与文化宫距离为x ,(单位:千米),乘坐地铁的时间1y 单位:分钟)是关于x 的一次函数, 其关系如下表:地铁站ABCDEx (千米) 8 9 10 11.5 13 1y (分钟)1820222528(1)求1y 关于x 的函数表达式;(2)李华骑单车的时间(单位:分钟)也受x 的影响,其关系可以用22111782y x x =-+来描述,请问:李华应选择在哪一站出地铁,才能使他从文化宫回到家里所需的时间最短?并求出最短时间.27.问题背景:如图1,等腰ABC ∆中,0,120AB AC BAC =∠=,作AD BC ⊥于点D ,则D 为BC 的中点,01602BAD BAC ∠=∠=,于是23BC BD AB AB==;迁移应用:如图2,ABC ∆和ADE ∆都是等腰三角形,0120BAC ADE ∠=∠=,,,D E C 三点在同一条直线上,连接BD .① 求证:ADB AEC ∆≅∆;② 请直接写出线段,,AD BD CD 之间的等量关系式;拓展延伸:如图3,在菱形ABCD 中,0120BAC ∠=,在ABC ∠内作射线BM ,作点C 关于BM 的对称点E ,连接AE 并延长交BM 于点F ,连接,CE CF .① 证明:CEF ∆是等边三角形; ② 若5,2AE CE ==,求BF 的长.28.如图1,在平面直角坐标系xOy 中,抛物线2:C y ax bx c =++与x 轴相交于,A B 两点,顶点为()0,4D ,42AB =,设点(),0F m 是x 轴的正半轴上一点,将抛物线C 绕点F 旋转180°,得到新的抛物线C '.(1)求抛物线C 的函数表达式;(2)若抛物线C '与抛物线C 在y 轴的右侧有两个不同的公共点,求m 的取值范围;(3)如图2,P 是第一象限内抛物线C 上一点,它到两坐标轴的距离相等,点P 在抛物线C '上的对应点为P',设M是C上的动点,N是C'上的动点,试探究四边形PMP N'能否成为正方形,若能,求出m的值;若不能,请说明理由.试卷答案一、选择题1-5:BCCAD 6-10: BCADB二、填空题11. 1 12. 40° 13. < 14. 15三、解答题15.(1)【答案】3【解析】原式=221222421222432--+⨯+=--++= (2)【答案】41x -<≤-【解析】①可化简为:2733x x -<-,4x -<,∴4x >-;②可化简为:213x ≤-,∴1x ≤- ∴ 不等式的解集为41x -<≤-. 16.【答案】33【解析】原式=()()2211211111111x x x x x x x x x -+--+÷==+-+++, 当31x =-时,原式=133311=-+ 17.【答案】(1)50,360;(2)23P =; 【解析】(1)由饼图可知“非常了解”为8%,由柱形图可知(条形图中可知)“非常了解”为4人,故本次调查的学生有4508%=(人) 由饼图可知:“不了解”的概率为18%22%40%30%---=,故1200名学生中“不了解”的人数为120030%360⨯=(人)(2)树状图:由树状图可知共有12种结果,抽到1男1女分别为1112212212112122A B A B A B A B B A B A B A B A 、、、、、、、 共8种. ∴82123P == 18.【答案】26【解析】过点B 作BD AC ⊥,由题060,4BAD AB ∠==,∴0cos602AD AB ==,∵0145∠=, ∴045CBD ∠=,∴BD CD =, ∵0sin6023BD AB ==, ∴23CD =, ∴0cos4526BC BD ==19.【答案】(1)()8,4,2y B x =; (2)()2,4P 或4727,7P ⎛⎫ ⎪ ⎪⎝⎭【解析】(1)把(),2A a -代入12y x =,4a ⇒=-, ∴()4,2A --,把()4,2A --代入k y x =,8k ⇒=, ∴8y x=, 联立812y x y x ⎧=⎪⎪⎨⎪=⎪⎩4x ⇒=-或4x =, ∴()4,2B ;(2)如图,过点P 作//PE y 轴, 设8,P m m ⎛⎫ ⎪⎝⎭,AB y kx b =+,代入A B 、两点, 12AB y x ⇒=, ∴1,2C m m ⎛⎫ ⎪⎝⎭, 118322POC S m m m ∆=-=,1862m m m-=,286272m m -=⇒=, 218622m m -=⇒=,∴4727,7P ⎛⎫ ⎪ ⎪⎝⎭或()2,4P . 20.【解析】(1)连接OD ,∵OB OD =,∴OBD ∆是等腰三角形,OBD ODB ∠=∠ ①,又在ABC ∆中, ∵AB AC =,∴ABC ACB ∠=∠ ②,则由①②得,ODB OBD ACB ∠=∠=∠,∴//OD AC ,∵DH AC ⊥,∴DH OD ⊥,∴DH 是O 的切线;(2)在O 中, ∵E B ∠=∠,∵由O 中可知,E B C ∠=∠=∠,EDC ∆是等腰三角形,又∵DH AC ⊥且点A 是EH 中点,∴设,4AE x EC x ==,则3AC x =,连接AD ,则在O 中,090ADB ∠=,即AD BD ⊥,又∵ABC ∆是等腰三角形,∴D 是BC 中点,则在ABC ∆中,OD 是中位线, ∴13//,22OD AC OD x =, ∵//OD AC , ∴E ODF ∠=∠, 在AEF ∆和ODF ∆中,E ODF OFD AFE ∠=∠⎧⎨∠=∠⎩, ∴AEF ODF ∆∆, ∴2,332EF AE AE x FD OD OD x ===, ∴23EF FD =. (3)设O 半径为r ,即OD OB r ==, ∵EF EA =, ∴EFA EAF ∠=∠,又∵//OD EC , ∴FOD EAF ∠=∠,则FOD EAF EFA OFD ∠=∠=∠=∠, ∴OF OD r ==, ∴1DE DF EF r =+=+,∴1BD CD DE r ===+,在O 中, ∵BDE EAB ∠=∠,∴BFD EFA EAB BDE ∠=∠=∠=∠,∵BF BD =,BDF ∆是等腰三角形,∴1BF BD r ==+,∴()2211AF AB BF OB BF r r r =-=-=-+=-, 在BFD ∆与EFA ∆中BFD EFA B E ∠=∠⎧⎨∠=∠⎩,∵BFD EFA ∆∆, ∴11,1EF BF r FA DF r r+==-, 解得121515,22r r +-==(舍) ∴综上,O 的半径为152+.。

2019年江苏省无锡市中考数学模拟试卷(一)解析版

2019年江苏省无锡市中考数学模拟试卷(一)解析版

2019年江苏省无锡市中考数学模拟试卷(一)一、选择题(本大题共10小题,共30.0分) 1. 下列运算正确的是( )A. (x 3)4=x 7B. (−x)2⋅x 3=x 5C. (−x)4÷x =−x 3D. x +x 2=x 32. 若式子√a −3在实数范围内有意义,则a 的取值范围是( )A. a >3B. a ≥3C. a <3D. a ≤3 3. 下列不等式变形正确的是( )A. 由 a >b ,得 a −2<b −2B. 由 a >b ,得|a|>|b|C. 由 a >b ,得−2a <−2bD. 由 a >b ,得 a 2>b 2 4. 已知点A (m 2-2,5m +4)在第一象限角平分线上,则m 的值为 ( )A. 6B. −1C. 2或3D. −1或65. 如图,在平面直角坐标系中,△ABC 与△A 1B 1C 1是以点P 为位似中心的位似图形,且顶点都在格点上,则点P 的坐标为( )A. (−4,−3)B. (−3,−4)C. (−3,−3)D. (−4,−4)6. 使得关于x 的不等式组{−2x +1≥4m −1x>m−2有解,且使分式方程1x−2−m−x 2−x=2有非负整数解的所有的m的和是( )A. −1B. 2C. −7D. 07. 若α,β是一元二次方程3x 2+2x -9=0的两根,则βα+αβ的值是( )A. 427B. −427C. −5827D. 58278. 如图,正方形ABCD 的顶点B 、C 在x 轴的正半轴上,反比例函数y =kx(k ≠0)在第一象限的图象经过点A (m ,2)和CD 边上的点E (n ,23),过点E 作直线l ∥BD 交y 轴于点F ,则点F 的坐标是( )A. (0,−73) B. (0,−83) C. (0,−3)D. (0,−103)9. 如图,半径为R 的⊙O 的弦AC =BD ,AC 、BD 交于E ,F 为BC⏜上一点,连AF 、BF 、AB 、AD ,下列结论:①AE =BE ;②若AC ⊥BD ,则AD =√2R ;③在②的条件下,若CF⏜=CD ⏜,AB =√2,则BF +CE =1.其中正确的是( ) A. ①② B. ①③ C. ②③ D. ①②③10. 已知△ABC 中,∠ABC =45°,AB =7√2,BC =17,以AC 为斜边在△ABC外作等腰Rt △ACD ,连接BD ,则BD 的长为( ) A. 25 √2B. 17√74C. 25√22D. 17√72二、填空题(本大题共8小题,共16.0分)11. 用四舍五入法对437540取近似数,精确到千位为______(用科学记数法表示)12. 已知线段a =4cm ,线段b =7cm ,线段c 是线段a ,b 的比例中项,则线段c =______. 13. 如图,点P 在△ABC 的边AC 上,要使△ABP ∽△ACB ,添加一个条件______.14. 将半径为3cm 的圆形纸片沿AB 折叠后,圆弧恰好能经过圆心O ,用图中阴影部分的扇形围成一个圆锥的侧面,则这个圆锥的高为______.15. 有这样一道题:如图,在正方形ABCD 中,有一个小正方形EFGH ,其中E ,F ,G 分别在AB ,BC ,FD 上,连接DH ,如果BC =12,BF =3.则tan ∠HDG 的值为______. 16. 已知二次函数y =ax 2+2ax +3a 2+3(其中x 是自变量),当x ≥2时,y 随x 的增大而减小,且-4≤x ≤1时,y的最大值为7,则a 的值为______.17. 如图,等腰直角三角形ABC 中,∠C =90°,D 为BC 的中点.将△ABC 折叠,使A 点与点D 重合.若EF 为折痕,则sin ∠BED 的值为______,DEDF 的值为______.18. 图1为一锐角是30°的直角三角尺,其边框为透明塑料制成(内、外直角三角形对应边互相平行且三处所示宽度相等).将三角尺移向直径为4cm 的⊙O ,它的内Rt △ABC 的斜边AB 恰好等于⊙O 的直径,它的外Rt △A ′B ′C ′的直角边A ′C ′恰好与⊙O 相切(如图2).则边B ′C ′的长______.三、计算题(本大题共2小题,共16.0分) 19. 计算:(1)tan30°-(-2)2-|2-√3|. (2)(2x -1)2+(x -2)(x +2). 20. (1)解方程:1x−3=2+x3−x(2)解不等式组:{x −3(x −2)≤41+2x 3>x −1.四、解答题(本大题共8小题,共68.0分)21. 已知:如图,在平行四边形ABCD 和矩形ABEF 中,AC 与DF 相交于点G .(1)试说明DF =CE ;(2)若AC =BF =DF ,求∠ACE 的度数.22. 母亲节到了,小明准备为妈妈煮四个大汤圆作早点:一个芝麻馅,一个牛肉馅,两个花生馅,四个汤圆除内部馅料不同外,其它一切均相同.(1)分别用A ,B ,C 表示芝麻馅、牛肉馅、花生馅的大汤圆,求妈妈吃前两个汤圆刚好都是花生馅的概率(请用“画树状图”或“列表”等方法,写出分析过程,并给出结果);(2)若花生馅的大汤圆的个数为n 个(n ≥2),则妈妈吃前两个汤圆都是花生馅的概率是______(请用含n 的式子直接写出结果)23. 如图,在由边长为1的小正方形组成的网格图中,有一个格点三角形ABC .(注:顶点均在网格线交点处的三角形称为格点三角形.) (1)△ABC 是______三角形(填“锐角”、“直角”或“钝角”); (2)若P 、Q 分别为线段AB 、BC 上的动点,当PC +PQ 取得最小值时, ①在网格中用无刻度的直尺,画出线段PC 、PQ .(请保留作图痕迹.) ②直接写出PC +PQ 的最小值:______.24. 如图1,△ABC 内接于⊙O ,AC 是直径,点D 是AC 延长线上一点,且∠DBC =∠BAC ,tan ∠BAC =12.(1)求证:BD 是⊙O 的切线; (2)求DCAC 的值;(3)如图2,过点B作BG⊥AC交AC于点F,交⊙O于点G,BC、AG的延长线交于点E,⊙O的半径为6,求BE的长.25.某调查公司对本区域的共享单车数量及使用次数进行了调查发现,今年3月份第1周共有各类单车1000辆,第2周比第1周增加了10%,第3周比第2周增加了100辆,调查还发现某款单车深受群众喜爱,第1周该单车的每辆平均使用次数是这一周所有单车平均使用次数的2.5倍,第2、第3周该单车的每辆平均使用次数都比前一周增长一个相同的百分数m,第3周所有单车的每辆平均使用次数比第1周增加的百分数也是m,而且第3周该款单车(共100辆)的总使用次数占到所有单车总使用次数的四分之一.(注:总使用次数=每辆平均使用次数×车辆数)(1)求第3周该区域内各类共享单车的数量;(2)求m的值.26.已知:如图,一次函数y=-2x与二次函数y=ax2+2ax+c的图象交于A、B两点(点A在点B的右侧),与其对称轴交于点C.(1)求点C的坐标;(2)设二次函数图象的顶点为D,点C与点D关于x轴对称,且△ACD的面积等于2.①求二次函数的解析式;②在该二次函数图象的对称轴上求一点P(写出其坐标),使△PBC与△ACD相似.27.如图1,等边△ABC的边长为3,分别以顶点B、A、C为圆心,BA长为半径作AC⏜、CB⏜、BA⏜,我们把这三条弧所组成的图形称作莱洛三角形,显然莱洛三角形仍然是轴对称图形,设点I为对称轴的交点.(1)如图2,将这个图形的顶点A与线段MN作无滑动的滚动,当它滚动一周后点A与端点N重合,则线段MN的长为______;(2)如图3,将这个图形的顶点A与等边△DEF的顶点D重合,且AB⊥DE,DE=2π,将它沿等边△DEF 的边作无滑动的滚动当它第一次回到起始位置时,求这个图形在运动过程中所扫过的区域的面积;(3)如图4,将这个图形的顶点B与⊙O的圆心O重合,⊙O的半径为3,将它沿⊙O的圆周作无滑动的滚动,当它第n次回到起始位置时,点I所经过的路径长为______(请用含n的式子表示)28.如图(1),在△ABC中,∠C=90°,AB=5cm,BC=3cm,动点P在线段AC上以5cm/s的速度从点A运动到点C,过点P作PD⊥AB于点D,将△APD绕PD的中点旋转180°得到△A′DP,设点P的运动时间为x(s).(1)当点A′落在边BC上时,求x的值;(2)在动点P从点A运动到点C过程中,当x为何值时,△A′BC是以A′B为腰的等腰三角形;(3)如图(2),另有一动点Q与点P同时出发,在线段BC上以5cm/s的速度从点B运动到点C,过点Q作QE⊥AB于点E,将△BQE绕QE的中点旋转180°得到△B′EQ,连结A′B′,当直线A′B′与△ABC的一边垂直时,求线段A′B′的长.答案和解析1.【答案】B【解析】解:A、(x3)4=x12,故本选项错误;B、(-x)2•x3=x2•x3=x5,故本选项正确;C、(-x)4÷x=x4÷x=x3,故本选项正确;D、x+x2不能合并,故本选项错误.故选:B.利用幂的乘方、同底数幂的除法以及合并同类项的知识求解即可求得答案.此题考查了幂的乘方、同底数幂的除法以及合并同类项.注意掌握符号与指数的变化是解此题的关键.2.【答案】B【解析】解:由题意得,a-3≥0,解得a≥3.故选:B.根据被开方数大于等于0列式计算即可得解.本题考查的知识点为:二次根式的被开方数是非负数.3.【答案】C【解析】解:A、在不等式a>b的两边同时减去2,不等式仍成立,即a-2>b-2,故本选项错误;B、当a>b>0时,不等式|a|>|b|成立,故本选项错误;C、在不等式a>b的两边同时乘以-2,不等式的符号方向改变,即-2a<-2b成立,故本选项正确;D、当a>b>0时,不等式a2>b2成立,故本选项错误;故选:C.根据不等式的性质进行分析判断.考查了不等式的性质:①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.4.【答案】A【解析】解:∵点A(m2-2,5m+4)在第一象限角平分线上,∴m2-2=5m+4,∴m2-5m-6=0,解得m1=-1,m2=6,当m=-1时,m2-2=-1,点A(-1,-1)在第三象限,不符合题意,所以,m的值为6.故选:A.根据第一象限角平分线上点的横坐标与纵坐标相等列方程求解,再根据第一象限点的横坐标与纵坐标都是正数作出判断.本题考查了点的坐标,熟记第一象限平分线上的点的横坐标与纵坐标相等是解题的关键,易错点在于要注意对求出的解进行判断.5.【答案】A【解析】解:如图,点P的坐标为(-4,-3).故选:A.延长A1A、B1B和C1C,从而得到P点位置,从而可得到P点坐标.本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.6.【答案】C【解析】解:∵关于x的不等式组有解,∴1-2m>m-2,解得m<1,由得x=,∵分式方程有非负整数解,∴x=是非负整数,∵m<1,∴m=-5,-2,∴-5-2=-7,故选:C.根据不等式组的解集的情况得出关于m的不等式,求得m的解集,再解分式方程得出x,根据x是非负整数得出m所有的m的和.本题考查了分式方程的解以及不等式的解集,求得m的取值范围以及解分式方程是解题的关键.7.【答案】C【解析】解:∵α、β是一元二次方程3x2+2x-9=0的两根,∴α+β=-,αβ=-3,∴+====-.故选:C.根据根与系数的关系可得出α+β=-、αβ=-3,将其代入+=中即可求出结论.本题考查了根与系数的关系,牢记两根之和等于-、两根之积等于是解题的关键.8.【答案】A【解析】解:∵正方形的顶点A(m,2),∴正方形的边长为2,∴BC=2,而点E(n ,),∴n=2+m,即E点坐标为(2+m ,),∴k=2•m=(2+m),解得m=1,∴A(1,2),E(3,),∴B(1,0),D(3,2),设直线BD的解析式为y=ax+b,把B(1,0),D(3,2)代入得,解得,∵过点E作直线l∥BD交y轴于点F,∴设直线l的解析式为y=x+q,把E(3,)代入得3+q=,解得q=-,∴直线l的解析式为y=x-当x=0时,y=-,∴点F的坐标为(0,-),故选:A.由A(m,2)得到正方形的边长为2,则BC=2,所以n=2+m,根据反比例函数图象上点的坐标特征得到k=2•m=(2+m),解得m=1,则A(1,2),B(1,0),D(3,2),E(3,),然后利用待定系数法确定直线BD的解析式,再根据平行线的性质和E的坐标求得直线l的解析式,求x=0时对应函数的值,从而得到点F的坐标.本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数解析式.也考查了待定系数法求函数解析式.9.【答案】D【解析】解:①∵弦AC=BD,∴=,∴=,∴∠ABD=∠BAC,∴AE=BE;②连接OA,OD,∵AC⊥BD,AE=BE,∴∠ABE=∠BAE=45°,∴∠AOD=2∠ABE=90°,∵OA=OD,∴AD=R;③设AF与BD相交于点G,连接CG,∵=,∴∠FAC=∠DAC,∵AC⊥BD,∵在△AGE和△ADE中,,∴△AGE≌△ADE(ASA),∴AG=AD,EG=DE,∴∠AGD=∠ADG,∵∠BGF=∠AGD,∠F=∠ADG,∴∠BGF=∠F,∴BG=BF,∵AC=BD,AE=BE,∴DE=CE,∴EG=CE,∴BE=BG+EG=BF+CE,∵AB=,∴BE=AB•cos45°=1,∴BF+CE=1.故其中正确的是:①②③.故选:D.①由弦AC=BD ,可得=,继而可得=,然后由圆周角定理,证得∠ABD=∠BAC,即可判定AE=BE;②连接OA,OD,由AE=BE,AC⊥BD,可求得∠ABD=45°,继而可得△AOD是等腰直角三角形,则可求得AD=R;③设AF与BD相交于点G,连接CG,易证得△BGF是等腰三角形,CE=DE=EG,继而求得答案.此题考查了圆周角定理、弧与弦的关系、等腰直角三角形的性质与判定以及全等三角形的判定与性质等知识.此题难度较大,注意掌握辅助线的作法,注意数形结合思想的应用.10.【答案】C【解析】解:以AB为腰作等腰Rt△ABE,连接CE.∵△ADC是等腰Rt△,∴,∠EAB=∠DAC=45°,∴∠EAB+∠BAC=∠DAC+∠BAC,即∠EAC=∠DAB.∴△EAC∽△BAD.∴.作EF⊥BC,交BC延长线于F点,∴△EFB为等腰Rt△,EF=BF==7.∴EC==25.∴BD=EC=.故选:C.以AB为腰作等腰Rt△ABE,连接CE,证明△EAC∽△BAD,得到BD与EC数量关系,作EF⊥BC,交BC延长线于F点,在Rt△EFC中利用勾股定理求出EC长,则可求BC长.本题主要考查了等腰直角三角形的性质、勾股定理、相似三角形的判断和性质,正确作出辅助线是解题的关键.11.【答案】4.38×105【解析】解:用四舍五入法对437540取近似数,精确到千位为4.38×105.故答案为:4.38×105.一个近似数精确到十位或十位以前的数位时,要先用科学记数法表示出这个数,再进行四舍五入.本题主要考查了科学记数法与精确度,科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数;一个近似数,四舍五入到哪一位,就叫精确到哪一位.12.【答案】2√7【解析】解:∵线段c是线段a,b的比例中项,∴c2=ab,∵a=4cm,b=7cm,c>0,∴c=2(cm),故答案为2.根据比例中项的定义,构建方程即可解决问题.∵本题考查比例中项的定义,解题的关键是熟练掌握基本知识,属于中考常考题型.13.【答案】∠ABP=∠C或∠APB=∠ABC或AB2=AP•AC【解析】解:在△ABP和△ACB中,∵∠A=∠A,∴当∠ABP=∠C或∠APB=∠ABC或=即AB2=AP•AC时,△ABP∽△ACB,故答案为∠ABP=∠C或∠APB=∠ABC或AB2=AP•AC.根据相似三角形的判定方法,即可解决问题.本题考查相似三角形的判定,解题的关键是记住相似三角形的判定方法,属于基础题中考常考题型.14.【答案】2√2cm【解析】解:作OC⊥AB于C,如图,∵将半径为3cm的圆形纸片沿AB折叠后,圆弧恰好能经过圆心O,∴OC等于半径的一半,即OA=2OC,∴∠OAC=30°,∴∠AOC=60°,∴∠AOB=120°,弧AB的长==2π,设圆锥的底面圆的半径为r,∴2πr=2π,解得r=1,∴这个圆锥的高==2(cm).故答案为:2cm.作OC⊥AB于C,如图,根据折叠的性质得OC等于半径的一半,即OA=2OC,再根据含30度的直角三角形三边的关系得∠OAC=30°,则∠AOC=60°,所以∠AOB=120°,则利用弧长公式可计算出弧AB的长=2π,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长得到圆锥的底面圆的半径为1,然后根据勾股定理计算这个圆锥的高.本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.15.【答案】13【解析】解:∵在正方形ABCD,正方形EFGH中,∠B=∠C=90°,∠EFG=90°,∴BC=CD,GH=EF=FG.又∵点F在BC上,点G在FD上,∴∠DFC+∠EFB=90°,∠DFC+∠FDC=90°,∴∠EFB=∠FDC,又∵∠B=∠C=90°,∴△EBF∽△FCD;∵BF=3,BC=CD=12,∴CF=9,DF===15,∵△EBF∽△FCD,∴=,∴BE===,∴GH=FG=EF==,∴DG=DF-FG=15-=,∴tan∠HDG===.故答案为:.根据正方形的性质可得∠B=∠C=90°,∠EFG=90°,BC=CD,GH=EF=FG,然后求出∠EFB=∠FDC,再根据有两组角对应相等的两个三角形相似证明,求出CF,再利用勾股定理列式求出DF,然后根据相似三角形对应边成比例求出BE,再根据锐角的正切等于对边比邻边列式计算即可得解.本题考查了相似三角形的判定与性质,正方形的性质,勾股定理,熟记各性质以及相似三角形的判定方法是解题的关键.16.【答案】-1【解析】解:∵二次函数y=ax2+2ax+3a2+3=a(x+1)2+3a2-a+3,∴该函数的对称轴为直线x=-1,∵当x≥2时,y随x的增大而减小,且-4≤x≤1时,y的最大值为7,∴a<0,当x=-1时,y=7,∴7=a(x+1)2+3a2-a+3,解得,a1=-1,a2=(舍去),故答案为:-1.根据题目中的函数解析式可以求得该函数的对称轴,然后根据当x≥2时,y随x的增大而减小,且-4≤x≤1时,y的最大值为7,可以判断a的正负,得到关于a的方程,从而可以求得a的值.本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.17.【答案】352√23【解析】解:设Rt△ABC的直角边AC=a,∵△ABC是等腰直角三角形,∴∠A=∠B=45°,∵△DEF是△AEF沿EF 折叠而成,∴∠A=∠FDE=∠B=45°,∵∠2+∠B=∠1+∠FDE,∠FDE=∠B=45°∴∠1=∠2,∵D是BC的中点,∴CD=,设CF=x,则AF=DF=a-x,在Rt △CDF 中,由勾股定理得,DF2=CF2+CD2,即(a-x)2=x2+()2,解得x=,∴DF=a-x=a-=,∴sin ∠1===,∴sin∠2=,即sin∠BED的值为;过D作DG⊥AB,∵BD=,∠B=45°,∴DG=BD•sin∠B=×=,∵∠2=∠1,∠C=∠DGE,∴△EDG∽△DFC,∴===.故答案为:,.先设Rt△ABC的直角边AC=a,根据△ABC是等腰直角三角形可知∠A=∠B=45°,再根据图形折叠的性质可知∠A=∠EDF=45°,由三角形外角的性质可知∠1+∠EDF=∠B+∠2,可求出∠1=∠2,在直角三角形CDF中设CF=x,利用勾股定理即可求解;过D作DG⊥AB,在Rt△BDG中利用勾股定理可求出DG的长,再用相似三角形的判定定理可求出△EDG∽△DFC,由相似三角形的对应边成比例即可求解.本题考查的是图形翻折变换的性质、锐角三角函数的定义、全等三角形的判定与性质及勾股定理,涉及面较广,难度适中.18.【答案】(3+√3)cm【解析】解:过O作OD⊥A′C′于D,交AC于E,∵AC∥A′C′,∴AC⊥OD,∵A′C′与⊙O相切,AB为圆O的直径,且AB=4cm,∴OD=OA=OB=AB=×4cm=2cm,在Rt△AOE中,∠A=30°,∴OE=OA=×2cm=1cm,∴DE=OD-OE=2cm-1cm=1cm,则三角尺的宽为1cm,∵在Rt△ACB中,AB=4cm,∠BAC=30°,∴BC=AB=2cm,AC=BC=2cm,设直线AC交A′B′于M,交B′C′于N,过A点作AH⊥A′B′于H,则有∠AMH=30°,AH=1cm,得到AM=2AH=2cm,∴MN=AM+AC+CN=(3+2)cm,在Rt△MB′N中,∵∠B′MN=30°,∴B′N=MN×tan30°=(3+2)×=(+2)cm,则B′C′=B′N+NC′=(3+)cm,故答案为:(3+)cm.过O作OD⊥A′C′于D,交AC于E,由AC与A′C′,根据与平行线中的一条直线垂直,与另一条也垂直,得到OD与AC垂直,可得DE为三角尺的宽,由A′C′与圆O相切,根据切线的性质得到OD为圆的半径,根据直径AB的长,求出半径OA,OB及OD的长,在直角三角形AOE中,根据∠A=30°,利用直角三角形中,30°角所对的直角边等于斜边的一半可得出OE等于OA的一半,由OA的长求出OE的长,再由OD-OE求出DE的长,即三角尺的宽为1,设直线AC交A′B′于M,交B′C′于N,过A点作AH⊥A′B′于H,则有∠AMH=30°,AH=1,得到AM=2AH=2,可计算出MN,在Rt△MB′N中利用含30°的直角三角形三边的关系得到B′N长,即可得出答案.本题考查了切线的性质,含30°直角三角形的性质,以及平行线的性质,当直线与圆相切时,圆心到切线的距离等于圆的半径,熟练掌握切线的性质是解本题的关键.19.【答案】解:(1)原式=√33-4-2+√3=4√33-6;(2)原式=4x2-4x+1+(x2-4)=4x2-4x+1+x2-4=5x2-4x-3.【解析】(1)原式利用特殊角的三角函数值,乘方的意义,以及绝对值的代数意义计算即可得到结果;(2)原式利用完全平方公式,以及平方差公式计算即可得到结果.此题考查了平方差公式,以及实数的运算,熟练掌握公式及法则是解本题的关键.20.【答案】解:(1)去分母得:1=2x-6-x,解得:x=7,经检验x=7是分式方程的解;(2){x−3(x−2)≤4①1+2x3>x−1②,由①得:x≥1,由②得:x<4,则不等式组的解集为1≤x<4.【解析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可确定出不等式组的解集.此题考查了解分式方程,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.21.【答案】解:(1)证明:∵四边形ABCD是平行四边形,∴AB=DC,AB∥DC,又∵四边形ABEF是矩形,∴AB=EF,AB∥EF,∴DC=EF,DC∥EF,∴四边形DCEF是平行四边形,∴DF=CE;(2)解:如图,连接AE,∵四边形ABEF是矩形,∴BF=AE,又∵AC=BF=DF,∴AC=AE=CE,∴△AEC是等边三角形,∴∠ACE=60°.【解析】(1)根据平行四边形对边平行且相等可得AB=DC,AB∥DC,矩形的对边平行且相等可得AB=EF,AB∥EF,从而得到DC=EF,DC∥EF,再根据一组对边平行且相等的四边形是平行四边形可得四边形DCEF是平行四边形,然后根据平行四边形对边相等证明即可;(2)连接AE,根据矩形的对角线相等可得BF=AE,然后求出AC=AE=CE,从而得到△AEC是等边三角形,再根据等边三角形的每一个角都是60°解答.本题考查了矩形的性质,平行四边形判定与性质,等边三角形的判定与性质,熟记平行四边形的判定方法并准确识图是解题的关键.22.【答案】n(n−1)(n+2)(n+1)【解析】解:(1)画树状图为:,共有12种等可能的结果数,其中妈妈吃前两个汤圆刚好都是花生馅的结果数为2,所以妈妈吃前两个汤圆刚好都是花生馅的概率==;(2)若花生馅的大汤圆的个数为n 个(n≥2),则妈妈吃前两个汤圆都是花生馅的概率=.故答案为.(1)画树状图展示所有12种等可能的结果数,再找出妈妈吃前两个汤圆刚好都是花生馅的结果数,然后根据概率公式求解;(2)若花生馅的大汤圆的个数为n个(n≥2),则共有(n+2)(n+1)种可能的结果数,其中妈妈吃前两个汤圆都是花生馅的结果数为n(n-1),然后根据概率公式求解.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B 的结果数目m,然后利用概率公式计算事件A或事件B的概率.23.【答案】直角85√5【解析】解:(1)结论:直角三角形;理由:∵AC=,BC=2,AB=5,∴AB2=AC2+BC2,∴∠ACB=90°,故答案为直角.(2)①线段PC、PQ如图所示;②设AB交CC′于O.由△AOC∽△CQC′,可得=,∴C′Q=.∴PC+PQ的最小值=C′Q=.故答案为.(1)利用勾股定理的逆定理判断即可;(2)①作点C关于AB的对称点C′,作C′Q⊥BC于Q,交AB于P,此时PC+PQ的值最小;②利用相似三角形的性质,构建方程即可解决问题;本题考查作图与应用与设计,轴对称的性质,相似三角形的判定和性质等知识,解题的关键是学会利用轴对称解决最短问题,属于中考常考题型.24.【答案】(1)证明:如图1中,连接OB.∵AB是直径,∴∠ABC=90°,∵OB=OA=OC,∴∠A=∠OBA,∠OBC=∠OCB,∵∠A=∠DBC,∠A+∠BCA=90°,∴∠DBC+∠OBC=90°,∴∠OBD=90°,即OB⊥BD,∴DB是⊙O的切线.(2)解:∵∠D=∠D,∠DBC=∠A,∴△DBC∽△DAB,∴DB AD =DCBD=BCAB,在Rt△ABC中,∵tan∠BAC=BCAB =1 2,∴BD AD =DCBD=12,设CD=a,则BD=2a,AD=4a,AC=3a,∴CD AC =1 3.(3)解:如图2中,连接CG.在Rt△ABC中,∵AC=12,BC:AB=1:2,∴BC=125√5,AB=245√5,∵AC⊥BG,∴BF=FG,∴AB=AG=245√5,BC=CG,∵∠E=∠E,∠ECG=∠EAB,∴△ECG∽△EAB,∴EC AE =EGEB=CGAB=12,设EC=y,则AE=2y,EG=2y-245√5,EB=y+125√5,∵BE=2EG,∴y+125√5=2(2y-245√5),∴y=4√5,∴EB=4√5+125√5=325√5.【解析】(1)连接OB.欲证明BD是切线,只要证明DB⊥OB即可;(2)由△DBC∽△DAB,推出==,在Rt△ABC中,由tan∠BAC==,推出= =,设CD=a,则BD=2a,AD=4a,AC=3a,由此即可解决问题;(3)如图2中,连接CG.由△ECG∽△EAB,推出===,设EC=y,则AE=2y,EG=2y-,EB=y+,由此想办法列出方程即可解决问题;本题考查相似三角形综合题、切线的判定和性质、相似三角形的判定和性质、锐角三角函数、勾股定理等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考常考题型.25.【答案】解:(1)依题意得:1000(1+10%)+100=1200(辆);答:第3周该区域内各类共享单车的数量是1200辆;(2)设第一周所有单车平均使用次数是a,由题意得:2.5a×(1+m)2×100=a×(1+m)×1200×14,解得m=0.2,即m的值为20%.【解析】(1)第2周共享单车的数量:1000(1+10%),第3周=第2周+100;(2)设第一周所有单车平均使用次数是a,根据“第3周该款单车(共100辆)的总使用次数占到所有单车总使用次数的四分之一”列出方程并解答.本题考查了一元二次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.26.【答案】解:(1)∵y=ax2+2ax+c=a(x+1)2+c-a,∴它的对称轴为x=-1.又∵一次函数y=-2x与对称轴交于点C,∴y=2.∴C点的坐标为(-1,2).(2)①∵点C与点D关于x轴对称,∴点D的坐标为(-1,-2).∴CD=4,∵△ACD的面积等于2.∴点A到CD的距离为1,C点与原点重合,点A的坐标为(0,0).设二次函数为y=a(x+1)2-2过点A,则a=2,∴y=2x2+4x.②设P(-1,t).交点B的坐标为(-3,6),D(-1,-2),C(-1,2),A(0,0),则BC=2√5,PC=t-2,CD=4,AD=√5,①当△PBC∽△CAD时,BCAD =PCCD,即2√5√5=t−24,解得t=10,故点P的坐标为(-1,10),②当△PBC∽△ACD时,BCCD =PCAD,即2√54=t−2√5,解得t=92,故点P的坐标为(-1,92),综上所述,点P的坐标为(-1,10),(-1,92).【解析】(1)把抛物线对称轴方程x=-1代入直线方程,求得相应的纵坐标,易得点C的坐标;(2)①根据点的坐标的对称性易得抛物线顶点坐标D(-1,-2),故CD=4,结合三角形的面积公式可以求得点A的坐标,将点A的坐标分别代入抛物线解析式为y=a(x+1)2-2,利用待定系数法求得抛物线的解析式即可;②需要分类讨论:△PBD∽△CAD、△PBD∽△ACD.本题考查了二次函数综合题,涉及到的知识点有待定系数法求二次函数解析式,一次函数图象上点的坐标特征,相似三角形的性质,有关于动点问题,需要分类讨论,以防漏解.27.【答案】3π 2√3nπ【解析】解:(1)∵等边△ABC的边长为3,∴∠ABC=∠ACB=∠BAC=60°,,∴===π,∴线段MN的长为=3π,故答案为:3π;(2)如图1,∵等边△DEF的边长为2π,等边△ABC的边长为3,∴S矩形AGHF=2π×3=6π,由题意知,AB⊥DE,AG⊥AF,∴∠BAG=120°,∴S扇形BAG==3π,∴图形在运动过程中所扫过的区域的面积为3(S矩形AGHF+S扇形BAG)=3(6π+3π)=27π;(3)如图2,连接BI并延长交AC于D,∵I是△ABC的重心也是内心,∴∠DAI=30°,AD=AC=,∴OI=AI==,∴当它第1次回到起始位置时,点I所经过的路径相当于以A为圆心,AI为半径的圆周,∴当它第n次回到起始位置时,点I所经过的路径长为n•2π•=2nπ,故答案为2nπ.(1)先求出的弧长,继而得出莱洛三角形的周长为3π,即可得出结论;(2)先判断出莱洛三角形等边△DEF绕一周扫过的面积如图所示,利用矩形的面积和扇形的面积之和即可;(3)先判断出莱洛三角形的一个顶点和O重合旋转一周点I的路径,再用圆的周长公式即可得出.此题是圆的综合题,主要考查了弧长公式,莱洛三角形的周长,矩形,扇形面积公式,解(1)的关键是求出的弧长,解(2)的关键是判断出莱洛三角形绕等边△DEF扫过的图形,解(3)的关键是得出点I第一次回到起点时,I的路径,是一道中等难度的题目.28.【答案】解:(1)如图1,∵在△ABC中,∠C=90°,AB=5cm,BC=3cm,∴AC =√AB 2−BC 2=4cm,当点A′落在边BC上时,由题意得,四边形APA′D为平行四边形,∵PD⊥AB,∴∠ADP=∠C=90°,∵∠A=∠A,∴△APD∽△ABC,∵AP=5x,∴A′P=AD=4x,PC=4-5x,∵∠A′PD=∠ADP,∴A′P∥AB,∴△A′PC∽△ABC,∴PC AC =A′PAB,即4−5x4=4x5,解得:x=2041,∴当点A′落在边BC上时,x=2041;(2)当A′B=BC时,(5-8x)2+(3x)2=32,解得:x=40±12√373.∵x≤45,∴x=40−12√373;当A′B=A′C时,x=58.(3)Ⅰ、当A′B′⊥AB时,如图6,∴DH=PA'=AD,HE=B′Q=EB,∵AB=2AD+2EB=2×4x+2×3x=5,∴x=514,∴A′B′=QE-PD=x=514;Ⅱ、当A′B′⊥BC时,如图7,∴B′E=5x,DE=5-7x,∴cos B=5x5−7x =35,∴x=1546,∴A′B′=B′D-A′D=2546;Ⅲ、当A′B′⊥AC时,如图8,由(1)有,x=2041,∴A′B′=PA′sin A=1241;当A′B′⊥AB时,x=514,A′B′=514;当A′B′⊥BC时,x=1546,A′B′=2546;当A′B′⊥AC时,x=2053,A′B′=2553.【解析】(1)根据勾股定理求出AC,证明△APD∽△ABC,△A′PC∽△ABC,根据相似三角形的性质计算;(2)分A′B=BC、A′B=A′C两种情况,根据等腰三角形的性质解答;(3)根据题意画出图形,根据锐角三角函数的概念计算.此题是几何变换综合题,主要考查了锐角三角函数的意义,分类讨论,解本题的关键是要分类要分准,难点是分类.。

2019年四川省成都市石室天府中学中考数学模拟试卷(4月)(解析版)

2019年四川省成都市石室天府中学中考数学模拟试卷(4月)一.选择题(共10小题,满分30分,每小题3分)1.有一透明实物如图,它的主视图是()A.B.C.D.2.抛物线y=(x﹣1)2+2的顶点坐标是()A.(1,2)B.(﹣1,2)C.(1,﹣2)D.(﹣1,﹣2)3.如图,在△ABC中,∠C=90°,AC=5,若cos∠A=,则BC的长为()A.8B.12C.13D.184.已知反比例函数y=﹣,下列结论中错误的是()A.图象在二,四象限内B.图象必经过(﹣2,4)C.当﹣1<x<0时,y>8D.y随x的增大而减小5.如图,在菱形ABCD中,∠A=130°,连接BD,∠DBC等于()A.25°B.35°C.50°D.65°6.三角形两边长分别为2和4,第三边是方程x2﹣6x+8=0的解,则这个三角形的周长是()A.10B.8或10C.8D.8和107.如图,正方形ABCD的边长为4cm,则它的外接圆的半径长是()A.cm B.2cm C.3cm D.4cm8.某存折的密码是一个六位数字(每位可以是0),由于小王忘记了密码的首位数字,则他能一次说对密码的概率是()A.B.C.D.9.关于x的方程mx2+2x+1=0有实数根,则m的取值范围是()A.m≤1B.m≥1C.m<1D.m≤1且m≠010.在方格图中,称每个小正方形的顶点为“格点”,以格点为顶点的三角形叫做“格点三角形”.如图,在5×5的正方形方格中,每个小正方形的边长都是1,△ABC是格点三角形,sin∠ACB的值为()A.B.C.D.二.填空题(共4小题,满分16分,每小题4分)11.已知,则xy=.12.如图,已知▱ABCD中,点E在CD上,=,BE交对角线AC于点F.则=.13.已知A(﹣2,y1)、B(﹣3,y2)是抛物线y=(x﹣1)2+c上两点,则y1y2.(填“>”、“=”或“<”)14.如图,在△ABC中,∠ACB=90°,∠A=30°,BC=4,以点C为圆心,CB长为半径作弧,交AB于点D;再分别以点B和点D为圆心,大于BD的长为半径作弧,两弧相交于点E,作射线CE交AB于点F,则AF的长为.三.解答题(共2小题,满分18分)15.(12分)(1)计算:()﹣1﹣6cos30°﹣()0+(2)解方程:4x2+x﹣3=0.16.(6分)为积极响应市委,市政府提出的“实现伟大中国梦,建设美丽鄂尔多斯”的号召,康巴什区某校在八,九年级开展征文活动,校学生会对这两个年级各班内的投稿情况进行统计,并制成了如图所示的两幅不完整的统计图.(1)扇形统计图中投稿篇数为3所对应的扇形的圆心角的度数是;该校八,九年级各班在这一周内投稿的平均篇数是;并将该条形统计图补充完整.(2)如果要求该校八、九年级的投稿班级个数为30个,估计投稿篇数为5篇的班级个数.(3)在投稿篇数为9篇的4个班级中,八,九年级各有两个班,校学生会准备从这四个班级中选出两个班参加全市的表彰会,请你用列表法或画树状图的方法求出所选两个班正好不在同一年级的概率.四.解答题(共2小题,满分16分,每小题8分)17.(8分)在一次数学综合实践活动中,小明计划测量城门大楼的高度,在点B处测得楼顶A的仰角为22°,他正对着城楼前进21米到达C处,再登上3米高的楼台D处,并测得此时楼顶A 的仰角为45°.(1)求城门大楼的高度;(2)每逢重大节日,城门大楼管理处都要在A,B之间拉上绳子,并在绳子上挂一些彩旗,请你求出A,B之间所挂彩旗的长度(结果保留整数).(参考数据:sin22°≈,cos22°≈,tan22°≈)18.(8分)如图,正方形ABCD的对角线AC,BD相交于点O,点P是BC延长线上一点,连接AP,分别交BD,CD于点E,F,过点B作BG⊥AP于G,交线段AC于H.(1)若∠P=25°,求∠AHG的大小;(2)求证:AE2=EF•EP.五.解答题(共2小题,满分20分,每小题10分)19.(10分)如图,在平面直角坐标系xOy中,已知正比例函数y1=﹣2x的图象与反比例函数y2=的图象交于A(﹣1,n),B两点.(1)求出反比例函数的解析式及点B的坐标;(2)观察图象,请直接写出满足y≤2的取值范围;(3)点P是第四象限内反比例函数的图象上一点,若△POB的面积为1,请直接写出点P的横坐标.20.(10分)已知,AB是⊙O的直径,点C在⊙O上,点P是AB延长线上一点,连接CP.(1)如图1,若∠PCB=∠A.①求证:直线PC是⊙O的切线;②若CP=CA,OA=2,求CP的长;(2)如图2,若点M是弧AB的中点,CM交AB于点N,MN•MC=9,求BM的值.六.填空题(共5小题,满分20分,每小题4分)21.设m,n是方程x2﹣x﹣2019=0的两实数根,则m3+2020n﹣2019=.22.如图,四边形ABCD内接于⊙O,对角线AC过圆心O,且AC⊥BD,P为BC延长线上一点,PD⊥BD,若AC=10,AD=8,则BP的长为.23.如图,将矩形OABC置于一平面直角坐标系中,顶点A,C分别位于x轴,y轴的正半轴上,点B的坐标为(5,6),双曲线y=(k≠0)在第一象限中的图象经过BC的中点D,与AB交于点E,P为y轴正半轴上一动点,把△OAP沿直线AP翻折,使点O落在点F处,连接FE,若FE∥x轴,则点P的坐标为.24.如图,AC是▱ABCD的对角线,且AC⊥AB,在AD上截取AH=AB,连接BH交AC于点F,过点C作CE平分∠ACB交BH于点G,且GF=,CG=3,则AC=.25.如图,在平面直角坐标系中,菱形OABC的一个顶点在原点O处,且∠AOC=60°,A点的坐标是(0,4),则直线AC的表达式是.七.解答题(共1小题,满分8分,每小题8分)26.(8分)嘉兴某公司抓住“一带一路”的机遇不断创新发展,生产销售某产品,该产品销售量y (万件)与售价x(元件)之间存在图1(一条线段)所示的变化趋势,总成本P(万元)与销售量y(万件)之间存在图2所示的变化趋势,当6≤y≤10时可看成一条线段,当10≤y≤18时可看成抛物线P=﹣y2+8y+m(1)写出y与x之间的函数关系式(2)若销售量不超过10万件时,利润为45万元,求此时的售价为多少元/件?(3)当售价为多少元时,利润最大,最大值是多少万元?(利润=销售总额一总成本)八.解答题(共1小题,满分10分,每小题10分)27.(10分)在平面直角坐标系中,O为原点,点A(﹣,0),点B(0,1)把△ABO绕点O 顺时针旋转,得△A'B'O,点A,B旋转后的对应点为A',B',记旋转角为α(0°<α<360°).(Ⅰ)如图①,当点A′,B,B′共线时,求AA′的长.(Ⅱ)如图②,当α=90°,求直线AB与A′B′的交点C的坐标;(Ⅲ)当点A′在直线AB上时,求BB′与OA′的交点D的坐标(直接写出结果即可)九.解答题(共1小题,满分12分,每小题12分)28.(12分)抛物线y=x2+bx+c经过点A、B、C,已知A(﹣1,0),C(0,﹣3).(1)求抛物线的解析式;(2)如图1,抛物线顶点为E,EF⊥x轴于F点,M(m,0)是x轴上一动点,N是线段EF上一点,若∠MNC=90°,请指出实数m的变化范围,并说明理由.(3)如图2,将抛物线平移,使其顶点E与原点O重合,直线y=kx+2(k>0)与抛物线相交于点P、Q(点P在左边),过点P作x轴平行线交抛物线于点H,当k发生改变时,请说明直线QH过定点,并求定点坐标.2019年四川省成都市石室天府中学中考数学模拟试卷(4月)参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】细心观察图中几何体摆放的位置和形状,根据主视图是从正面看到的图象判定则可.【解答】解:正面看,它是中间小两头大的一个图形,里面有两条虚线,表示看不到的轮廓线.故选:B.【点评】本题考查了立体图形的三视图,要注意几何体看得见部分的轮廓线画成实线,被其他部分遮挡而看不见的部分的轮廓线化成虚线.2.【分析】由抛物线解析式即可求得答案.【解答】解:∵y=(x﹣1)2+2,∴抛物线顶点坐标为(1,2),故选:A.【点评】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x﹣h)2+k中,顶点坐标为(h,k),对称轴为x=h.3.【分析】先根据∠C=90°,AC=5,cos∠A=,即可得到AB的长,再根据勾股定理,即可得到BC的长.【解答】解:∵△ABC中,∠C=90°,AC=5,cos∠A=,∴=,∴AB=13,∴BC==12,故选:B.【点评】本题考查的是锐角三角函数的定义,锐角A的邻边b与斜边c的比叫做∠A的余弦,记作cos A.4.【分析】依据反比例函数的性质以及图象进行判断,即可得到错误的选项.【解答】解:∵反比例函数y=﹣中,k=﹣8<0,∴图象在二,四象限内,故A选项正确;∵﹣2×4=﹣8,∴图象必经过(﹣2,4),故B选项正确;由图可得,当﹣1<x<0时,y>8,故C选项正确;∵反比例函数y=﹣中,k=﹣8<0,∴在每个象限内,y随x的增大而增大,故D选项错误;故选:D.【点评】本题主要考查了反比例函数的图象与性质,当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.5.【分析】直接利用菱形的性质得出∠C的度数,再利用等腰三角形的性质得出答案.【解答】解:∵在菱形ABCD中,∠A=130°,∴∠C=130°,BC=DC,∴∠DBC=∠CDB=(180°﹣130°)=25°.故选:A.【点评】此题主要考查了菱形的性质以及等腰三角形的性质,正确应用菱形的性质是解题关键.6.【分析】利用因式分解法求出已知方程的解确定出第三边,即可求出三角形周长.【解答】解:方程x2﹣6x+8=0,分解因式得:(x﹣2)(x﹣4)=0,解得:x=2或x=4,当x=2时,三角形三边为2,2,4,不能构成三角形,舍去;当x=4时,三角形三边为2,4,4,周长为2+4+4=10,故选:A.【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.7.【分析】作OE⊥AD于E,连接OD,在Rt△ADE中,根据垂径定理和勾股定理即可求解.【解答】解:作OE⊥AD于E,连接OD,则AE=DE=2cm,OE=2cm.在Rt△ADE中,OD==2cm.故选:B.【点评】本题需仔细分析图形,利用勾股定理即可解决问题.8.【分析】由一共有10种等可能的结果,小王能一次打开该旅行箱的只有1种情况,直接利用概率公式求解即可求得答案.【解答】解:∵一共有10种等可能的结果,小王能一次打开该旅行箱的只有1种情况,∴他能一次说对密码的概率是;故选:D.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.9.【分析】分两种情况考虑:当m=0时,方程为一元一次方程,有实数根,符合题意;当m不为0时,方程为一元二次方程,得到根的判别式大于等于0,求出m的范围,综上,得到满足题意m的范围.【解答】解:当m=0时,方程化为2x+1=0,解得:x=﹣,符合题意;当m≠0时,得到△=4﹣4m≥0,解得:m≤1,综上,m的取值范围是m≤1且m≠0.故选:D.【点评】此题考查了根的判别式,以及一元二次方程的定义,根的判别式的值大于0,方程有两个不相等的实数根;根的判别式的值等于0,方程有两个相等的实数根;根的判别式的值小于0,方程没有实数根.10.【分析】根据题意,作出合适的辅助线,然后根据等积法可以求得BD的长,然后根据锐角三角函数即可解答本题.【解答】解:作BD⊥AC于点D,作CE⊥AB交AB的延长线于点E,如右图所示,∵每个小正方形的边长都是1,∴AB=2,CE=1,AC=,BC=,∵,∴BD=,∴sin∠ACB==,故选:C.【点评】本题考查解直角三角形,解答本题的关键是明确题意,利用数形结合的思想解答.二.填空题(共4小题,满分16分,每小题4分)11.【分析】根据两内项之积等于两外项之积解答即可.【解答】解:∵=,∴xy=6.故答案为:6.【点评】本题主要考查比例的性质,可根据比例的基本性质直接求解.12.【分析】根据平行四边形的性质可得出CD∥AB,CD=AB,由=可得出CE=AB,由CD∥AB,可得出△CEF∽△ABF,再利用相似三角形的性质即可求出的值.【解答】解:∵四边形ABCD为平行四边形,∴CD∥AB,CD=AB.∵点E在CD上,=,∴CE=CD=AB.∵CD∥AB,∴△CEF∽△ABF∴==.故答案为:.【点评】本题考查了相似三角形的判定与性质以及平行四边形的性质,利用平行四边形的性质找出△CEF∽△ABF及CE=AB是解题的关键.13.【分析】根据二次函数的性质得到x<1时,y随y的增大而减小,然后根据自变量的大小得到对应函数值的大小.【解答】解:抛物线的对称轴为直线x=1,而x<1时,y随y的增大而减小,所以y1<y2.故答案为<.【点评】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.也考查了二次函数的性质.14.【分析】连接CD,根据在△ABC中,∠ACB=90°,∠A=30°,BC=4可知AB=2BC=8,再由作法可知BC=CD=4,CE是线段BD的垂直平分线,据此可得出BD的长,进而可得出结论.【解答】解:如图,连接CD,∵在△ABC中,∠ACB=90°,∠A=30°,BC=4,∴AB=2BC=8.由题可知BC=CD=4,CE是线段BD的垂直平分线,∴∠CDB=∠CBD=60°,DF=BD,∴AD=CD=BC=4,∴BD=AD=4,∴BF=DF=2,∴AF=AD+DF=4+2=6.故答案为:6.【点评】本题考查的是作图﹣基本作图,熟知线段垂直平分线的作法和直角三角形的性质是解答此题的关键.解题时注意:在直角三角形中,30°角所对的直角边等于斜边的一半.三.解答题(共2小题,满分18分)15.【分析】(1)原式利用零指数幂、负整数指数幂法则,特殊角的三角函数值,以及二次根式性质计算即可得到结果;(2)方程利用因式分解法求出解即可.【解答】解:(1)原式=2﹣6×﹣1+3=1;(2)分解因式得:(4x﹣3)(x+1)=0,解得:x=或x=﹣1.【点评】此题考查了解一元二次方程﹣因式分解法,以及实数的运算,熟练掌握运算法则是解本题的关键.16.【分析】(1)根据投稿6篇的班级个数是3个,所占的比例是25%,可求总共班级个数,利用投稿篇数为2的比例乘以360°即可求解;根据加权平均数公式可求该校八,九年级各班在这一周内投稿的平均篇数,再用总共班级个数﹣不同投稿情况的班级个数即可求解;(2)由12个班级中5篇所占的比值即可估算出班级个数为30个时,投稿篇数为5篇的班级个数;(3)利用树状图法,然后利用概率的计算公式即可求解.【解答】解:(1)投稿班级的总个数为:3÷25%=12(个),∴×360°=30°.∵投稿5篇的班级有12﹣1﹣2﹣3﹣4=2(个),∴各班在这一周内投稿的平均篇数为×(2+3×2+5×2+6×3+9×4)=×72=6(篇),该条形统计图补充完整为:故答案为:30°,6篇;(2)30××100%=5(个);(3)画树状图如下:总共12画树状图如下:总共12种情况,不在同一年级的有8种情况,所选两个班正好不在同一年级的概率为:=.【点评】本题考查的是条形统计图和扇形统计图以及用树状图法求概率的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.四.解答题(共2小题,满分16分,每小题8分)17.【分析】(1)根据题意作出合适的辅助线,然后根据题意和锐角三角函数可以求得城门大楼的高度;(2)根据(1)中的结果和锐角三角函数可以求得A,B之间所挂彩旗的长度.【解答】解:(1)作AF⊥BC交BC于点F,交DE于点E,如右图所示,由题意可得,CD=EF=3米,∠B=22°,∠ADE=45°,BC=21米,DE=CF,∵∠AED=∠AFB=90°,∴∠DAE=45°,∴∠DAE=∠ADE,∴AE=DE,设AF=a米,则AE=(a﹣3)米,∵tan∠B=,∴tan22°=,即,解得,a=12,答:城门大楼的高度是12米;(2)∵∠B=22°,AF=12米,sin∠B=,∴sin22°=,∴AB=32,即A,B之间所挂彩旗的长度是32米.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,解答本题的关键是明确题意,利用锐角三角函数和数形结合的思想解答.18.【分析】(1)由∠ACB=∠P+∠CAP,求出∠CAP即可解决问题;(2)连接EC,证明△ECF∽△EPC即可解决问题;【解答】(1)解:∵四边形ABCD是正方形,∴∠ACB=45°,∵∠ACB=∠P+∠CAP,∴∠CAP=20°,∵BG⊥AP,∴∠AGH=90°,∴AHG=90°﹣20°=70°.(2)证明:∵四边形ABCD是正方形,∴A,C关于BD对称,∠ACB=∠ACD=45°,∴EA=EC,∴∠EAC=∠ECA,∵∠ACB=∠P+∠CAE=45°,∠ECF+∠ECA=45°,∴∠ECF=∠P,∵∠CEF=∠PEC,∴△CEF∽△PEC,∴=,∴EC2=EF•EP,∴EA2=EF•EP.【点评】本题考查正方形的性质,相似三角形的判定和性质等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.五.解答题(共2小题,满分20分,每小题10分)19.【分析】(1)把A (﹣1,n )代入y =﹣2x ,可得A (﹣1,2),把A (﹣1,2)代入y =,可得反比例函数的表达式为y =﹣,再根据点B 与点A 关于原点对称,即可得到B 的坐标; (2)观察函数图象即可求解;(3)设P (m ,﹣),根据S 梯形MBPN =S △POB =1,可得方程(2+)(m ﹣1)=1或(2+)(1﹣m )=1,求得m 的值,即可得到点P 的横坐标.【解答】解:(1)把A (﹣1,n )代入y =﹣2x ,可得n =2,∴A (﹣1,2),把A (﹣1,2)代入y =,可得k =﹣2,∴反比例函数的表达式为y =﹣,∵点B 与点A 关于原点对称,∴B (1,﹣2).(2)∵A (﹣1,2),∴y ≤2的取值范围是x <﹣1或x >0;(3)作BM ⊥x 轴于M ,PN ⊥x 轴于N ,∵S 梯形MBPN =S △POB =1,设P (m ,﹣),则(2+)(m ﹣1)=1或(2+)(1﹣m )=1整理得,m 2﹣m ﹣1=0或m 2+m +1=0,解得m =或m =,∴P 点的横坐标为.【点评】本题主要考查了反比例函数与一次函数的交点问题,解题时注意:反比例函数与一次函数的图象的交点坐标满足两函数的解析式.20.【分析】(1)①欲证明PC是⊙O的切线,只要证明OC⊥PC即可;②想办法证明∠P=30°即可解决问题;(2)如图2中,连接MA.由△AMC∽△NMA,可得,由此即可解决问题;【解答】(1)①证明:如图1中,∵OA=OC,∴∠A=∠ACO,∵∠PCB=∠A,∴∠ACO=∠PCB,∵AB是⊙O的直径,∴∠ACO+∠OCB=90°,∴∠PCB+∠OCB=90°,即OC⊥CP,∵OC是⊙O的半径,∴PC是⊙O的切线.②∵CP=CA,∴∠P=∠A,∴∠COB=2∠A=2∠P,∵∠OCP=90°,∴∠P=30°,∵OC=OA=2,∴OP=2OC=4,∴.(2)解:如图2中,连接MA.∵点M是弧AB的中点,∴=,∴∠ACM=∠BAM,∵∠AMC=∠AMN,∴△AMC∽△NMA,∴,∴AM2=MC•MN,∵MC•MN=9,∴AM=3,∴BM=AM=3.【点评】本题属于圆综合题,考查了切线的判定,解直角三角形,圆周角定理,相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,属于中考压轴题.六.填空题(共5小题,满分20分,每小题4分)21.【分析】先利用一元二次方程的定义得到m2=m+2019,m3=2020m+2019,所以m3+2020n﹣2019=2020(m+n),然后利用根与系数的关系得到m+n=1,最后利用整体代入的方法计算.【解答】解:∵m是方程x2﹣x﹣2019=0的根,∴m2﹣m﹣2019=0,∴m2=m+2019,m3=m2+2019m=m+2019+2019m=2020m+2019,∴m3+2020n﹣2019=2020m+2019+2020n﹣2019=2020(m+n),∵m,n是方程x2﹣x﹣2019=0的两实数根,∴m+n=1,∴m3+2020n﹣2019=2020.故答案为2020.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.22.【分析】根据圆周角定理得到∠ADC=90°,根据勾股定理得到CD==6,推出点C是PB的中点,根据直角三角形的性质即可得到结论.【解答】解:∵AC是⊙O的直径,∴∠ADC=90°,∵AC=10,AD=8,∴CD==6,∵AC⊥BD,∴AC平分BD,∵PD⊥BD,∴AC∥PD,∴点C是PB的中点,∴PB=2CD=12,故答案为:12.【点评】本题考查了圆周角定理,垂径定理,平行线的判定和性质,直角三角形的性质,正确的识别图形是解题的关键.23.【分析】延长EF交CO于G,依据反比例函数图象上点的坐标特征,即可得到点E的横坐标为5,点E的纵坐标为3,再根据勾股定理可得EF的长,设OP=x,则PG=3﹣x,分两种情况讨论,依据Rt△FGP中,FG2+PG2=PF2,即可得到x的值,进而得出点P的坐标.【解答】解:如图所示,延长EF交CO于G,∵EF∥x轴,∴∠FGP=90°=∠AEF,∵双曲线y=(k≠0)经过矩形OABC的边BC的中点D,点B的坐标为(5,6),∴点D(,6),∴k=15,又∵点E的横坐标为5,∴点E的纵坐标为=3,即AE=3,①当点F在AB左侧时,由折叠可得,AF=AO=5,∴Rt△AEF中,EF===4,∴GF=5﹣4=1,设OP=x,则PG=3﹣x,∵Rt△FGP中,FG2+PG2=PF2,∴12+(3﹣x)2=x2,解得x=,∴点P的坐标为(0,);②当点F在AB右侧时,同理可得EF=4,∴GF=5+4=9,设OP=x,则PG=x﹣3,∵Rt△FGP中,FG2+PG2=PF2,∴92+(x﹣3)2=x2,解得x=15,∴点P的坐标为(0,15);故答案为:(0,)或(0,15).【点评】本题考查了反比例函数图象上点的坐标特征,翻折变换、勾股定理等知识的综合运用,解题时,常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.24.【分析】如图,连接AG,作GN⊥AC于N,FM⊥EC于M.想办法证明等G是△ABC的内心,推出∠FGN=∠CAG=45°,解直角三角形即可解决问题.【解答】解:如图,连接AG,作GN⊥AC于N,FM⊥EC于M.∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AHB=∠HBC,∵AB=AH,∴∠ABH=∠AHB,∴∠ABH=∠CBH,∵∠ECA=∠ECB,∠ABC+∠ACB=90°,∴∠GBC+∠GCB=45°,∴∠FGC=∠GBC+∠GCB=45°,∵FM⊥CG,GN⊥AC,FG=,∴FM=GM=1,∵CG=3,∴CM=2,∴tan∠FCM===,∴CN=2CG,∴GN=,CN=,∵BG,CG是△ABC的角平分线,∴AG也是△ABC的角平分线,∴∠NAG=45°,∴AN=GN=,∴AC=AN+NC=.故答案为.【点评】本题考查平行四边形的性质,解直角三角形,三角形的内心等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.25.【分析】根据菱形的性质,可得OC的长,根据三角函数,可得OD与CD,根据待定系数法,可得答案.【解答】解:如图,由菱形OABC的一个顶点在原点O处,A点的坐标是(0,4),得OC=OA=4.又∵∠1=60°,∴∠2=30°.sin∠2==,∴CD=2.cos∠2=cos30°==,OD=2,∴C(2,2).设AC的解析式为y=kx+b,将A,C点坐标代入函数解析式,得,解得,直线AC的表达式是y=﹣x+4,故答案为:y=﹣x+4.【点评】本题考查了待定系数法求一次函数解析式,利用锐角三角函数得出C点坐标是解题关键,又利用了菱形的性质及待定系数法求函数解析式.七.解答题(共1小题,满分8分,每小题8分)26.【分析】(1)将点(18,6)、(6,18)代入一次函数表达式:y=kx+b得:,解得:,即可求解;(2)当6≤y≤10时,同理可得:P=10y,由题意得:利润w=yx﹣P=﹣(x﹣10)(x﹣24)=45,即可求解;(3)分6≤y≤10、10≤y≤18两种情况,分别求解即可.【解答】解:(1)将点(18,6)、(6,18)代入一次函数表达式:y=kx+b得:,解得:,函数表达式为:y=﹣x+24;(2)当6≤y≤10时,同理可得:P=10y,由题意得:利润w=yx﹣P=﹣(x﹣10)(x﹣24)=45,解得:x=15或19,即:此时的售价为15或19元;(3)①当6≤y≤10时,w1=yx﹣P=﹣(x﹣10)(x﹣24),当x=17时,w1有最大值为49万元;②10≤y≤18时,把点(10,100)代入二次函数并解得:m=40,w2=yx﹣P=﹣(24﹣x)2+(24﹣x)(x﹣8)﹣40=﹣x2+x﹣,当x=﹣=14时,w2的最大值为40万元,49>40,故:x=17元时,w有最大值为49万元.【点评】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.其中要注意应该在自变量的取值范围内求最大值(或最小值),也就是说二次函数的最值不一定在x=时取得.八.解答题(共1小题,满分10分,每小题10分)27.【分析】(Ⅰ)如图①,只要证明△AOA′是等边三角形即可;(Ⅱ)如图②,当α=90°,点A′在y轴上,作CH⊥OA′于H.解直角三角形求出BH,CH 即可解决问题;(Ⅲ)如图③,设A′B′交x轴于点K.首先证明A′B′⊥x轴,求出OK,A′K即可解决问题;【解答】解:(Ⅰ)如图①,∵A(﹣,0),B(0,1),∴OA=,OB=1,∴tan∠BAO==,∴∠BAO=30°,∠ABO=60°,∵△A′OB′是由△AOB旋转得到,∴∠B′=∠ABO=60°,OB=OB′,OA=OA′,∴∠BOB′=α=∠AOA′=60°,∴△AOA′是等边三角形,∴AA′=OA=.(Ⅱ)如图②,当α=90°,点A′在y轴上,作CH⊥OA′于H.∵∠A′B′O=60°,∠CAB′=30°,∴∠ACB′=90°,∵A′B=OA′﹣OB=﹣1,∠BA′C=30°,∴BC=A′B=,∵∠HBC=60°,∴BH=BC=,CH=BH=,∴OH=1+BH=,∴点C的坐标(,).(Ⅲ)如图③中,设A′B′交x轴于点K.当A′在AB上时,∵OA=OA′,∴∠OAA′=∠AA′O=30°,∵∠OA′B′=30°,∴∠AKA′=90°,∵OA′=,∠OA′K=30°,∴OK=OA′=,A′K=OK=,∴A′(,).【点评】本题属于三角形综合题,考查了解直角三角形,等边三角形的判定和性质,直角三角形30度角的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.九.解答题(共1小题,满分12分,每小题12分)28.【分析】(1)把点A(﹣1,0),C(0,﹣3)代入抛物线表达式求得b,c,即可得出抛物线的解析式;(2)作CH⊥EF于H,设N的坐标为(1,n),证明Rt△NCH∽△MNF,可得m=n2+3n+1,因为﹣4≤n≤0,即可得出m的取值范围;(3)设点P(x1,y1),Q(x2,y2),则点H(﹣x1,y1),设直线HQ表达式为y=ax+t,用x1,t=﹣2,即可得出直线QH过定点(0,﹣2).待定系数法和韦达定理可求得a=x2﹣【解答】解:(1)∵抛物线y=x2+bx+c经过点A、C,把点A(﹣1,0),C(0,﹣3)代入,得:,解得,∴抛物线的解析式为y=x2﹣2x﹣3;(2)如图,作CH⊥EF于H,∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线的顶点坐标E(1,﹣4),设N的坐标为(1,n),﹣4≤n≤0∵∠MNC=90°,∴∠CNH+∠MNF=90°,又∵∠CNH+∠NCH=90°,∴∠NCH=∠MNF,又∵∠NHC=∠MFN=90°,∴Rt△NCH∽△MNF,∴,即解得:m=n2+3n+1=,∴当时,m最小值为;当n=﹣4时,m有最大值,m的最大值=16﹣12+1=5.∴m的取值范围是.(3)设点P(x1,y1),Q(x2,y2),∵过点P作x轴平行线交抛物线于点H,∴H(﹣x1,y1),∵y=kx+2,y=x2,消去y得,x2﹣kx﹣2=0,x1+x2=k,x1x2=﹣2,设直线HQ表达式为y=ax+t,将点Q(x2,y2),H(﹣x1,y1)代入,得,x1)=ka,∴y2﹣y1=a(x1+x2),即k(x2﹣x1,∴a=x2﹣∵=(x2﹣x1)x2+t,∴t=﹣2,∴直线HQ表达式为y=(x2﹣x1)x﹣2,∴当k发生改变时,直线QH过定点,定点坐标为(0,﹣2).【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了配方法求二次函数的最值、待定系数法求一次函数的解析式、(2)问通过相似三角形建立m与n的函数关系式是解题的关键.。

2019年最新版初三中考数学模拟试卷及答案0120531

中考数学模拟试卷及答案解析学校:__________ 考号:__________题号一 总分 得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息评卷人得分 一、选择题1.由四个大小相同的小正方体搭成的几何体的左视图如图,则这个几何体的搭法不可能是 ( )A .B .C .D . 2.在“工、木、口、民、公、晶、离”这几个汉字中,是轴对称的有( )A .2个B .3个C .4个D .5个3.下列运动是属于旋转的是( )A .滾动过程中的篮球的滚动B .钟表的钟摆的摆动C .气球升空的运动D .一个图形沿某直线对折过程 4.12x y =⎧⎨=⎩是方程ax -y =3的解,则a 的取值是( )A .5B .-5C .2D .15.关于x 的方程4332=-+x a ax 的解为x=1,则a=( ) A .1 B .3 C .-1 D .-36.下列是二元一次方程的是( )A .36x x -=B .32x y =C .10x y -=D .23x y xy -=7.如图,已知点 B ,F ,C ,E 在同一直线上,若 AB=DE ,∠B=∠E ,且BF=CE ,则要使△ABC ≌△DEF 的理由是( )A.ASA B.SAS C.SSS D.AAS8.在5×5的方格纸中,将图(1)中的图形 N平移后的位置如图(2)所示,那么正确的平移方法是()A.先向下移动1 格,再向左移动1格B.先向下移动1 格,再向左移动2格C.先向下移动2格,再向左移动 1格D.先向下移动2格,再向左移动 2格9.下列各式中,属于分式的是()A.a B.13C.3aD.3a10.等腰三角形一个角为 40°,则它的顶角是()A.40° B.70° C. 100°D. 40°或 100°11.关于 x 的一元二次方程22(1)10a x x a-++-=的一个根是 0,则 a 的值为()A.1 B.1- C. 1 或-1 D.1 212.如图,EA⊥AB,BC⊥AB,AB=AE=2BC,D为AB的中点,有以下判断:(1)DE=AC;(2)DE⊥AC;(3)∠CAB=30°;(4)∠EAF=∠ADE,其中不正确结论的个数有()A.0个B.l个C.2个D.以上选项均错误13.下列字母中,不是轴对称图形的是()A.X B.Y C.Z D.T14.将一个立方体沿某些棱展开后,能够得到的平面图形是()A .B .C .D .15.为了了解八年级400名学生的视力情况,从中抽取40名学生进行测试,这40名学生的 视力是( )A .个体B .总体C .总体的一个样本D .样本容量16.下面列出的不等式中,正确的是( )A .a 不是负数,可表示成0a >B .x 不大于 3,可表示成3x <C .m 与 4 的差是负数,可表示成40m -<D .x 与 2 的和是非负数,可表示成20x +>17.已知点P (4,a+1)到两坐标轴的距离相等,则a 的值为( )A .3B .4C .-5D .3或-518.点P 在第二象限内,P 到x 轴的距离是4,到y 轴的距离是3,那么点P 的坐标为( )A .()4,3-B .()3,4--C .()3,4-D .()3,4-19.设路程为s (km ),速度为v (km /h ),时间为t (h ),当s=100(km )时,在时间的关系式s t v= 中,以下说法正确的是( ) A .路程是常量,时间、速度都是变量B .路程、时间、速度都是变量C .时间是常量,路程、速度都是变量D .速度是常量,路程、时间都是变量20.下列不在函数y=-2x+3的图象上的点是 ( )A .(-5,13)B .(0.5,2)C .(3,0)D .(1,1)21.弹簧的长度与所挂物体的质量关系为一次函数,如图所示,由图可知不挂物体时弹簧的长度为( )A .7 cmB .8 cmC .9 cmD .10 cm22.下列化简中错误的是()A.555 939==B.0.0l0.49⨯0.0l0.49=⨯0.10.70.07=⨯=C.22114 777==D.1111 111 494977 =⋅=⨯=23.如图是条跳棋棋盘.其中格点上的黑色为棋子.剩余的格点上没有棋子.我们约定跳棋游戏的规则是:把跳棋棋子在棋盘内沿直线隔着棋子对称跳行.跳行一次称为一步.已知点A为乙方一枚棋子.欲将棋子A跳进对方区域(阴影部分的格点),则跳行的最少步数为()A.2步B.3步C.4步D.5步24.如图,在△ABC中,AB=AC,∠BAC=120°,点D在BC上,AD=BD=2 cm,则CD 长为()A.3 cm B.3cm C.5cm D.4 cm25.如图所示,将一张正方形纸片沿图①中虚线剪开后,能拼成图②中的四个图形,则其中轴对称图形的个数是()A.1个B.2个C.3个D.4个26.在一块平地上,张大爷家屋前9米远处有一棵大树.在一次强风中,这棵大树从离地面6米处折断倒下,量得倒下部分的长是10米.出门在外的张大爷担心自己的房子被倒下的大树砸到.大树倒下时能砸到张大爷的房子吗?请你通过计算、分析后给出正确的回答.()A.一定不会B.可能会C.一定会D.以上答案都不对27.下列说法:④如果“a、b、c为一组勾股数,那么4a、4b、4c仍是勾股数;②如果直角三角形的两边是3、4,那么斜边必是5;③如果一个三角形的三边是l2、25、21,那么此三角必是直角三角形;④一个等腰直角三角形的三边是a,b,c(a>b=c),那么a2 :b2:c2=2:1:1.其中正确的是()A.①②B.①③C.①④D.②④28.用科学记数法表示430000是()A.43×104B. 4.3×l05 C.4.3×104 D.4.3×10629.用计算器求78+35的按键顺序正确的是()①按数字键②按③按数字键④按键A.①②③④B.①④②③C.①③②④D.①③④②30.下列说法正确的是()A.有理数一定有平方根B.负数没有平方根C.一个正数的平方根,只有一个D.1 的平方根是 131.当 a=2,b=-1 时,代数式22a b的值是()A.52B.2 C.32D.1232.如图,在一块木板上均匀地钉了9颗钉子,用细绳可以像图中那样围成三角形,在这块木板上,还可以围成x个与图中三角形全等但位置不同的三角形,则x的值为()A.8 8 12 C 15 D.1733.按下面的程序计算,若开始输入的值x为正数,最后输出的结果为656,则满足条件的x的不同值最多有()A.2个B.3个C.4个D.5个34.反映某种股票的涨跌情况最好选用()A.统计表B.扇形统计图C.条形统计图D.折线统计图35.观察统计图,下列结论正确的是()A.甲校女生比乙校女生少B.乙校男生比甲校男生少C.乙校女生比甲校男生多D.甲、乙两校女生人数无法比较36.下列说法正确的是()A.周长相等的两个三角形全等B.面积相等的两个三角形全等C.三个角对应相等的两个三角形全等D.三条边对应相等的两个三角形全等37.若x为实数,则丨x丨-x表示的数是()A.负数B.非负数C.正数D.非正数38.下列事件中,必然事件是()A.任何数都有倒数B.明年元旦那天天晴C.异号两数相乘积为负D.摸彩票中大奖39.如图所示,△DEF是由边长为2 cm的等边△ABC平移3cm得到的,则AD为() A.1 cm B.2 cm C.3 cm D.无法确定40.如图,身高为1.6 m的某学生想测量一棵大树的高度,她沿着树影BA由B向A走去,当走到C点时,她的影子顶端正好与树的影子顶端重合,测得BC=3.2 m,CA=0.8 m,那么树的高度为()A .4.8 mB .6.4 m C .8 m D .10 m41.已知二元一次方程组1941175x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩的解为x a y b =⎧⎨=⎩,则||a b -的值为( ) A . -11B . 11C . 13D . 16 42.用加减法解方程组232(1)523(2)x y x y -=⎧⎨+=-⎩,若消去 y ,下列正确的是( ) A .①×3+②×2,得160x =B . ①×2+②×3,得195x =-C . ①×3+②×2,得161x =-D .①×2+②×3,得19 1.x =-43.如果改动三项式2246a ab b -+中的某一项,能使它变为完全平方式,那么改动的办法是( )A .可以改动三项中的任意一项B .只能改动第一项C .只能改动第二项D .只能改动第三项44.下面计算正确的是( )A .111x x ÷⋅=B .2122()b a a b b ⋅=--C .2142x y y x -÷=-D .221x x -⋅=(0x ≠)45. 已知222220a a b b ++++=,则1b a+的值是( ) A .2 B .1 C .0 D .-146.如图,AB=AC, EB= EC,那么图中的全等三角形共有( )A .1 对B . 2 对 C. 3 对 D .4 对47.如图两个图形可以分别通过旋转( )度与自身重合?A .120°,45°B .60°,45°C .30°,60°D .45°,30°48.用直接开平方法解方程2(3)8x -=,得方程的根为( )A.322x=+B.322x=-C.1323x=+,2323x=-D.1322x=+,2322x=-49.16的平方根为()A. 2 B.±2 C. 4 D.±450.如图所示的两个转盘中,指针落在每一个数上的机会均等,那么两个指针同时落在偶数上的概率是()A.15B.25C.625D.192551.如图,C是以AB为直径的⊙O上一点,已知AB=5,BC=3,则圆心O到弦BC的距离是()A.1.5 B.2 C.2.5 D.352.过⊙O内一点P的最长的弦长为10cm,最短的弦长为8cm,则OP的长为()A.3cm B.5cm C.2cm D.3cm53.如图,将矩形 ABCD 沿着对角线 BD 折叠,使点C落在点E处,BE 交 AD 于点 F,则下列结论中不一定成立的是()A.AD=BE B.∠FBD=∠FDB C.△ABF∽△CBD D.AF=FE54.如图,电灯P在横杆AB的正上方,AB在灯光下的影子为CD,AB∥CD,AB=2m,CD=5m,点P到CD的距离是3m,则P到AB的距离是()A.56m B.67m C.65m D.103m55.如图,点 D.E、F分别是△ABC(AB>AC)各边的中点,下列说法中,错误..的是()A .AD 平分∠BACB .EF=12BC C .EF 与 AD 互相平分 D .△DFE 是△ABC 的位似图形56.如图,已知AB ∥CD ,AD 与BC 相交于点P ,AB=4,CD=7,AD=10,则AP 的长等于( ) A.4011 B.407 C.7011 D. 70457.二次函数22,,04y ax bx c b ac x y =++===-且时,则( )A .=4y -最大B .=4y -最小C .=3y -最大D .=3y -最小58.如果∠A 为锐角,那么sin ∠A ( )A .小于1B .等于1C .大于1D .大于零且小于159.若⊙O 的半径为6,如果一条直线和圆相切,P 为直线上的一点,则OP 的长度( )A .OP=6B .OP >6C .OP ≥6D .OP <660.有一拦水坝的截面是等腰梯形,它的上底为6m ,下底为 lOm ,高为,则此拦水坝斜坡的坡度和坡角分别是( )A °B °C °D .,60°61.化简(a -的结果为( )A .B .C .D .62. 中央电视台“幸运 52”栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在30个商标牌中,有 6 个商标牌的背面注明一定的奖金额,其余商标牌的背面是一张哭脸,表示不得奖,参与这个游戏的观众有三次翻牌机会(翻过的牌不能再翻). 某观众前两次翻牌均获得若干奖金,那么他第三次翻牌获奖的概率是( )A .16 B .17 C .15 D .31463.小红把班级勤工助学挣得的班费 500 元按一年期存入银行,已知年利率为 x ,一年到期后, 银行将本金和利息自动按一年定期转存,设两年到期后,本利和为 y 元,则y 与x 之间的函数关系式为( )A .25y x x =+B .2500y x =+C .2500y x x =+D .2500(1)y x =+64.一个口袋中有3个黑球和若干个白球,在不允许将球倒出来数的前提下,小明为估计其中的白球数,采用了如下的方法:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色,,不断重复上述过程.小明共摸了100次,其中20次摸到黑球.根据上述数据,小明可估计口袋中的白球大约有( )A .18个B .15个C .12个D .10个65.点A 到直线l 的距离为 d ,下列各种法中直线l 与圆的位置关系是相切的是( )A .以A 为圆心,2d 为直径画圆 B .以A 为圆心,d 为直径画圆 C .以A 为圆心,2d 为半径画圆 D .以A 为圆心,2d 为直径画圆66.△ABC 的内切圆与三边的切点构成△DEF ,则△ABC 的内心是△DEF 的( )A .内心B .重心C . 垂心D . 外心67.如图,已知 Rt △AEC 中,∠C= 90°,BC=a ,AC=b ,以斜边 AB 上一点0为圆心,作⊙O 使⊙O 与直角边 AC 、BC 都相切,则⊙O 的半径r 为( )A .abB .2abC .ab a b +D .a b ab+68.若两圆的半径分别是1cm 和5cm ,圆心距为6cm ,则这两圆的位置关系是( )A .内切B .相交C .外切D .外离69.已知半径分别为5cm 和8cm 的两圆相交,则它们的圆心距可能是( )A .1cmB .3cmC .10cmD .15cm70.如图,身高为1.6米的某学生想测学校旗杆的高度,当他站在C 处时,他头顶端的影子与学校旗杆的影子重合,并测得AC =2.0米,BC =8.0米,则旗杆的高度是( )A .6.4米B .7.0米C .8.0米D .9.0米71.关于视线的范围,下列叙述正确的是( )A .在轿车内比轿车外看到的范围大B .在船头比在船尾看到的范围大C . 走上坡路比走平路的视线范围大D .走上坡路比走平路的视线范围小72.如图是小颖同学一天上学、放学时看到的一棵树的影子的俯视图,将它们按时间先后顺序进行排列,排列正确的是( )A .②③①④B .④①③②C .①④③②D .③②④①73.如图,PB 为⊙O 的切线,B 为切点,连结 PO 交⊙O 于点 A ,PA =2,PO= 5,则 PB 的长为( )A .4B .10C .26D .4374.用A B C ,,分别表示学校、小明家、小红家,已知学校在小明家的南偏东25︒,小红家在小明家正东,小红家在学校北偏东35︒,则ACB ∠等于( )A .35︒B .55︒C .60︒D .65︒75.下列四个点中,可能在反比例函数y =k x(k>0)的图象上的点是( ) A .(2,-3) B .(-4,-5) C .(-3,2) D .(2,0)76.关于x 的一元二次方程225250x x p p -+-+=的一个根为1,则实数p 的值是( )A .4B .0或2C .1D .1-77.三角形的两边长分别为3和6,第三边的长是方程x 2-6x +8=0的一个根,则这个三角形的周长是( )A .9B .11C .13D .11或1378.下列图形中,既是中心对称图形又是轴对称图形的是( )79.下列语句不是命题的为 ( )A .对顶角相等B .两条直线相交而成的相等的角都是对顶角C .画线段AB=3 cmD .若a ∥b ,b ∥c ,则a ∥c80.将一张平行四边形的纸片折一次,使得折痕平分这个平行四边形的面积,则这样的折纸方法共有( )A .1种B .2种C . 4种D .无数种81.如图,在△ABC 中,∠ACB = 90°,BE 平分∠ABC ,DE ⊥AB 于D ,如果AC = 3cm ,BC = 2cm ,则AE+DE 的值为( )A .2cmB .3cmC .4cmD .5cm82.在□ABCD 中,∠A ∶∠B ∶∠C ∶∠D 的值可能是( )A .1∶2∶3∶4B .1∶2∶2∶1C .2∶2∶1∶1D .2∶1∶2∶183.下列定理中,有逆定理的是( )A .全等三角形的对应角相等B .三角形的中位线平行于第三边C .四边形的外角和等于360°D .等腰三角形的两个底角相等84.如图,在□ABCD 中,∠ABC 的平分线与∠BCD 的平分线相交于点O ,则∠BOC 的度数为( )A .90°B .60°C .120°D .不能确定85.如图,AB 是⊙O 的直径,CD 是弦,CD ⊥AB 于点E ,则下列结论中不一定...正确的是( )A .∠COE=∠DOEB .CE=DEC .⌒AC =⌒AD D .OE=BE86.矩形、正方形、菱形的共同性质是( )A .对角线相等B .对角线互相垂直C .对角线互相平分D .每一条对角线平分一组对角87.如图,点A ,D ,G ,M 在半圆O 上,四边形ABOC ,OFDE ,HMNO•都是矩形,•设BC=a ,EF=b ,NH=c ,则下列各式正确的是( ).A .a>b>cB .a=b=cC .c>a>bD .b>c>a88.已知二次函数为22y a x =-(a ≠0),则下列语句错误的是( )A .此函数图象是顶点在原点的一条抛物线B .当且仅当 a<0 时,抛物线的开口向上C .此抛物线的对称轴是 y 轴D .不论a 取何非零实数,抛物线不会在 x 轴上方89.如果抛物线24(1)y x m =++的图象与x 轴有两个交点,那么 m 的取值范围是( )A .m>0B .m<0C .m<-1D .m>-1 90.把抛物线226y x =-+平移后所得的新抛物线在 x 轴上截得的线段长为 2,则原抛物线应( )A . 向上平移 4 个单位B .向下平移4个单位ACB ac b C . 向左平移 4 个单位 D .向右平移4 个单位91. 下列各图中有可能是函数y=ax 2+c,y =a x(a ≠0,c>0)的图象是( ) 92.若二次函数2y ax bx c =++的图象的对称轴是y 轴,则必须有( )A .b 2 =4acB .b=c=0C .b=2aD .b=0 93.下列各条件不能确定圆的是( )A .已知直径B .已知半径和圆心C .已知两点D .已知不在一条直线上的三点94.已知90°的圆心角所对的弧长等于半径为3cm 的圆的周长,那么该弧所在的圆的半径是( )A .3 cmB .6 cmC .9cmD .12 cm95.如图,扇形 OAB 的圆心角为 90°,分别以 OA 、OB 为直径在扇形内作半圆,P 和Q 分别表示两个阴影部分的面积,那么 P 和Q 的大小关系是( )A .P=QB .P>QC .P<QD . 无法确定96. 如图,以圆柱的下底面为底面,上底面圆心为顶点的圆锥的母线长为4,高线长为 3,则圆柱的侧面积为( )A . 30πB .67πC .20πD .47π97.如图,在Rt ABC △中,90C =∠,三边分别为a b c ,,,则cos A 等于( )A .a cB .a bC .b aD .b c98.下列图形中,既是轴对称图形又是中心对称图形的是( )99.抛物线24y x x =-的对称轴是( )A .直线x=2B .直线x=-2C .直线x=4D .直线x=-4 100.已知y 与x 成正比例,如果x=2时,y=-1,那么x=-3时,y 的值为( )A . 2B .3C .32 D .0【参考答案】***试卷处理标记,请不要删除评卷人 得分一、选择题1.D2.C3.B4.A5.D6.B7.B8.C9.D10.D11.B12.B13.C14.C15.C16.C17.D18.C19.A21.D 22.D 23.B 24.D 25.C 26.A 27.C 28.B 29.A 30.B 31.A 32.C 33.C 34.D 35.D 36.D 37.B 38.C 39.C 40.C 41.B 42.B 43.A 44.D 45.A 46.C 47.A 48.D 49.B 50.C 51.B 52.D 53.C55.A 56.A 57.C 58.D 59.C 60.D 61.C 62.B 63.D 64.C 65.D 66.D 67.C 68.C 69.C 70.C 71.D 72.B 73.A 74.B 75.B 76.C 77.C 78.A 79.C 80.D 81.B 82.D 83.D 84.A 85.D 86.C 87.B89.C 90.B 91.A 92.D 93.C 94.D 95.A 96.B 97.D 98.B 99.A 100.C。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年初中毕业生中考数学模拟考试 班级 姓名 (满分150分,考试时间100分钟) 一、单选题:(本大题共6题,每题4分,满分24分) 1.如果a表示不为0的任意一个实数,那么下列四个算式中,正确的是 ····· ( )

(A)aaa2323; (B)aaa313; (C)aaa23; (D)aa212)(. 2.在解答“一元二次方程021212axx的根的判别式为 ▲ ”的过程中,某班同学的作业中出现了下面几种答案,其中正确的答案是 ·············· ( ) (A)0241a; (B)a241; (C)081a; (D)a81. 3.如果函数122xaxy的图像不经过第四象限,那么实数a的取值范围为 ·· ( ) (A)0a; (B)0a; (C)0a; (D)0a. 4.从概率统计的角度解读下列诗词所描述的事件,其中属于确定事件的是 ···· ( ) (A)黄梅时节家家雨,青草池塘处处蛙; (B)人间四月芳菲尽,山寺桃花始盛开; (C)水面上秤锤浮,直待黄河彻底枯; (D)一夜北风紧,开门雪尚飘. 5.已知⊙A的半径长为2,⊙B的半径长为5,如果⊙A与⊙B内含,那么圆心距AB的长度可以为 ·············· ········· ········ ( ) (A)0; (B)3; (C)6; (D)9. 6.将两个底边相等的等腰三角形按照图1所示的方式拼接在一起(隐藏互相重合的底边)的图形俗称为“筝形”.假如“筝形”下个定义,那么下面四种说法中,你认为最能够描述“筝形”特征的是 ···························· ( )

(A)有两组邻边相等的四边形称为“筝形”; (B)有两组对角分别相等的四边形称为“筝形”; (C)两条对角线互相垂直的四边形称为“筝形”; (D)以一条对角线所在直线为对称轴的四边形称为“筝形”. 二、填空题:(本大题共12题,每题4分,满分48分) 【请直接将结果填入答题纸的相应位置】

7.计算:1)21( .

8.已知73.13,那么31 (保留两个有效数字........).

A B

C D

图1

图2 次数

环数 1 2 3

7 8 9

10 O 9.不等式组01,32xx的解集是 . 10.方程2x=x的实数解是 . 11.已知点),(11yxA、点),(22yxB在反比例函数xy2的图像上.如果210xx,那么

1y与2y的大小关系为:1y 2y(从“”、“”、“”中选择).

12.某校学生综合素质评价方案中有这样一段话:“学生自评、同学互评与班级评定小组评价在学生综合素质评价中所占的权重分别为%10、%30、%60”.如果甄聪明同学的自评分数、同学互评分数、班级评定小组给出的分数分别为96分、95分、95分,那么甄聪明同学的综合素质评价分数为 分.

13.一名射击运动员连续打靶9次,假如他打靶命中环数的情况如图2所示,那么该射击运动员本次打靶命中环数的中位数为 环. 14.如果非零向量a与向量b的方向相反,且ba32,那么向量a为 (用向量b表示).

15.从山底A点测得位于山顶B点的仰角为30,那么从B点测得A点的俯角为 度. 16.已知扇形的弧长为8,如果该扇形的半径长为2,那么这个扇形的面积为 . 17.命题“相等的角不一定是对顶角”是 命题(从“真”或“假”中选择). 18.已知在△ABC中,90ACB,10AB,53cosA(如图3),将△ABC绕着点C旋转,点A、B的对应点分别记为A、B,BA与边AB相交于点E.如果BAAC,那么线段EB的长为 . 三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)

先化简,再求值:2122442xxx,其中2x.

20.(本题满分10分) 解方程组:.,032222yxyxyx 21.(本题满分10分,每小题5分) 将大小相同,形状也相同的三个菱形按照图4的方式拼接在一起(其中,点B、C、F、G在同一条直线上),3AB.联结AG,AG与EF相交于点P.

(1)求线段EP的长; (2)如果60B,求△APE的面积. A

B C

D 图4 F E G H

P

A B C 图3 22.(本题满分10分,第(1)小题6分;第(2)小题4分) 某种型号的家用车在高速公路上匀速行驶时,测得部分数据如下表: 行驶路程x(千米) … 100 150 … 油箱内剩余油量y(升) … 52 48 … (1)如果该车的油箱内剩余油量y(升)与行驶路程x(千米)之间是一次函数关系,求y 关于x的函数解析式(不需要写出它的定义域); (2)张老师租赁该型号的家用车也在该高速公路的相同路段以相同的速度匀速行驶300千米(不考虑小轿车载客的人数以及堵车等因素).假如不在高速公路上的服务区加油,那么在上高速公路之前,张老师这辆车的油箱内至少..需要有多少升汽油?请根据题目

中提供的相关信息简要说明理由. 23.(本题满分12分,每小题6分)已知:正方形ABCD,点E在边CD上,点F在线段BE的延长线上,且CBEFCE.

(1)如图5,当点E为CD边的中点时,求证:EFCF2;

(2)如图6,当点F位于线段AD的延长线上,求证:DFDEBEEF.

24.(本题满分12分,每小题4分)在平面直角坐标系xOy(如图7)中,已知点A的坐标为(3,1),点B的坐标为(6,5),点C的坐标为(0,5);某二次函数的图像经过点A、点B与点C. (1)求这个二次函数的解析式;

(2)假如点Q在该函数图像的对称轴上,且△ACQ是等腰三角形,直接..写出点Q的坐标;

(3)如果第一象限内的点P在(1)中求出的二次函数 的图像上,且21tanPCA,求PCB的正弦值.

A B C

D E F

图5

A

B C

D 图6 F

E

图7 O 1

1 x

y

-1 25.(满分14分,第(1)小题5分,第(2)小题5分、第(3)小题4分) 已知:8AB,⊙O经过点A、B.以AB为一边画平行四边形ABCD,另一边CD经过点O(如图8).以点B为圆心,BC为半径画弧,交线段OC于点E(点E不与点O、点C重合). (1)求证:OEOD; (2)如果⊙O的半径长为5(如图9),设xOD,yBC,求y关于x的函数解析式,并写出它的定义域; (3)如果⊙O的半径长为5,联结AC,当ACBE时,求OD的长.

图9 BOA备用图 BOA

图8

EC

BAOD 参考答案 一、选择题:(本大题共6题,每题4分,满分24分) 1、C;2、B;3、D;4、C;5、A;6、D. 二、填空题:(本大题共12题,每题4分,满分48分)

7、2;8、58.0;9、231x;10、2x;11、;12、1.95;13、9环;14、ba23;15、30;16、8;17、真命题;18、524. 三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)

解:2122442xxx)2)(2(2)2)(2()2(2)2)(2(4xxxxxxxx · 3分

21)2)(2()2()2)(2(2424xxxxxxxx. ··········· 2+2+1分

当2x时,原式=221221. ················ 2分 20.(本题满分10分) 解:03222yxyx可以化为:0))(3(yxyx, 所以:03yx或0yx. ····················· 2分

原方程组可以化为:032yxyx,(Ⅰ)与 02yxyx, (Ⅱ) ········ 2分 解(Ⅰ)得1,3yx; 解(Ⅱ)得 1,1yx ··············· 2+2分 所以,原方程组的解为:;1,311yx与.1,122yx ··············· 2分 21.(本题满分10分,每小题5分) 解:(1)由题意得四边形ABGH、ABFE是平行四边形. ·········· 1分 ∴ AE∥FG. ··························· 1分

∴FGAEFPEP. ···························· 1分

将6AE,3FG代入,得 2FPEP,即32EFEP ·········· 1分 又∵四边形ABFE是平行四边形,3AB,∴3ABEF.∴2EP. ·· 1分 (2)过点P作AEPH,垂足为H(如图4). ············ 1分 ∵四边形ABFE是平行四边形,60B,∴60BPEH. ··· 1分 在Rt△PEH中,90PHE,60PEH,2EP,

相关文档
最新文档