一氧化氮供体对肿瘤的作用
一氧化氮的调节作用

一氧化氮的调节作用
一氧化氮是一种有毒的气体,无色无味,虽然它是一种有毒的气体,但具有许多重要的生理和病理调节作用。
首先,一氧化氮可以扩张和软化血管,使末梢循环更顺畅,使血液更有效地滋养心脏和其它组织。
这对于因大脑供血不足而导致的头疼、失眠、记忆力下降等症状有很好的疗效。
其次,一氧化氮能够降低胰岛素抵抗力,提升胰岛素对血糖的敏感度,从而加快体内血糖的代谢。
此外,一氧化氮能够修复血管内皮细胞,降低因糖质代谢而引发的血管、神经病变。
此外,一氧化氮还有抗氧化、抑制癌细胞生长的作用,降低胆固醇的效果也是不错的。
它还可以刺激血管增生,尤其对于糖尿病患者的视力和四肢坏死有好的治疗作用。
虽然一氧化氮的疗效广泛,但必须在医生的指导下使用。
另外,对花粉和海产品过敏的人应慎用。
浅谈一氧化氮及其应用前景

浅谈一氧化氮及其应用前景作者:范为群来源:《硅谷》2009年第08期[摘要]一氧化氮(NO)是生物体内一种作用广泛而性质独特的信号分子,它不仅对动物的神经系统、循环系统、消化系统等有着重要的调节作用,而且也参与植物生长发育的许多过程,如种子萌发、下胚轴伸长、根生长、细胞凋亡以及植物抗逆反应等。
[关键词]一氧化氮(NO) 信使分子调节中图分类号:TQ17文献标识码:A文章编号:1671-7597(2009)0420004-01一、NO的最初发现、制取及特性NO系无色有毒气体,由氮气和氧气在电火花或高温作用下形成,更便利的方法是由稀硝酸与铜或汞反应制取。
约在1620年,比利时科学家J.B.Van海尔蒙特首次制出一氧化氮。
1772年,英国化学家J.普利斯特利对其进行了研究,并称之为“亚硝气”。
一氧化氮在-151.8℃液化,-163.6℃固化。
固态和液态NO均为蓝色。
此气体几乎不溶于水。
一氧化氮是少数几个含有奇数电子的稳定化合物之一,它可获得或失去一个电子形成离子NO-或NO+,这些离子存在于亚硝酰基中,亚硝酰化合物有点类似于一氧化碳和过渡金属形成的羰基化合物。
工业上,NO的主要用途是制造硝酸。
二、NO的生物学特性一氧化氮具有易扩散、反应性强、性质活泼而很不稳定,生物半衰期很短(约2~3s)等特性,广泛存在于生物体内各组织器官,由血管内皮细胞产生并释放,参与机体内多种生理及病理过程。
在哺乳动物体内NO是由一氧化氮合酶(NOS)催化底物L-精氨酸(L-Arg)经还原型尼克酰胺腺苷二核苷酸磷酸(NADPH)还原而产生的。
神经Casino等用放射标记法进行光谱分析证实NO 的氮原子来于L-精氨酸,氧原子来源于氧气。
NO极不稳定,在有氧和水的环境中仅能存在6~10s,以后很快与亚铁血红素和-SH键结合而失活,其最终代谢产物为亚硝酸盐和硝酸盐[1]。
NO与受体结合后,作用于血管平滑肌细胞可溶性鸟苷酸环化酶,生成第二信使分子(cGMP),导致细胞内钙离子浓度下,从而使血管平滑肌松弛,血管扩张,血压下降。
一氧化氮

NO的生物学特性NO是一种tl由基性质的气体,其在组织中的半减期仅有10—60 s,其反应活性取决于它被去除或破坏的速度。
NO具有脂溶性,可快速透过生物膜扩散,到达临近靶细胞发挥作用。
由于体内存在氧及其他能与NO反应的化合物如超氧阴离子,血红蛋白等。
因而NO在体内极不稳定,合成后3~5 s即被氧化,以硝酸根(N )和亚硝酸根(N )的形式存在于细胞内、外液中。
N O 的生成和作用在体内。
NO的合成需要NOS催化,以L一精氨酸为底物,以还原型辅酶Ⅱ(NADPH)为电子供体,生成NO和L一瓜氨酸。
NO没有专门的储存及释放调节机制,靶细胞上NO的多少直接与NO的合成有关,而NO的合成则与NOS的活性密切相关。
哺乳动物体内的许多组织如血管内皮细胞、巨噬细胞、嗜中性白细胞以及脑组织等均能合成NO。
N O 的生成主要有三种来源: 内皮细胞、神经细胞、神经胶质细胞。
内皮细胞源性N O体内、外研究都表明,内皮细胞源性N O 是一种强有力的血管扩张物质。
受乙酞胆碱作用时, 内皮细胞释放N O, 刺激平滑肌内的鸟昔酸环化酶使c G M P 增加从而导致脑血管的扩张。
除乙酞胆碱外, 5 一经色胺、P 物质和A D P 扩张脑微循环的作用也依赖N O 形成。
生理情况下产生的N O 除对脑血管有扩张作用外, 还可通过抑制血小板和白细胞的聚集而保护脑内皮细胞。
最近有报道, 生理情况下产生的N O 可以抑制脑微循环的自主性运动, 并对去甲肾上腺素、6 一经色胺等物质导致的脑动脉收缩有抑制作用。
神经元源性N O神经元源性N O 可能是神经元激活时脑血管反应的介质。
有人观察到小脑顶核和胆碱能纤维兴奋时所产生的脑血流增加可被N O S 抑制剂所抑制。
许多研究提示,谷氨酸受体激活在神经元产生N O 过程中起关键作用。
有研究表明, 戊四氮吟和二氢哈尔碱h( ar m al in e) 诱发癫痛过程中可产生兴奋性氨基酸的内源性蓄积也引起脑中依赖于N O 的c G M P 大量增加。
一氧化氮供体药物作用机制

一氧化氮供体药物作用机制
一氧化氮供体药物的作用机制是通过释放一氧化氮来调节细胞内的信号传导路径。
一氧化氮(NO)是多功能的气体信号分子,能够扩张血管、抑制血小板凝聚、抑制血管内皮细胞增殖、减轻炎症反应等。
一氧化氮供体药物通过不同的机制释放一氧化氮,进而产生治疗效果。
一氧化氮供体药物主要有两种类型:一方面是使用NO气体作为一氧化氮供体的药物,例如亚硝基化合物或亚硝酸盐类药物;另一方面是利用一氧化氮合酶的底物代谢途径的药物,例如有机硝酸酯类和磷酸酯类药物。
这些药物在体内被代谢成NO,释放出来后与细胞内的特定蛋
白质相互作用,参与多种信号传导通路的调节。
例如,NO可
以激活鸟苷酸环化酶,使cGMP的水平升高,从而导致细胞
内的松弛作用;NO还可以抑制血小板激活,减少血小板聚集
和血栓形成的风险。
总的来说,一氧化氮供体药物通过调节一氧化氮的释放量和相关信号通路的活化,产生血管扩张、抗血小板凝聚、抗炎症等治疗效果。
这些药物常用于治疗高血压、心绞痛、心肌梗死等循环系统疾病。
一氧化氮的功能及其作用机制_性质与功能

⼀氧化氮的功能及其作⽤机制_性质与功能⽣物物理学报2012年3⽉第28卷第3期: ACTA BIOPHYSICA SINICA Vol.28No.3Mar.2012:173-184 173-184———性质与功能黄波,陈畅中国科学院⽣物物理研究所,北京100101收稿⽇期:2012-01-16;接受⽇期:2012-02-08基⾦项⽬:“973”计划项⽬(2012CB911000)通讯作者:陈畅,电话:(010)64888406,E-mail:changchen@/doc/7faf239fa300a6c30d229f4f.html 摘要:⼀氧化氮(nitric oxide,NO)是第⼀个被发现的参与细胞信号转导的⽓体信号分⼦。
NO参与的⽣命活动⾮常⼴泛,在神经、免疫、呼吸等系统中发挥着重要作⽤。
很久以来,⼀氧化氮合酶(nitric oxide synthase,NOS)被认为是⼈体内合成NO的主要途径,其活性受到严格的调控。
直到最近,⼈们才发现亚硝酸盐(nitrite,NO2-)也可以参与体内NO的合成。
本综述总结NO的相关性质与功能,并简介亚硝酸盐的研究进展。
关键词:⼀氧化氮;⼀氧化氮合酶;亚硝酸盐;巯基修饰中图分类号:Q58DOI:10.3724/SP.J.1260.2012.20007引⾔⼀氧化氮(nitric oxide,nitrogen oxide,NO)是由氮和氧两个原⼦构成的⾮常简单的⼩分⼦。
在⾃然界中,NO产⽣于闪电、核爆炸等⾼能反应,也可通过汽车尾⽓排放。
1985年,⼈们第⼀次发现南极⾼空臭氧层存在空洞时,除了氯溴化物之外,NO也是破坏臭氧层的元凶之⼀。
过去,⼈们⼀直认为NO是⼀种⼤⽓污染物,其实,⾎管内⽪细胞也产⽣NO,并具有与内⽪细胞松弛因⼦EDRF(endothelium-derived relaxing factor)相同的⽣物活性[1]。
NO是第⼀个被发现的参与体内信号转导的⽓体信号分⼦,在神经系统、免疫系统、⼼⾎管系统等⽅⾯都发挥着重要作⽤。
一氧化氮的简介

一氧化氮的简介一氧化氮是一种具有重要生物学功能的气体分子,化学式为NO,是由一个氮原子和一个氧原子组成的双原子分子。
它的化学键是一个态氧原子,其化学活性极高。
一氧化氮在生物体内具有广泛的生理和病理作用,参与调节血管张力、抑制血小板聚集、改善内皮细胞功能、调节凝血途径、影响心脏功能等。
一氧化氮是一种多功能二级信使,有多种细胞来源,包括内皮细胞、神经元、心肌细胞、平滑肌细胞、炎性细胞和病原体等。
人体内的一氧化氮主要通过内皮NO合酶(eNOS)、神经NO合酶(nNOS)和诱导NO合酶(iNOS)三种NOS酶家族合成,其中nNOS和eNOS是一氧化氮的重要来源。
一氧化氮的生物学功能很多,它参与了多个生理和病理过程,如心血管调节、肺通气调节、神经调节、炎症反应、肉芽组织形成、动物孕育等。
此外,一氧化氮还具有抗菌、抗毒和抗癌的作用。
一氧化氮在心血管系统上的作用特别显著,通过调节血管壁的张力、血小板聚集和血栓形成等机制来调节心血管系统的功能。
一氧化氮的发现和研究已经使我们对心血管疾病的认识更加深入,对于心血管疾病的治疗也提供了新的思路。
在神经系统中,一氧化氮在神经元之间起到调节并传递信息的作用,它参与了学习记忆、疼痛传递、睡眠调节、视觉传递和味觉传递等过程。
同时,一氧化氮对神经退行性疾病也有着重要的作用,如阿尔茨海默病、帕金森病和多发性硬化等。
总之,一氧化氮是一个非常重要的生物分子,它在生命过程中发挥着极其重要的作用,调节了人体内不同系统的功能。
对一氧化氮的研究已经成为当前生理学和病理学研究的热点之一,它将对人类健康和疾病的预防与治疗提供新的思路和方法。
一氧化氮的功能及其作用机制_性质与功能
生物物理学报2012年3月第28卷第3期: ACTA BIOPHYSICA SINICA Vol.28No.3Mar.2012:173-184 173-184———性质与功能黄波,陈畅中国科学院生物物理研究所,北京100101收稿日期:2012-01-16;接受日期:2012-02-08基金项目:“973”计划项目(2012CB911000)通讯作者:陈畅,电话:(010)64888406,E-mail:changchen@摘要:一氧化氮(nitric oxide,NO)是第一个被发现的参与细胞信号转导的气体信号分子。
NO参与的生命活动非常广泛,在神经、免疫、呼吸等系统中发挥着重要作用。
很久以来,一氧化氮合酶(nitric oxide synthase,NOS)被认为是人体内合成NO的主要途径,其活性受到严格的调控。
直到最近,人们才发现亚硝酸盐(nitrite,NO2-)也可以参与体内NO的合成。
本综述总结NO的相关性质与功能,并简介亚硝酸盐的研究进展。
关键词:一氧化氮;一氧化氮合酶;亚硝酸盐;巯基修饰中图分类号:Q58DOI:10.3724/SP.J.1260.2012.20007引言一氧化氮(nitric oxide,nitrogen oxide,NO)是由氮和氧两个原子构成的非常简单的小分子。
在自然界中,NO产生于闪电、核爆炸等高能反应,也可通过汽车尾气排放。
1985年,人们第一次发现南极高空臭氧层存在空洞时,除了氯溴化物之外,NO也是破坏臭氧层的元凶之一。
过去,人们一直认为NO是一种大气污染物,其实,血管内皮细胞也产生NO,并具有与内皮细胞松弛因子EDRF(endothelium-derived relaxing factor)相同的生物活性[1]。
NO是第一个被发现的参与体内信号转导的气体信号分子,在神经系统、免疫系统、心血管系统等方面都发挥着重要作用。
1998年的诺贝尔生理学和医学奖就授予了三位研究NO生物学作用的先驱科学家。
一氧化氮的生物效应和在细胞信号传导中的角色
与其他气体信号分子相互作用
NO与一氧化碳(CO)在生物体内具 有协同作用,共同参与血管舒张、抗 炎和抗氧化等生理过程。
NO还可以与硫化氢(H2S)相互作用, 共同调节血管张力、细胞增殖和凋亡等 过程。
NO在神经系统中的传递作用对于学习、记忆和认知等高级脑功能具有重要意义。
免疫调节作用
01
NO在免疫系统中具有广泛的调节作用。它可以作为免疫细胞间 的信号分子,参与免疫细胞的活化、增殖和分化等过程。
02
NO还可以通过抑制某些病原体的生长和繁殖,发挥直接的抗菌、
抗病毒作用。
NO的免疫调节作用对于维持机体免疫稳态和抵御感染具有重要
生理效应
通过蛋白质磷酸化/去磷酸化过程,一氧化 氮参与细胞周期调控、细胞分化、免疫反应 等生理过程的调节。
基因表达调控作用
一氧化氮影响转录因子活性
一氧化氮可激活或抑制某些转录因子,如NF-κB、AP-1等,调控 基因转录。
一氧化氮与表观遗传学调控
一氧化氮可影响DNA甲基化、组蛋白修饰等表观遗传学过程,进 而调控基因表达。
药物治疗靶点
针对信号传导异常环节的药物设计是疾病治疗的重要策略之一。
04 一氧化氮在细胞信号传导 中角色
cGMP依赖型信号通路
一氧化氮激活可溶性鸟苷酸环化酶(sGC)
一氧化氮与sGC的血红素基团结合,改变其构象并激活酶活性,催化GTP生成cGMP。
cGMP作为第二信使
cGMP在细胞内累积,激活cGMP依赖的蛋白激酶(PKG)或cGMP门控的离子通道,进一步传递信 号。
一氧化氮
NO的生物学特性NO是一种tl由基性质的气体,其在组织中的半减期仅有10—60 s,其反应活性取决于它被去除或破坏的速度。
NO具有脂溶性,可快速透过生物膜扩散,到达临近靶细胞发挥作用。
由于体内存在氧及其他能与NO反应的化合物如超氧阴离子,血红蛋白等。
因而NO在体内极不稳定,合成后3~5 s即被氧化,以硝酸根(N )和亚硝酸根(N )的形式存在于细胞内、外液中。
N O 的生成和作用在体内。
NO的合成需要NOS催化,以L一精氨酸为底物,以还原型辅酶Ⅱ(NADPH)为电子供体,生成NO和L一瓜氨酸。
NO没有专门的储存及释放调节机制,靶细胞上NO的多少直接与NO的合成有关,而NO的合成则与NOS的活性密切相关。
哺乳动物体内的许多组织如血管内皮细胞、巨噬细胞、嗜中性白细胞以及脑组织等均能合成NO。
N O 的生成主要有三种来源: 内皮细胞、神经细胞、神经胶质细胞。
内皮细胞源性N O体内、外研究都表明,内皮细胞源性N O 是一种强有力的血管扩张物质。
受乙酞胆碱作用时, 内皮细胞释放N O, 刺激平滑肌内的鸟昔酸环化酶使c G M P 增加从而导致脑血管的扩张。
除乙酞胆碱外, 5 一经色胺、P 物质和A D P 扩张脑微循环的作用也依赖N O 形成。
生理情况下产生的N O 除对脑血管有扩张作用外, 还可通过抑制血小板和白细胞的聚集而保护脑内皮细胞。
最近有报道, 生理情况下产生的N O 可以抑制脑微循环的自主性运动, 并对去甲肾上腺素、6 一经色胺等物质导致的脑动脉收缩有抑制作用。
神经元源性N O神经元源性N O 可能是神经元激活时脑血管反应的介质。
有人观察到小脑顶核和胆碱能纤维兴奋时所产生的脑血流增加可被N O S 抑制剂所抑制。
许多研究提示,谷氨酸受体激活在神经元产生N O 过程中起关键作用。
有研究表明, 戊四氮吟和二氢哈尔碱h( ar m al in e) 诱发癫痛过程中可产生兴奋性氨基酸的内源性蓄积也引起脑中依赖于N O 的c G M P 大量增加。
一氧化氮对人体的作用
市场中出售的一氧化氮保健品实际是含有在进入人体能产生一氧化氮的物质即前体。
一氧化氮对人体有七个作用1、调节血管紧张度,降血压2、改善糖尿病及其并发症,如糖尿病视网膜病变、肾病、心脑病变及糖尿病足;3、提高夫妻性功能,改善夫妻生活质量4、防止凝血,清除血栓,预防心脑血管疾病如:心肌梗死、心绞痛、中风等5、清除血管炎症,防止动脉硬化6、清除自由基,康发炎,消肿胀,防止病毒入侵,抑制癌细胞7、改善睡眠质量一、一氧化氮与血压调节1、为什么血压会升高为了理解高血压的机制,可以把它想象为一个末端带有喷嘴的水管。
有两种方法可以提高水的压力:可以通过加大水泵的功率,也可以缩小水管的直经以提高水流的阻力。
血压的作用原理与这种方式相似,血压取决于心脏泵血的力量、一般说心脏泵血的力量是恒定,全身的血管容量以及血管的阻力若有变化,則会引起血压变化。
收缩动脉使血流受阻从而导致血压升高,相反,如果动脉舒张管径变宽,血液就更容易流动,血压则下降。
2、高血压的危险性高血压的危害主要表现在为对心、脑、肾等靶器官的致命损害。
长期的高血压得不到有效改善,心脏就会因过度劳累而代偿性肥厚扩大,进而出现功能衰退,这就是是高血压性心脏病,与心力衰竭;同理,管道内压力过高,脆弱硬化部分的管道就很容易爆裂,发生在脑血管上,就是出血性脑卒中;同样,肾脏有极丰富的毛细血管网,这种微细血管网有排除身体内废物的功能,若受损,体内有毒物质贮留在血内不易排除,时间一长造成肾功能衰竭、尿毒症。
高血压若得不到及时的有效的控制,心、脑、肾三个重要的生命器官就会受到致命打击,从而产生严重的并发症,诸如:心:高血压性心脏病、冠心病、心力衰竭;脑:高血压性脑出血、脑梗塞;肾:肾功能衰竭、尿毒症。
而医学界众所周知,这些问题是可以在发现高血压之初就进行预防的,而且可以是行之有效的。
但当由于高血圧引犮的这些疾病发生后,对病人及家属来讲,不论是从所花费的精力、财力、体力上都将是徒劳而无益的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一氧化氮供体对肺癌的作用
一、 立题依据与研究意义
一氧化氮(nitricoxide,NO)是由一氧化氮合酶(nitricoxide synthase, NOS)催化L-
精氨酸脱胍基而生成,是近年来才发现的生物活性物质,参与机体的许多重要生理过
程,且NO与消化系统的疾病(如肿瘤)日益受到关注。已知,活化的巨噬细胞有杀
伤肿瘤细胞的作用越来越多的证据表明,NO是活化的巨噬细胞杀伤肿瘤细胞时产生的
毒性效应因子之一。Hibbs首先发现,活化巨噬细胞产生的NO具有抑制生长和细胞毒
性作用,能抑制与巨噬细胞共同培养的肿瘤细胞的许多代谢活动,如线粒体呼吸、DNA
复制等,导致瘤细胞内铁元素大量丧失,细胞死亡。
本实验的研究可有效控制肺癌的生长和转移。
二、 实验方案
(一) 实验设计的目标:专家已证明一氧化氮对癌细胞有抑制作用,通过本实验可以
进一步验证这一现象,并扩大了肺癌的治疗途径。
(二) 实验设计:
实验对象:小鼠
实验原理:硝酸酯类,此类药称为NO供体。该机制产生的NO称外源性NO,
常用药物有硝酸甘油、硝酸异山犁酯,此类药物需经细胞代谢才能生成NO,
连续使用数小时,或数天可出现耐受现象。活化巨噬细胞产生的NO具有抑制
生长和细胞毒性作用,能抑制与巨噬细胞共同培养的肿瘤细胞的许多代谢活动,
如线粒体呼吸、DNA复制等,导致瘤细胞内铁元素大量丧失,细胞死亡。
实验步骤:1、挑选四只体型相似、健康状态良好的雄鼠标号ABCD。2、并分
别在他们皮下接种Lewis肺癌细胞,使他们患上肺癌。3、A鼠用生理盐水(对
照组)灌胃、BCD鼠分别用硝酸甘油处理高浓度组、硝酸甘油处理中浓度组、
硝酸甘油处理低浓度组,处理组以不同浓度硝酸甘油溶液(1.6,0.5,016g
/L)灌胃0.4mL/(只·d)。4、连续10d,于21d处死,对血中硝酸盐含量和生
化指标以及各主要脏器重量进行测定,并观察原位瘤质量和肺转移情况结果。
三、 可行性分析
1、小白鼠容易得到。2、实验过程中所需药品如硝酸甘油价格便宜,易得。3、Lewis
肺癌细胞可由中大医院提供。4、操作方法简单易行
四、 创新性分析
以往的实验只研究一氧化氮大对癌细胞杀伤效果,本实验通过对硝酸甘油浓度的控制
来研究其对癌细胞迁移的影响,故有一定的创新性。
五、 预期进展
硝酸甘油作为一氧化氮供体胃肠道给药在一定剂量可以抑制肿瘤转移,同时对动物生
理机能无明显影响,即一定含量的一氢化氧能够抑制肿瘤转移。
六、 完成实验的条件
仪器设备:注射器、导管、量筒、滴管等。
实验动物:4只健康雄鼠
药品:Lewis肺癌细胞、硝酸甘油