2017-2018学年河北省衡水中学高二上学期四调考试数学(理)试题

合集下载

【全国百强校】河北省衡水中学2017届高三上学期四调考试理数试题解析(解析版)

【全国百强校】河北省衡水中学2017届高三上学期四调考试理数试题解析(解析版)

河北省衡水中学2017届高三上学期四调考试理科数学试题第Ⅰ卷(选择题 共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}21log A x N x k =∈<<,集合A 中至少有3个元素,则( ) A .8k > B .8k ≥ C .16k > D .16k ≥ 【答案】C考点:1.集合的运算;2.对数函数的性质. 2. 若()1z i i +=,则z 等于( )A .1BC .D .12【答案】C 【解析】试题分析:由()1z i i +=得()()()11111122i i i z i i i i -===+++-,所以2z ==,故选C. 考点:1.复数相关的概念;2.复数的运算.3. 在明朝程大位《算法统宗》中有这样的一首歌谣:“远看巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”这首古诗描述的这个宝塔其古称浮屠,本题说它一共有7层,每层悬挂的红灯数是上一层的2倍,共有381盏灯,问塔顶有几盏灯?( ) A .5 B .6 C .4 D .3 【答案】D 【解析】试题分析:由题意可知,每层悬挂的灯数从上到下依次构成比差数列,公比为2,设顶层的灯数为1a ,则77111(12)(2112738112a a a -==--)=,解之得13a =,故选D.考点:1.数学文化;2.等比数列的性质与求和.4. 已知双曲线()2222:10 0x y C a b a b-=>>,,则C 的渐近线方程为( ) A .14y x =± B .13y x =± C.12y x =± D .y x =±【答案】C考点:双曲线的标准议程与几何性质.5. 执行如图所示的程序框图,则输出的结果为( )A .4B .9 C.7 D .5 【答案】B 【解析】试题分析:模拟算法,开始:输入0,0,1T S n ===;2,9(11)18,123,T S n T S ==+==+=≥不成立; 328,9(31)36,325,T S n T S ===+==+=≥不成立; 5232,9(51)54,527,T S n T S ===+==+=≥不成立; 72128,9(71)63,729,T S n T S ===+==+=≥成立;输出9n =,结束得算法.故选B.考点:程序框图.6. 已知函数()()()cos 0f x A x ωϕω=+>的部分图象如图所示,下面结论错误的是( )A .函数()f x 的最小正周期为23πB .函数()f x 的图象可由()()cos g x A x ω=的图象向右平移12π个单位得到 C.函数()f x 的图象关于直线12x π=对称D .函数()f x 在区间 42ππ⎛⎫ ⎪⎝⎭,上单调递增【答案】D考点:三角函数的图象和性质.7. 德国著名数学家狄利克雷在数学领域成就显著,以其名命名的函数() 1 0 x f x x ⎧=⎨⎩,为有理数,为无理数,称为狄利克雷函数,则关于函数()f x 有以下四个命题: ①()()1f f x =;②函数()f x 是偶函数;③任意一个非零有理数T ,()()f x T f x +=对任意x R ∈恒成立;④存在三个点()()()()()()112233 A x f x B x f x C x f x ,,,,,,使得ABC △为等边三角形. 其中真命题的个数是( )A .4B .3 C.2 D .1 【答案】A考点:1.函数的奇偶性;2.函数的周期性;3.分段函数的表示与求值. 8. 某几何体的三视图如图所示,则该几何体的体积为( )A .10B .20 C.40 D .60 【答案】B 【解析】试题分析:由三视图可知该几何体的直观图如下图所示,且三角形ABC 是以角A 为直角的直角三角形,4,3AB AC ==,从而5BC =,又5BD =,且BD ⊥平面ABC ,故四边形BCED 中边长为5的正方形,过A 作AH BC ⊥于H ,由易知AH ⊥平面BCED ,在直角三角形ABC 中可求得125AH =,从而ABCD 11125520335A BCED V V S AH -==⨯⨯=⨯⨯⨯=正方形,故选B.考点:1.三视图;2.多面体和体积.9. 已知A 、B 是椭圆()222210x y a b a b +=>>长轴的两个端点,M 、N 是椭圆上关于x 轴对称的两点,直线AM 、BN 的斜率分别为()1212 0k k k k≠,,则12k k +的最小值为( )A .1 BD【答案】A考点:1.双曲线的标准方程与几何性质;2.基本不等式;3.斜率公式.【名师点睛】本题考查双曲线的标准方程与几何性质、基本不等式、斜率公式,属中档题;双曲线的标准方程与几何性质是高考的热点,特别是双曲线的性质,几乎每年均有涉及,主要以选择题、填空题为主,解题时,应利用图形,挖掘题目中的隐含条件,结合图形求解.10. 在棱长为6的正方体1111ABCD A B C D -中,M 是BC 的中点,点P 是面11DCC D 所在的平面内的动点,且满足APD MPC ∠=∠,则三棱锥P BCD -的体积最大值是( )A .36B .C.24 D . 【答案】A考点:1.线面垂直的判定与性质;2.轨迹方程的求法;3.多面体的体积.11. 已知函数()()()3ln 1 01 1 0x x f x x x -<⎧⎪=⎨-+≥⎪⎩,,,若()f x ax ≥恒成立,则实数a 的取值范围是( ) A .20 3⎡⎤⎢⎥⎣⎦,B .30 4⎡⎤⎢⎥⎣⎦, C.[]0 1, D .30 2⎡⎤⎢⎥⎣⎦, 【答案】B 【解析】试题分析:在同一坐标系内作出函数()()()3ln 1 01 1 0x x f x x x -<⎧⎪=⎨-+≥⎪⎩,,与函数y ax =和图象,通过图象可知,当直线y ax =绕着原点从x 轴旋转到与图中直线l 重合时,符合题意,当0x >时,2()3(1)f x x '=-,设直线l与函数()y f x =的切点为00(,)P x y ,则3200000(1)3(1)y x x x x --==,解之得032x =,所以直线l 的斜率2333(1)24k =⨯-=,所以a 的取值范围为30 4⎡⎤⎢⎥⎣⎦,,故选B.考点:1.函数与不等式;2.导数的几何意义.【名师点睛】本题考查函数与不等式、导数的几何意义,属中档题;导数的几何意义是每年高考的必考内容,利用导数解决不等式恒成立问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的范围;或参变分离,构造函数,直接把问题转化为函数的最值问题;或通过数列结合解题.12. 已知过抛物线()2:20G y px p =>焦点F 的直线l 与抛物线G 交于M 、N 两点(M 在x 轴上方),满足3MF FN =,163MN =,则以M 为圆心且与抛物线准线相切的圆的标准方程为( )A .2211633x y ⎛⎛⎫-+= ⎪ ⎝⎭⎝⎭ B .2211633x y ⎛⎛⎫-+= ⎪ ⎝⎭⎝⎭C.()(22316x y -+-= D .()(22316x y -+=【答案】C考点:1.抛物线的标准方程与几何性质;2.直线与抛物线的位置关系;2.圆的标准方程.【名师点睛】本题考查抛物线的标准方程与几何性质、直线与抛物线的位置关系、圆的标准方程,属难题;在解抛物线有关问题时,凡涉及抛物线上的点到焦点的距离时,一般要运用定义转化为到准线的距离处理;抛物线的焦点弦一直是高考的热点,对于焦点弦的性质应牢固掌握.第Ⅱ卷(非选择题共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 若x、y满足约束条件1040xx yx y-≥⎧⎪-≤⎨⎪+-≤⎩,则1yx-的最大值为.【答案】2考点:线性规划.14. 在ABC △中, 3 5AB AC ==,,若O 为ABC △外接圆的圆心(即满足OA OB OC ==),则AO BC ⋅的值为 . 【答案】8考点:数量积的几何运算.【名师点睛】本题考查数量积的几何运算,属中档题;平面向量的数量积有两种运算,一是依据长度与夹角,即数量积的几何意义运算,一是利用坐标运算,本题充分利用向量线性运算的几何意义与数量积的几何意义进行运算,运算量不大,考查子学生逻辑思维能力,体现了数形结合的数学思想. 15. 已知数列{}n a 的各项均为正数,11142 n n n n a a a a a ++=-=+,,若数列11n n a a -⎧⎫⎨⎬+⎩⎭的前n 项和为5,则n = .【答案】120 【解析】试题分析:数列11n n a a -⎧⎫⎨⎬+⎩⎭的前n 项和为321121211223111154444n n n a a a a a a a a a a a a a a +-----+++=++==+++,所以122n a +=, 又114 n n n na a a a ++-=+,所以221 4n n a a +-=,由此可得22211444,2244,120n a a n n n n +=+=+∴=+=,即应填120.考点:1.数列求和;2.累和法求数列通项.【名师点睛】本题考查数列求和,累和法求数列通项,属中档题;由数列的递推公式求通项公式时,若递推关系为a n +1=a n +f (n )或a n +1=f (n )·a n ,则可以分别通过累加、累乘法求得通项公式,另外,通过迭代法也可以求得上面两类数列的通项公式,数列求和的常用方法有倒序相加法,错位相减法,裂项相消法,分组求和法,并项求和法等,可根据通项特点进行选用.16. 过抛物线()220y px p =>的焦点F 的直线l 与抛物线在第一象限的交点为A ,与抛物线的准线的的交点为B ,点A 在抛物线的准线上的射影为C ,若 48AF FB BA BC =⋅=,,则抛物线的方程为 . 【答案】24y x =考点:1.抛物线的标准方程与几何性质;2.向量数量积的几何意义.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. (本小题满分12分)在ABC △中,内角A 、B 、C 所对的边分别为 a b c ,,,已知 4 6 2b c C B ===,,. (1)求cos B 的值; (2)求ABC △的面积.【答案】(1)34;(2.试题解析:(1)在ABC △中,sin sin b c B C =,因为 4 6 2b c C B ===,,,所以46sin sin 2B B=,即 46sin 2sin cos B B B =,又sin 0B ≠,∴3cos 4B =.(2)由(1)知3cos 4B =,从而sin B =.因此sin sin 22sin cos C B B B ===21cos cos22cos 18C B B ==-=.所以()()13sin sin sin sin cos cos sin 84A B C B C B C B C π=--=+=+=+=所以ABC △的面积为1462⨯⨯. 考点:1.正弦定理;2.三角恒等变换;3.三角形内角和与三角形面积公式.【名师点睛】本题考查正弦定理、三角恒等变换、三角形内角和与三角形面积公式,属中档题. 正、余弦定理是揭示三角形边角关系的重要定理,直接运用正弦定理解决一类已知三角形两边及一角对边求其它元素,或已知两边及一边对角求其它元素的问题,这时要讨论三角形解的个数问题;利用余弦定理可以快捷求第三边直接运用余弦定理解决一类已知三角形两边及夹角求第三边或者是已知三个边求角的问题;知道两边和其中一边的对角,利用余弦定理可以快捷求第三边. 18. (本小题满分12分)如图所示,在三棱柱111ABC A B C -中,11AA B B 为正方形,11BB C C 为菱形,1160BB C ∠=︒,平面11AA B B ⊥平面11BB C C .(1)求证:11B C AC ⊥;(2)设点E 、F 分别是1B C ,1AA 的中点,试判断直线EF 与平面ABC 的位置关系,并说明理由; (3)求二面角1B AC C --的余弦值.【答案】(1)见解析;(2) EF ∥平面ABC ;.试题解析:(1)连接1BC ,在正方形11ABB A 中,1AB BB ⊥, 因为平面11AA B B ⊥平面11BB C C ,平面11AA B B平面111BB C C BB =,AB ⊂平面11ABB A ,所以AB ⊥平面11BB C C ,因为1B C ⊥平面11BB C C ,所以1AB B C ⊥.在菱形11BB C C 中,11BC B C ⊥,因为1BC ⊥面1ABC ,AB ⊥平面1ABC ,1BC AB B =,所以1B C ⊥平面1ABC ,因为1AC ⊥平面1ABC ,所以11B C AC ⊥.(2)EF ∥平面ABC ,理由如下:取BC 的中点G ,连接GE 、GA ,因为E 是1B C 的中点,所以1GE BB ∥,且112GE BB =,因为F 是 1AA 的中点,所以112AF AA =. 在正方形11ABB A 中,1111 AA BB AA BB =∥,,所以GE AF ∥,且GE AF =. ∴四边形GEFA 为平行四边形,所以EF GA ∥. 因为EF ABC ⊄平面,GA ABC ⊂平面, 所以EF ABC ∥平面.(3)在平面11BB C C 内过点B 作1Bz BB ⊥,由(1)可知:11AB BB C C ⊥平面,以点B 为坐标原点,分别以BA 、1BB 所在的直线为x 、y 轴,建立如图所示的空间直角坐标系B xyz -,设()2 0 0A ,,,则()10 2 0B ,,. 在菱形11BB C C 中,1160BB C ∠=︒,所以(0 1 C -,,(10 1 C ,. 设平面1ACC 的一个法向量为() 1x y =n ,,. 因为100n AC n CC ⎧⋅=⎪⎨⋅=⎪⎩即()(()() 1 2 1 0 10 2 00x y x y ⎧⋅--=⎪⎨⋅=⎪⎩,,,,,,,,所以0x y ⎧=⎪⎨⎪=⎩0 1n ⎫=⎪⎪⎝⎭,,, 由(1)可知:1CB 是平面1ABC 的一个法向量.所以(1110 10 3 cosn CB n CB n CB ⎛⎫⋅ ⎪ ⎪⋅⎝<>===⋅,,,,,,所以二面角1B AC C --. 考点:1.面面垂直的判定与性质;2.线面平行、垂直的判定与性质;3.空间向量的应用.【名师点睛】本题考查.面面垂直的判定与性质、线面平行、垂直的判定与性质及空间向量的应用,属中档题;解答空间几何体中的平行、垂直关系时,一般要根据已知条件把空间中的线线、线面、面面之间的平行、垂直关系进行转化,转化时要正确运用有关的定理,找出足够的条件进行推理;求二面角,则通过求两个半平面的法向量的夹角间接求解.此时建立恰当的空间直角坐标系以及正确求出各点的坐标是解题的关键所在.19. (本小题满分12分)如图,在平面直角坐标系xOy 中,已知()00 R x y ,是椭圆22:12412x y C +=上的一点,从原点O 向圆()()2200:8R x x y y -+-=作两条切线,分别交椭圆于P ,Q .(1)若R 点在第一象限,且直线OP ,OQ 互相垂直,求圆R 的方程; (2)若直线OP ,OQ 的斜率存在,并记为12 k k ,,求12k k 的值; (3)试问22OP OQ +是否为定值?若是,求出该值;若不是,说明理由.【答案】(1)((228x y-+-=;(2)12-;(3)36.试题解析:(1)由圆R的方程知圆R的半径r=,因为直线OP,OQ互相垂直,且和圆R相切,所以4OR==,即220016x y+=①又点R在椭圆C上,所以220012412x y+=②联立①②,解得0xy⎧=⎪⎨=⎪⎩R的方程为((228x y-+-=.(2)因为直线1:OP y k x=和2:OQ y k x=都与圆R==212288yk kx-⋅=-,因为点()00R x y,在椭圆C上,所以220012412x y+=,即22001122y x=-,所以2122141228xk kx-==--.(3)方法一(1)当直线OP、OQ不落在坐标轴上时,设()11P x y,,()22Q x y,,由(2)知12210k k+=,所以121221y yx x=,故2222121214y y x x=,因为()11P x y,,()22Q x y,,在椭圆C上,所以221112412x y+=,222212412x y+=,即22111122y x =-,22221122y x =-,所以222212121111212224x x x x ⎛⎫⎛⎫--= ⎪⎪⎝⎭⎝⎭,整理得221224x x +=,所以222212121112121222y y x x ⎛⎫⎛⎫+=-+-= ⎪ ⎪⎝⎭⎝⎭,所以()()22222222221122121236OP OQ x y x y x x y y +=+++=+++=.(2)当直线OP 、OQ 落在坐标轴上时,显然有2236OP OQ +=. 综上:2236OP OQ +=.考点:1.椭圆的标准方程与几何性质;2.圆的标准方程;3.直线与圆的位置关系. 20. (本小题满分12分)设椭圆()2222:10x y C a b a b +=>>的左、右焦点分别为1F 、2F ,上顶点为A ,过A 与2AF 垂直的直线交x 轴负半轴于Q 点,且12220F F F Q +=. (1)求椭圆C 的离心率;(2)若过A 、Q 、2F 三点的圆恰好与直线30x --=相切,求椭圆C 的方程;(3)过2F 的直线l 与(2)中椭圆交于不同的两点M 、N ,则1F MN △的内切圆的面积是否存在最大值?若存在,求出这个最大值及此时的直线方程;若不存在,请说明理由.【答案】(1)12;(2) 22143x y +=;(3)1F MN △的内切圆的面积的最大值为916π,此时直线l 的方程为1x =.(3)设1F MN △的内切圆的半径为R ,则1F MN △的周长为48a =,由此可得112121212F MN S F F y y y y =⋅-=-△,设直线l 的方程为1x my =+,与椭圆方程联立得()2234690my my ++-=,由根与系数关系代入112F MNS y y =-=△,换元令t =()12121211313F MN t S t t t t==≥-+△,可知当1t =时,14F MN S R =△有最大值3,从而求出内切圆面积的最大值与相应的直线方程即可.试题解析:(1)由题()0 A b ,,1F 为2QF 的中点.设()()12 0 0F c F c -,,,,则()3 0Q c -,, ()3 AQ c b =--,,()2 AF c b =-,,由题2AQ AF ⊥,即22230AQ AF c b ⋅=-+=,∴()22230c a c -+-=即224a c =,∴12c e a ==. (2)由题2Rt QAF △外接圆圆心为斜边2QF 的中点()1 0F c -,,半径2r c =, ∵由题2Rt QAF △外接圆与直线30x -=相切,∴d r =,即322c c --=,即34c c +=,∴1c =,22a c ==,b =C 的方程为22143x y +=.(3)设()11 M x y ,,()22 N x y ,,由题12 y y ,异号,设1F MN △的内切圆的半径为R ,则1F MN △的周长为48a =,()111142F MN S MN F M F N R R =++=△, 因此要使1F MN △内切圆的面积最大,只需R 最大,此时1F MN S △也最大,112121212F MN S F F y y y y =⋅-=-△, 由题知,直线l 的斜率不为零,可设直线l 的方程为1x my =+,由221143x my x y =+⎧⎪⎨+=⎪⎩得()2234690m y my ++-=,由韦达定理得122634m y y m -+=+,122934y y m -=+,(0m R ∆>∈⇒)112F MN S y y =-=△令t =1t ≥,()12121211313F MN t S t t t t==≥-+△, 当1t =时,14F MN S R =△有最大值3,此时,0m =,max 34R =, 故1F MN △的内切圆的面积的最大值为916π,此时直线l 的方程为1x =. 考点:1.椭圆的标准方程与几何性质;2.直线与椭圆的位置关系;3.直线与圆的位置关系. 21. (本小题满分12分) 已知0t >,设函数()()3231312t f x x x tx +=-++.(1)存在()00 2x ∈,,使得()0f x 是()f x 在[]0 2,上的最大值,求t 的取值范围; (2)()2x f x xe m ≤-+对任意[0 )x ∈+∞,恒成立时,m 的最大值为1,求t 的取值范围.【答案】(1)5[ )3+∞,;(2) 1(0 ]3,.(2)()()()323223131313123131222x x x t t t x x tx xe m m xe x x tx x e x x t +++⎛⎫-++≤-+⇔≤-+-+=-+-+ ⎪⎝⎭,构造函数()()23132x t g x e x x t +=-+-,道m 的最大值为1,等价于()()231302x t g x e x x t +=-+-≥在区间[0 )+∞,上恒成立,由于()0130g t =-≥,则103t <≤,此时()0g x '>恒成立,即()g x 在区间[0 )+∞,上单调递增,符合题意.试题解析:(1)()()()()2'331331f x x t x t x x t =-++=--,①当01t <<时,()f x 在()0 t ,上单调递增,在() 1t ,单调递减,在()1 2,单调递增, ∴()()2f t f ≥,由()()2f t f ≥,得3234t t -+≥在01t <<时无解, ②当1t =时,不合题意;③当12t <<时,()f x 在()0 1,单调递增,在()1 t ,递减,在() 2t ,单调递增, ∴()()1212f f t ⎧≥⎪⎨<<⎪⎩即1332212t t ⎧+≥⎪⎨⎪<<⎩,∴523t ≤<,④当2t ≥时,()f x 在()0 1,单调递增,在()1 2,单调递减,满足条件, 综上所述:5[ )3t ∈+∞,时,存在()00 2x ∈,,使得()0f x 是()f x 在[]0 2,上的最大值. ∴()()0130g x g t ≥=-≥,满足条件,∴t 的取值范围是1(0 ]3,.考点:1.导数与函数的单调性、极值,最值;2.函数与不等式.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. (本小题满分10分)选修4-4:坐标系与参数方程已知圆锥曲线2cos :x C y αα=⎧⎪⎨=⎪⎩(α为参数)和定点(0 A ,1F 、2F 是此圆锥曲线的左、右焦点,以原点O 为极点,以x 轴的正半轴为极轴建立极坐标系. (1)求直线2AF 的直角坐标方程;(2)经过点1F 且与直线2AF 垂直的直线l 交此圆锥曲线于M 、N 两点,求12MF NF -的值. 【答案】0y +-=;(2. 试题解析:(1)曲线2cos :x C y αα=⎧⎪⎨=⎪⎩可化为22143x y +=,其轨迹为椭圆,焦点为()1 1 0F -,,()21 0F ,.经过(0 A 和()21 0F ,的直线方程为11x =0y +. (2)由(1)知,直线2AF的斜率为2l AF ⊥,所以l,倾斜角为30︒, 所以l的参数方程为112x y t ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数).代入椭圆C的方程中,得213360t --=. 因为 M N ,在点1F的两侧,所以1112MF NF t t -=+=考点:1.参数方程与普通方程的互化;2.直线参数方程的应用. 23. (本小题满分10分)选修4-5:不等式选讲 设()34f x x x =-+-. (1)解不等式()2f x ≤;(2)若存在实数x 满足()1f x ax ≤-,试求实数a 的取值范围. 【答案】(1) 59 22⎡⎤⎢⎥⎣⎦,;(2)()1 2[ )2-∞-+∞,, 【解析】试题分析:(1)由绝对值的意义去掉绝对值符号,将函数()f x 表示成分段函数的形式,作出函数()f x 的图象,数形结合可得到不等式的解集;(2)在同一坐标系内作出函数()y f x =与函数1y ax =-的图象,数形结合可求出a 的范围.(2)函数1y ax =-的图象是过点()0 1-,的直线, 当且仅当函数()y f x =与直线1y ax =-有公共点时,存在题设的x .由图象知,a 的取值范围为()1 2[ )2-∞-+∞,,.考点:1.含绝对值不等式的解法;2.分段函数的表示与作图;3.函数与不等式.。

河北省衡水中学2018-2019学年高三年级上学期四调考试数学(理)试卷(含解析)

河北省衡水中学2018-2019学年高三年级上学期四调考试数学(理)试卷(含解析)

2018—2019学年河北省衡水中学高三年级上学期四调考试数学(理)试题数学注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、单选题1.下列命题正确的个数为①梯形一定是平面图形;②若两条直线和第三条直线所成的角相等,则这两条直线平行;③两两相交的三条直线最多可以确定三个平面;④如果两个平面有三个公共点,则这两个平面重合.A.0 B.1 C.2 D.32.已知是公差为1的等差数列,为的前项和,若,则A.B.3 C.D.43.已知双曲线与抛物线有相同的焦点,则该双曲线的渐近线方程为A.B.C.D.4.如图,一只蚂蚁从点出发沿着水平面的线条爬行到点,再由点沿着置于水平面的长方体的棱爬行至顶点,则它可以爬行的不同的最短路径有A.40条B.60条C.80条D.120条5.函数的图象大致是A.B.C.D.6.若,则A.B.2 C.D.7.某县教育局招聘了8名小学教师,其中3名语文教师,3名数学教师,2名全科教师,需要分配到两个学校任教,其中每个学校都需要2名语文教师和2名数学教师,则分配方案种数为A.72 B.56 C.57 D.638.一个简单几何体的三视图如图所示,则该几何体的体积为A.B.C.D.9.已知函数,下列结论不正确的是A.的图象关于点中心对称B.既是奇函数,又是周期函数C.的图象关于直线对称D.的最大值为10.如图所示,某几何体由底面半径和高均为5的圆柱与半径为5的半球面对接而成,该封闭几何体内部放入一个小圆柱体,且圆柱体的上下底面均与外层圆柱的底面平行,则小圆柱体积的最大值为A.B.C.D.11.已知的准线交轴于点,焦点为,过且斜率大于0的直线交于,,则A.B.C.4 D.312.已知是减函数,且有三个零点,则的取值范围为A.B.C.D.二、解答题13.数列满足,().(1)求证:数列是等差数列;(2)求数列的前999项和.14.在四棱锥,,,,平面平面,分别是中点.(1)证明:平面;(2)求与平面所成角的正弦值.15.在中,内角所对的边分别为,已知.(1)求角的大小;(2)若的面积,且,求.16.如图,直线平面,直线平行四边形,四棱锥的顶点在平面上,,,,,分别是与的中点.(1)求证:平面;(2)求二面角的余弦值.17.如图,椭圆:的左右焦点分别为,离心率为,过抛物线:焦点的直线交抛物线于两点,当时,点在轴上的射影为,连接并延长分别交于两点,连接,与的面积分别记为,,设.(1)求椭圆和抛物线的方程;(2)求的取值范围.18.已知函数的图象的一条切线为轴.(1)求实数的值;(2)令,若存在不相等的两个实数满足,求证:.三、填空题19.已知向量夹角为,且,,则_______.20.已知直三棱柱中,,则异面直线与所成角的余弦值为_______.21.某校毕业典礼由6个节目组成,考虑整体效果,对节目演出顺序有如下要求:节目甲必须排在前三位,且节目丙、丁必须排在一起,则该校毕业典礼节目演出顺序的编排方案共有______种.22.三棱锥中,平面,为正三角形,外接球表面积为,则三棱锥的体积的最大值为______.2018—2019学年河北省衡水中学高三年级上学期四调考试数学(理)试题数学答案参考答案1.C【解析】分析:逐一判断每个命题的真假,得到正确命题的个数.详解:对于①,由于两条平行直线确定一个平面,所以梯形可以确定一个平面,所以该命题是真命题;对于②,两条直线和第三条直线所成的角相等,则这两条直线平行或异面或相交,所以该命题是假命题;对于③,两两相交的三条直线最多可以确定三个平面,是真命题;对于④,如果两个平面有三个公共点,则这两个平面相交或重合,所以该命题是假命题.故答案为:C.点睛:(1)本题主要考查空间直线平面的位置关系,意在考查学生对这些基础知识的掌握水平和空间想象能力.(2)对于类似这种空间直线平面位置关系的命题的判断,一般可以利用举反例的方法和直接证明法,大家要灵活选择方法判断.2.C【解析】【分析】利用等差数列前项和公式,代入即可求出,再利用等差数列通项公式就能算出.【详解】∵是公差为1的等差数列,,∴解得,则,故选C.【点睛】本题考查等差数列的通项公式及其前项和公式的运用,是基础题。

衡水市安平县2017-2018学年高二数学上学期期末考试试题 理(实验部)

衡水市安平县2017-2018学年高二数学上学期期末考试试题 理(实验部)

河北省安平中学2017—2018学年高二数学上学期期末考试试题 理考试时间 120分钟 试题分数 150分一、选择题:(每题只有一个正确选项。

共12个小题,每题5分,共60分.) 1。

复数34i-的实部与虚部之差为( )A .—1B .1C .75- D .2. “a = l"是“函数在区间上为增函数”的( ) (A )充分不必要条件 (B )必要不充分条件(C )充要条件 (D )既不充分也不必要条件a 的取值范围是( )(A )(–∞,1)(B )(–∞,–1)(C)(1,+∞)(D )(–1,+∞) 4.下列四个命题中,正确的是( )A .若1x >,则(),1,1y x y ∀∈-∞≠B .若s i n c o s x θθ=,则()10,,2x θπ∀∈≠C 。

若1x >,则(),1,1y x y ∃∈-∞=D .若s i n c o s x θθ=,则()0,,1x θπ∃∈=5.若22221231111,,,xS x d x S d x S e d x x ===⎰⎰⎰则123S S S 的大小关系为()A .123S S S << B .213S S S << C .231S S S << D .321S S S <<6.若函数2()2l n fx x x =-在其定义域内的一个子区间(k -1, k +1)内不是单调函数,则实数k 的取值范围是( ) A .[1,+∞) B .[错误!,2) C .[1,2) D .[1,错误!)7.某四棱锥的三视图如图所示,则该四棱锥的最长棱的长度为( )(A)32 (B)23 (C)22 (D)28。

三棱锥P —ABC 的两侧面PAB 、PBC 都是边长为2a 的正三角形,,则二面角A —PB —C 的大小为( ) (A ) 900 (B) 300 (C ) 450 (D ) 6009。

河北省衡水中学2018-2019学年高三年级上学期四调考试数学(理)试卷 Word版含解析(1)

河北省衡水中学2018-2019学年高三年级上学期四调考试数学(理)试卷  Word版含解析(1)

拼搏的你,背影很美! 努力的你,未来可期! 2018—2019学年河北省衡水中学 高三年级上学期四调考试数学(理)试题 数学 注意事项: 1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、单选题1.下列命题正确的个数为①梯形一定是平面图形;②若两条直线和第三条直线所成的角相等,则这两条直线平行;③两两相交的三条直线最多可以确定三个平面;④如果两个平面有三个公共点,则这两个平面重合.A .0B .1C .2D .32.已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和,若S 8=4S 4,则a 4= A .52 B .3 C .72 D .43.已知双曲线my 2−x 2=1(m ∈R)与抛物线x 2=8y 有相同的焦点,则该双曲线的渐近线方程为A .y =±√3xB .y =±3xC .y =±13x D .y =±√33x4.如图,一只蚂蚁从点A 出发沿着水平面的线条爬行到点C ,再由点C 沿着置于水平面的长方体的棱爬行至顶点B ,则它可以爬行的不同的最短路径有A .40条B .60条C .80条D .120条 5.函数f(x)=x 2−2|x|的图象大致是 A . B . C . D . 6.若tan(x 2+π4)+tan(x 2−π4)=32,则tanx = A .−2 B .2 C .34 D .−34 7.某县教育局招聘了8名小学教师,其中3名语文教师,3名数学教师,2名全科教师,需要分配到A,B 两个学校任教,其中每个学校都需要2名语文教师和2名数学教师,则分配方案种数为 A .72 B .56 C .57 D .63 8.一个简单几何体的三视图如图所示,则该几何体的体积为 A .96π+36 B .72π+48 C .48π+96 D .24π+48 9.已知函数f(x)=cosxsin2x ,下列结论不正确的是 A .y =f(x)的图象关于点(π,0)中心对称 B .y =f(x)既是奇函数,又是周期函数 C .y =f(x)的图象关于直线x =π2对称 D .y =f(x)的最大值为√32此卷只装订不密封班级姓名准考证号考场号座位号10.如图所示,某几何体由底面半径和高均为5的圆柱与半径为5的半球面对接而成,该封闭几何体内部放入一个小圆柱体,且圆柱体的上下底面均与外层圆柱的底面平行,则小圆柱体积的最大值为A .2000π9B .4000π27C .81πD .128π11.已知y 2=4x 的准线交x 轴于点Q ,焦点为F ,过Q 且斜率大于0的直线交y 2=4x 于A,B ,∠AFB =600,则|AB|=A .4√76B .4√73C .4D .312.已知f (x )={x 2,x ≤0−x (e 1−x +ax 2−a),x >0 是减函数,且f (x )+bx 有三个零点,则b 的取值范围为A .(0,ln22)∪[e −1,+∞)B .(0,ln22)C .[e −1,+∞)D .{ln22}∪[e −1,+∞)二、解答题13.数列{a n }满足a 1=6,a n+1=6a n −9a n (n ∈N ∗).(1)求证:数列{1a n −3}是等差数列;(2)求数列{lga n }的前999项和.14.在四棱锥P −ABCD ,AB//CD ,∠ABC =900,BC =CD =PD =2,AB =4,PA ⊥BD ,平面PBC ⊥平面PCD ,M,N 分别是AD,PB 中点.(1)证明:PD ⊥平面ABCD ;(2)求MN 与平面PDA 所成角的正弦值. 15.在ΔABC 中,内角A,B,C 所对的边分别为a,b,c ,已知b 2+c 2−a 2=accosC +c 2cosA . (1)求角A 的大小; (2)若ΔABC 的面积S ΔABC =25√34,且a =5,求sinB +sinC . 16.如图,直线AQ ⊥平面α,直线AQ ⊥平行四边形,四棱锥的顶点P 在平面α上,AB =√7,AD =√3,AD ⊥DB ,AC ∩BD =O,OP//AQ,AQ =2,M,N 分别是AQ 与CD 的中点. (1)求证:MN//平面QBC ; (2)求二面角M −CB −Q 的余弦值. 17.如图,椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的左右焦点分别为F 1,F 2,离心率为√32,过抛物线C 2:x 2=4by 焦点F 的直线交抛物线于M,N 两点,当|MF|=74时,M 点在x 轴上的射影为F 1,连接NO,MO)并延长分别交C 1于A,B 两点,连接AB ,ΔOMN 与ΔOAB 的面积分别记为S ΔOMN ,S ΔOAB ,设λ= S ΔOMN S ΔOAB . (1)求椭圆C 1和抛物线C 2的方程; (2)求λ的取值范围. 18.已知函数f(x)=ax 32−lnx −23的图象的一条切线为x 轴.拼搏的你,背影很美!(1)求实数a的值;(2)令g(x)=|f(x)+f′(x)|,若存在不相等的两个实数x1,x2满足g(x1)=g(x2),求证:x1x2<1.三、填空题19.已知向量m⃑⃑ ,n⃑夹角为600,且|m⃑⃑ |=1,|2m⃑⃑ +n⃑ |=√10,则|n⃑ |=_______.20.已知直三棱柱ABC−A1B1C1中,∠ABC=1200,AB=2,BC=CC1=1,则异面直线AB1与BC1所成角的余弦值为_______.21.某校毕业典礼由6个节目组成,考虑整体效果,对节目演出顺序有如下要求:节目甲必须排在前三位,且节目丙、丁必须排在一起,则该校毕业典礼节目演出顺序的编排方案共有______种.22.三棱锥P−ABC中,PA⊥平面ABC,ΔABC为正三角形,外接球表面积为12π,则三棱锥P−ABC的体积V P−ABC的最大值为______.努力的你,未来可期!拼搏的你,背影很美!2018—2019学年河北省衡水中学高三年级上学期四调考试数学(理)试题数学 答 案参考答案1.C【解析】分析:逐一判断每个命题的真假,得到正确命题的个数.详解:对于①,由于两条平行直线确定一个平面,所以梯形可以确定一个平面,所以该命题是真命题;对于②,两条直线和第三条直线所成的角相等,则这两条直线平行或异面或相交,所以该命题是假命题;对于③,两两相交的三条直线最多可以确定三个平面,是真命题;对于④,如果两个平面有三个公共点,则这两个平面相交或重合,所以该命题是假命题.故答案为:C.点睛:(1)本题主要考查空间直线平面的位置关系,意在考查学生对这些基础知识的掌握水平和空间想象能力.(2)对于类似这种空间直线平面位置关系的命题的判断,一般可以利用举反例的方法和直接证明法,大家要灵活选择方法判断.2.C【解析】【分析】利用等差数列前n 项和公式,代入S 8=4S 4即可求出a 1=12,再利用等差数列通项公式就能算出a 4.【详解】∵{a n }是公差为1的等差数列,S 8=4S 4,∴8a 1+8×7×12=4×(4a 1+4×3×12)解得a 1=12,则a 4=12+3×1=72,故选C.【点睛】本题考查等差数列的通项公式及其前n 项和公式的运用,是基础题。

【全国百强校】河北省衡水中学2017届高三上学期四调考试理数试题解析(解析版)

【全国百强校】河北省衡水中学2017届高三上学期四调考试理数试题解析(解析版)

河北省衡水中学2017届高三上学期四调考试理科数学试题第Ⅰ卷(选择题 共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}21log A x N x k =∈<<,集合A 中至少有3个元素,则( ) A .8k > B .8k ≥ C .16k > D .16k ≥ 【答案】C考点:1.集合的运算;2.对数函数的性质. 2. 若()1z i i +=,则z 等于( )A .1BC .2D .12【答案】C 【解析】试题分析:由()1z i i +=得()()()11111122i i i z i i i i -===+++-,所以2z ==,故选C. 考点:1.复数相关的概念;2.复数的运算.3. 在明朝程大位《算法统宗》中有这样的一首歌谣:“远看巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”这首古诗描述的这个宝塔其古称浮屠,本题说它一共有7层,每层悬挂的红灯数是上一层的2倍,共有381盏灯,问塔顶有几盏灯?( ) A .5 B .6 C .4 D .3 【答案】D 【解析】试题分析:由题意可知,每层悬挂的灯数从上到下依次构成比差数列,公比为2,设顶层的灯数为1a ,则77111(12)(2112738112a a a -==--)=,解之得13a =,故选D.考点:1.数学文化;2.等比数列的性质与求和.4. 已知双曲线()2222:10 0x y C a b a b-=>>,,则C 的渐近线方程为( ) A .14y x =± B .13y x =± C.12y x =± D .y x =±【答案】C考点:双曲线的标准议程与几何性质.5. 执行如图所示的程序框图,则输出的结果为( )A .4B .9 C.7 D .5 【答案】B 【解析】试题分析:模拟算法,开始:输入0,0,1T S n ===;2,9(11)18,123,T S n T S ==+==+=≥不成立; 328,9(31)36,325,T S n T S ===+==+=≥不成立; 5232,9(51)54,527,T S n T S ===+==+=≥不成立; 72128,9(71)63,729,T S n T S ===+==+=≥成立;输出9n =,结束得算法.故选B.考点:程序框图.6. 已知函数()()()cos 0f x A x ωϕω=+>的部分图象如图所示,下面结论错误的是( )A .函数()f x 的最小正周期为23πB .函数()f x 的图象可由()()cos g x A x ω=的图象向右平移12π个单位得到 C.函数()f x 的图象关于直线12x π=对称D .函数()f x 在区间 42ππ⎛⎫ ⎪⎝⎭,上单调递增【答案】D考点:三角函数的图象和性质.7. 德国著名数学家狄利克雷在数学领域成就显著,以其名命名的函数() 1 0 x f x x ⎧=⎨⎩,为有理数,为无理数,称为狄利克雷函数,则关于函数()f x 有以下四个命题: ①()()1f f x =; ②函数()f x 是偶函数;③任意一个非零有理数T ,()()f x T f x +=对任意x R ∈恒成立;④存在三个点()()()()()()112233 A x f x B x f x C x f x ,,,,,,使得ABC △为等边三角形.其中真命题的个数是( )A .4B .3 C.2 D .1 【答案】A考点:1.函数的奇偶性;2.函数的周期性;3.分段函数的表示与求值. 8. 某几何体的三视图如图所示,则该几何体的体积为( )A .10B .20 C.40 D .60 【答案】B 【解析】试题分析:由三视图可知该几何体的直观图如下图所示,且三角形ABC 是以角A 为直角的直角三角形,4,3AB AC ==,从而5BC =,又5BD =,且BD ⊥平面ABC ,故四边形BCED 中边长为5的正方形,过A 作AH BC ⊥于H ,由易知AH ⊥平面BCED ,在直角三角形ABC 中可求得125AH =,从而ABCD 11125520335A BCED V V S AH -==⨯⨯=⨯⨯⨯=正方形,故选B.考点:1.三视图;2.多面体和体积.9. 已知A 、B 是椭圆()222210x y a b a b +=>>长轴的两个端点,M 、N 是椭圆上关于x 轴对称的两点,直线AM 、BN 的斜率分别为()1212 0k k k k≠,,则12k k +的最小值为( )A .1 BD【答案】A考点:1.双曲线的标准方程与几何性质;2.基本不等式;3.斜率公式.【名师点睛】本题考查双曲线的标准方程与几何性质、基本不等式、斜率公式,属中档题;双曲线的标准方程与几何性质是高考的热点,特别是双曲线的性质,几乎每年均有涉及,主要以选择题、填空题为主,解题时,应利用图形,挖掘题目中的隐含条件,结合图形求解.10. 在棱长为6的正方体1111ABCD A B C D -中,M 是BC 的中点,点P 是面11DCC D 所在的平面内的动点,且满足APD MPC ∠=∠,则三棱锥P BCD -的体积最大值是( )A .36B .24 D . 【答案】A考点:1.线面垂直的判定与性质;2.轨迹方程的求法;3.多面体的体积.11. 已知函数()()()3ln 1 01 1 0x x f x x x -<⎧⎪=⎨-+≥⎪⎩,,,若()f x ax ≥恒成立,则实数a 的取值范围是( ) A .20 3⎡⎤⎢⎥⎣⎦,B .30 4⎡⎤⎢⎥⎣⎦, C.[]0 1, D .30 2⎡⎤⎢⎥⎣⎦, 【答案】B 【解析】试题分析:在同一坐标系内作出函数()()()3ln 1 01 1 0x x f x x x -<⎧⎪=⎨-+≥⎪⎩,,与函数y ax =和图象,通过图象可知,当直线y ax =绕着原点从x 轴旋转到与图中直线l 重合时,符合题意,当0x >时,2()3(1)f x x '=-,设直线l与函数()y f x =的切点为00(,)P x y ,则3200000(1)3(1)y x x x x --==,解之得032x =,所以直线l 的斜率2333(1)24k =⨯-=,所以a 的取值范围为30 4⎡⎤⎢⎥⎣⎦,,故选B.考点:1.函数与不等式;2.导数的几何意义.【名师点睛】本题考查函数与不等式、导数的几何意义,属中档题;导数的几何意义是每年高考的必考内容,利用导数解决不等式恒成立问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的范围;或参变分离,构造函数,直接把问题转化为函数的最值问题;或通过数列结合解题.12. 已知过抛物线()2:20G y px p =>焦点F 的直线l 与抛物线G 交于M 、N 两点(M 在x 轴上方),满足3MF FN =,163MN =,则以M 为圆心且与抛物线准线相切的圆的标准方程为( )A .2211633x y ⎛⎛⎫-+= ⎪ ⎝⎭⎝⎭ B .2211633x y ⎛⎛⎫-+= ⎪ ⎝⎭⎝⎭C.()(22316x y -+-= D .()(22316x y -+=【答案】C考点:1.抛物线的标准方程与几何性质;2.直线与抛物线的位置关系;2.圆的标准方程.【名师点睛】本题考查抛物线的标准方程与几何性质、直线与抛物线的位置关系、圆的标准方程,属难题;在解抛物线有关问题时,凡涉及抛物线上的点到焦点的距离时,一般要运用定义转化为到准线的距离处理;抛物线的焦点弦一直是高考的热点,对于焦点弦的性质应牢固掌握.第Ⅱ卷(非选择题 共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 若x 、y 满足约束条件10040x x y x y -≥⎧⎪-≤⎨⎪+-≤⎩,则1y x -的最大值为 .【答案】2考点:线性规划.14. 在ABC △中, 3 5AB AC ==,,若O 为ABC △外接圆的圆心(即满足OA OB OC ==),则AO BC ⋅的值为 . 【答案】8考点:数量积的几何运算.【名师点睛】本题考查数量积的几何运算,属中档题;平面向量的数量积有两种运算,一是依据长度与夹角,即数量积的几何意义运算,一是利用坐标运算,本题充分利用向量线性运算的几何意义与数量积的几何意义进行运算,运算量不大,考查子学生逻辑思维能力,体现了数形结合的数学思想. 15. 已知数列{}n a 的各项均为正数,11142 n n n n a a a a a ++=-=+,,若数列11n n a a -⎧⎫⎨⎬+⎩⎭的前n 项和为5,则n = .【答案】120 【解析】试题分析:数列11n n a a -⎧⎫⎨⎬+⎩⎭的前n 项和为321121211223111154444n n n a a a a a a a a a a a a a a +-----+++=++==+++,所以122n a +=, 又114 n n n na a a a ++-=+,所以221 4n n a a +-=,由此可得22211444,2244,120n a a n n n n +=+=+∴=+=,即应填120.考点:1.数列求和;2.累和法求数列通项.【名师点睛】本题考查数列求和,累和法求数列通项,属中档题;由数列的递推公式求通项公式时,若递推关系为a n +1=a n +f (n )或a n +1=f (n )·a n ,则可以分别通过累加、累乘法求得通项公式,另外,通过迭代法也可以求得上面两类数列的通项公式,数列求和的常用方法有倒序相加法,错位相减法,裂项相消法,分组求和法,并项求和法等,可根据通项特点进行选用.16. 过抛物线()220y px p =>的焦点F 的直线l 与抛物线在第一象限的交点为A ,与抛物线的准线的的交点为B ,点A 在抛物线的准线上的射影为C ,若 48AF FB BA BC =⋅=,,则抛物线的方程为 . 【答案】24y x =考点:1.抛物线的标准方程与几何性质;2.向量数量积的几何意义.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. (本小题满分12分)在ABC △中,内角A 、B 、C 所对的边分别为 a b c ,,,已知 4 6 2b c C B ===,,. (1)求cos B 的值; (2)求ABC △的面积.【答案】(1)34;(2.试题解析:(1)在ABC △中,sin sin b c B C =,因为 4 6 2b c C B ===,,,所以46sin sin 2B B=,即46sin 2sin cos B B B =,又sin 0B ≠,∴3cos 4B =.(2)由(1)知3cos 4B =,从而sin B =.因此sin sin 22sin cos C B B B ===21cos cos22cos 18C B B ==-=.所以()()13sin sin sin sin cos cos sin 84A B C B C B C B C π=--=+=+=+=所以ABC △的面积为1462⨯⨯. 考点:1.正弦定理;2.三角恒等变换;3.三角形内角和与三角形面积公式.【名师点睛】本题考查正弦定理、三角恒等变换、三角形内角和与三角形面积公式,属中档题. 正、余弦定理是揭示三角形边角关系的重要定理,直接运用正弦定理解决一类已知三角形两边及一角对边求其它元素,或已知两边及一边对角求其它元素的问题,这时要讨论三角形解的个数问题;利用余弦定理可以快捷求第三边直接运用余弦定理解决一类已知三角形两边及夹角求第三边或者是已知三个边求角的问题;知道两边和其中一边的对角,利用余弦定理可以快捷求第三边. 18. (本小题满分12分)如图所示,在三棱柱111ABC A B C -中,11AA B B 为正方形,11BB C C 为菱形,1160BB C ∠=︒,平面11AA B B ⊥平面11BB C C .(1)求证:11B C AC ⊥;(2)设点E 、F 分别是1B C ,1AA 的中点,试判断直线EF 与平面ABC 的位置关系,并说明理由; (3)求二面角1B AC C --的余弦值.【答案】(1)见解析;(2) EF ∥平面ABC ;.试题解析:(1)连接1BC ,在正方形11ABB A 中,1AB BB ⊥, 因为平面11AA B B ⊥平面11BB C C ,平面11AA B B平面111BB C C BB =,AB ⊂平面11ABB A ,所以AB ⊥平面11BB C C ,因为1B C ⊥平面11BB C C ,所以1AB B C ⊥.在菱形11BB C C 中,11BC B C ⊥,因为1BC ⊥面1ABC ,AB ⊥平面1ABC ,1BC AB B =,所以1B C ⊥平面1ABC ,因为1AC ⊥平面1ABC ,所以11B C AC ⊥.(2)EF ∥平面ABC ,理由如下:取BC 的中点G ,连接GE 、GA ,因为E 是1B C 的中点,所以1GE BB ∥,且112GE BB =,因为F 是 1AA 的中点,所以112AF AA =. 在正方形11ABB A 中,1111 AA BB AA BB =∥,,所以GE AF ∥,且GE AF =. ∴四边形GEFA 为平行四边形,所以EF GA ∥. 因为EF ABC ⊄平面,GA ABC ⊂平面, 所以EF ABC ∥平面.(3)在平面11BB C C 内过点B 作1Bz BB ⊥,由(1)可知:11AB BB C C ⊥平面,以点B 为坐标原点,分别以BA 、1BB 所在的直线为x 、y 轴,建立如图所示的空间直角坐标系B xyz -,设()2 0 0A ,,,则()10 2 0B ,,.在菱形11BB C C 中,1160BB C ∠=︒,所以(0 1 C -,,(10 1 C ,. 设平面1ACC 的一个法向量为() 1x y =n ,,.因为100n AC n CC ⎧⋅=⎪⎨⋅=⎪⎩即()(()() 1 2 1 0 10 2 00x y x y ⎧⋅--=⎪⎨⋅=⎪⎩,,,,,,,,所以0x y ⎧=⎪⎨⎪=⎩0 1n ⎫=⎪⎪⎝⎭,,, 由(1)可知:1CB 是平面1ABC 的一个法向量.所以(1110 10 3 cos nCB n CB n CB ⎛⎫⋅ ⎪ ⎪⋅⎝<>===⋅,,,,,,所以二面角1B AC C --. 考点:1.面面垂直的判定与性质;2.线面平行、垂直的判定与性质;3.空间向量的应用.【名师点睛】本题考查.面面垂直的判定与性质、线面平行、垂直的判定与性质及空间向量的应用,属中档题;解答空间几何体中的平行、垂直关系时,一般要根据已知条件把空间中的线线、线面、面面之间的平行、垂直关系进行转化,转化时要正确运用有关的定理,找出足够的条件进行推理;求二面角,则通过求两个半平面的法向量的夹角间接求解.此时建立恰当的空间直角坐标系以及正确求出各点的坐标是解题的关键所在.19. (本小题满分12分)如图,在平面直角坐标系xOy 中,已知()00 R x y ,是椭圆22:12412x y C +=上的一点,从原点O 向圆()()2200:8R x x y y -+-=作两条切线,分别交椭圆于P ,Q .(1)若R 点在第一象限,且直线OP ,OQ 互相垂直,求圆R 的方程;(2)若直线OP ,OQ 的斜率存在,并记为12 k k ,,求12k k 的值; (3)试问22OP OQ +是否为定值?若是,求出该值;若不是,说明理由. 【答案】(1)((228x y -+-=;(2)12-;(3)36.试题解析:(1)由圆R的方程知圆R的半径r=OP,OQ互相垂直,且和圆R相切,所以4OR==,即220016x y+=①又点R在椭圆C上,所以220012412x y+=②联立①②,解得0xy⎧=⎪⎨=⎪⎩R的方程为((228x y-+-=.(2)因为直线1:OP y k x=和2:OQ y k x=都与圆R==212288yk kx-⋅=-,因为点()00R x y,在椭圆C上,所以220012412x y+=,即22001122y x=-,所以2122141228xk kx-==--.(3)方法一(1)当直线OP、OQ不落在坐标轴上时,设()11P x y,,()22Q x y,,由(2)知12210k k+=,所以121221y yx x=,故2222121214y y x x=,因为()11P x y,,()22Q x y,,在椭圆C上,所以221112412x y+=,222212412x y+=,即22111122y x=-,22221122y x=-,所以222212121111212224x x x x⎛⎫⎛⎫--=⎪⎪⎝⎭⎝⎭,整理得221224x x+=,所以222212121112121222y y x x⎛⎫⎛⎫+=-+-=⎪ ⎪⎝⎭⎝⎭,所以()()22222222221122121236OP OQ x y x y x x y y +=+++=+++=.(2)当直线OP 、OQ 落在坐标轴上时,显然有2236OP OQ +=. 综上:2236OP OQ +=.考点:1.椭圆的标准方程与几何性质;2.圆的标准方程;3.直线与圆的位置关系. 20. (本小题满分12分)设椭圆()2222:10x y C a b a b +=>>的左、右焦点分别为1F 、2F ,上顶点为A ,过A 与2AF 垂直的直线交x 轴负半轴于Q 点,且12220F F F Q +=. (1)求椭圆C 的离心率;(2)若过A 、Q 、2F 三点的圆恰好与直线30x --=相切,求椭圆C 的方程;(3)过2F 的直线l 与(2)中椭圆交于不同的两点M 、N ,则1F MN △的内切圆的面积是否存在最大值?若存在,求出这个最大值及此时的直线方程;若不存在,请说明理由.【答案】(1)12;(2) 22143x y +=;(3)1F MN △的内切圆的面积的最大值为916π,此时直线l 的方程为1x =.(3)设1F MN △的内切圆的半径为R ,则1F MN △的周长为48a =,由此可得112121212F MN S F F y y y y =⋅-=-△,设直线l 的方程为1x my =+,与椭圆方程联立得()2234690my my ++-=,由根与系数关系代入112F MNS y y =-=△,换元令t =()12121211313F MN t S t t t t==≥-+△,可知当1t =时,14F MN S R =△有最大值3,从而求出内切圆面积的最大值与相应的直线方程即可.试题解析:(1)由题()0 A b ,,1F 为2QF 的中点.设()()12 0 0F c F c -,,,,则()3 0Q c -,, ()3 AQ c b =--,,()2 AF c b =-,,由题2AQ AF ⊥,即22230AQ AF c b ⋅=-+=,∴()22230c a c -+-=即224a c =,∴12c e a ==. (2)由题2Rt QAF △外接圆圆心为斜边2QF 的中点()1 0F c -,,半径2r c =, ∵由题2Rt QAF △外接圆与直线30x -=相切,∴d r =,即322c c --=,即34c c +=,∴1c =,22a c ==,b =C 的方程为22143x y +=.(3)设()11 M x y ,,()22 N x y ,,由题12 y y ,异号,设1F MN △的内切圆的半径为R ,则1F MN △的周长为48a =,()111142F MN S MN F M F N R R =++=△, 因此要使1F MN △内切圆的面积最大,只需R 最大,此时1F MN S △也最大,112121212F MN S F F y y y y =⋅-=-△, 由题知,直线l 的斜率不为零,可设直线l 的方程为1x my =+, 由221143x my x y =+⎧⎪⎨+=⎪⎩得()2234690m y my ++-=,由韦达定理得122634m y y m -+=+,122934y y m -=+,(0m R ∆>∈⇒)112F MN S y y =-=△令t =1t ≥,()12121211313F MN t S t t t t==≥-+△, 当1t =时,14F MN S R =△有最大值3,此时,0m =,max 34R =,故1F MN △的内切圆的面积的最大值为916π,此时直线l 的方程为1x =. 考点:1.椭圆的标准方程与几何性质;2.直线与椭圆的位置关系;3.直线与圆的位置关系. 21. (本小题满分12分) 已知0t >,设函数()()3231312t f x x x tx +=-++.(1)存在()00 2x ∈,,使得()0f x 是()f x 在[]0 2,上的最大值,求t 的取值范围; (2)()2x f x xe m ≤-+对任意[0 )x ∈+∞,恒成立时,m 的最大值为1,求t 的取值范围.【答案】(1)5[ )3+∞,;(2) 1(0 ]3,.(2)()()()323223131313123131222x x x t t t x x tx xe m m xe x x tx x e x x t +++⎛⎫-++≤-+⇔≤-+-+=-+-+ ⎪⎝⎭,构造函数()()23132x t g x e x x t +=-+-,道m 的最大值为1,等价于()()231302x t g x e x x t +=-+-≥在区间[0 )+∞,上恒成立,由于()0130g t =-≥,则103t <≤,此时()0g x '>恒成立,即()g x 在区间[0 )+∞,上单调递增,符合题意.试题解析:(1)()()()()2'331331f x x t x t x x t =-++=--,①当01t <<时,()f x 在()0 t ,上单调递增,在() 1t ,单调递减,在()1 2,单调递增, ∴()()2f t f ≥,由()()2f t f ≥,得3234t t -+≥在01t <<时无解, ②当1t =时,不合题意;③当12t <<时,()f x 在()0 1,单调递增,在()1 t ,递减,在() 2t ,单调递增, ∴()()1212f f t ⎧≥⎪⎨<<⎪⎩即1332212t t ⎧+≥⎪⎨⎪<<⎩,∴523t ≤<,④当2t ≥时,()f x 在()0 1,单调递增,在()1 2,单调递减,满足条件, 综上所述:5[ )3t ∈+∞,时,存在()00 2x ∈,,使得()0f x 是()f x 在[]0 2,上的最大值.∴()()0130g x g t ≥=-≥,满足条件,∴t 的取值范围是1(0 ]3,.考点:1.导数与函数的单调性、极值,最值;2.函数与不等式.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. (本小题满分10分)选修4-4:坐标系与参数方程已知圆锥曲线2cos :x C y αα=⎧⎪⎨=⎪⎩(α为参数)和定点(0 A ,1F 、2F 是此圆锥曲线的左、右焦点,以原点O 为极点,以x 轴的正半轴为极轴建立极坐标系. (1)求直线2AF 的直角坐标方程;(2)经过点1F 且与直线2AF 垂直的直线l 交此圆锥曲线于M 、N 两点,求12MF NF -的值.【答案】0y +-=;(2试题解析:(1)曲线2cos :x C y αα=⎧⎪⎨=⎪⎩可化为22143x y +=,其轨迹为椭圆,焦点为()1 1 0F -,,()21 0F ,.经过(0 A 和()21 0F ,的直线方程为11x =0y +. (2)由(1)知,直线2AF的斜率为2l AF ⊥,所以l,倾斜角为30︒, 所以l的参数方程为112x y t ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数). 代入椭圆C的方程中,得213360t --=. 因为 M N ,在点1F的两侧,所以1112MF NF t t -=+=考点:1.参数方程与普通方程的互化;2.直线参数方程的应用. 23. (本小题满分10分)选修4-5:不等式选讲 设()34f x x x =-+-. (1)解不等式()2f x ≤;(2)若存在实数x 满足()1f x ax ≤-,试求实数a 的取值范围. 【答案】(1) 59 22⎡⎤⎢⎥⎣⎦,;(2)()1 2[ )2-∞-+∞,,【解析】试题分析:(1)由绝对值的意义去掉绝对值符号,将函数()f x 表示成分段函数的形式,作出函数()f x 的图象,数形结合可得到不等式的解集;(2)在同一坐标系内作出函数()yf x =与函数1y ax =-的图象,数形结合可求出a 的范围.(2)函数1y ax =-的图象是过点()0 1-,的直线, 当且仅当函数()y f x =与直线1y ax =-有公共点时,存在题设的x .由图象知,a 的取值范围为()12[ )2-∞-+∞,,.考点:1.含绝对值不等式的解法;2.分段函数的表示与作图;3.函数与不等式.。

【全国百强校word】河北省衡水中学2017届高三上学期四调考试理数试题

【全国百强校word】河北省衡水中学2017届高三上学期四调考试理数试题

其中真命题的个数是(

A. 4 B . 3 C.2 D
.1
8. 某几何体的三视图如图所示,则该几何体的体积为(

A. 10
B
.20 C.40
D
. 60
9. 已知
A 、B 是椭圆
x2 a2
y2 b 2 1 a b 0 长轴的两个端点, M 、N 是椭圆上关于 x 轴对称的两点, 直线 AM 、
BN 的斜率分别为 k1 ,k2 k1k 2 0 ,若椭圆的离心率为
D . 18 3
ln 1 x ,x 0
11. 已知函数 f x
3
,若 f x ax 恒成立,则实数 a 的取值范围是(

x 1 1 ,x 0
A. 0 , 2 3
B
. 0 ,3
4
C.
0 ,1
D
. 0,3
2
12. 已知过抛物线 G : y2 2 px p 0 焦点 F 的直线 l 与抛物线 G 交于 M 、 N 两点( M 在 x 轴上方),满足
x2 是椭圆 C :
y2 1 上的一点,从原点 O 向圆
24 12
2
2
R: x x0
y y0 8 作两条切线,分别交椭圆于 P , Q .
( 1)若 R 点在第一象限,且直线 OP , OQ 互相垂直,求圆 R 的方程;
( 2)若直线 OP , OQ 的斜率存在,并记为 k1 ,k2 ,求 k1 ,k2 的值;
OR
2r 4 ,即 x02 y02 16 ①
2
2
又点 R 在椭圆 C 上,所以 x0 y0 1 ②
24 12
联立①②,解得
x0
22 ,所以,所求圆

2017-2018学年河北省衡水中学高三(上)第二次调研数学试卷(理科)

2017-2018学年河北省衡水中学高三(上)第二次调研数学试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的■1. (5 分)已知集合A={x| 丄v2x<2}, B={x| ln (x-丄)w 0},则A A(?R B)=2 2()A. ?B. (- 1,」C. L.,1)D. (- 1, 1]2.(5分)已知i为虚数单位,:为复数z的共轭复数,若■■ - :':■■■',则z=()A. 1+iB. 1 - iC. 3+iD. 3 - i3. (5分)设正项等比数列{a n}的前n项和为S n,且一v 1,若a3+a5=20,a3a5=64,J则S4=()A. 63 或126B. 252C. 120D. 634. (5分)(::+x)(1 - -)4的展开式中x的系数是()xA. 1B. 2C. 3D. 125. (5 分)已知△ ABC中,tanA (sinC— sinB)=cosB— cosC,则厶ABC为()A. 等腰三角形B. Z A=60°的三角形C•等腰三角形或/ A=60°的三角形D.等腰直角三角形6. (5分)已知等差数列{a n}的公差d z0,且a1, a3, a13成等比数列,若a1=1, S n是数列{a n}前n项的和,则(n€ N+)的最小值为()"n+3A. 4B. 3C. 2 — 2D.'7. (5分)如图,网格纸上小正方形的边长为1,粗线画出的是某三棱锥的三视图,则该三棱锥的体积为()8. (5分)已知函数f(x) =asinx+cosx (a为常数,x€ R)的图象关于直线-6 对称,则函数g (x) =sinx+acosx的图象( )A.关于点「一‘』对称B.关于点:. 对称C•关于直线…对称D.关于直线…对称3 6ax-y+2^09. (5分)设a>0,若关于x, y的不等式组r+y-2>0,表示的可行域与圆(xx-2<0-2) 2+y2=9存在公共点,则z=x+2y的最大值的取值范围为( )A. [8, 10]B. (6, +x)C. (6, 8]D. [8, +^)10. (5分)已知函数f (x) =2sin( 妨+1 (®>0, | 三今),其图象与直线y=- 1相邻两个交点的距离为n,若f (x)> 1对?x€(-2L,兰)恒成立,12 3则©的取值范围是( )71 开if r n 开FC 「兀开「兀兀rA「A. 「B・C D.11. (5分)已知定义在R上的奇函数f(x)的导函数为f'(x),当x v 0时,f(x)满足2f (x) +xf ( x)v xf (x),则f (x)在R上的零点个数为( )A. 1B. 3C. 5D. 1 或3it Ins -2s,龙〉012. (5分)已知函数f (x) = 2 3 —的图象上有且仅有四个不同的点关X + 豆X, X乂U于直线y=- 1的对称点在y=kx- 1的图象上,则实数k的取值范围是( ) A. J B.:=二1 C. 「J D. —. ■.二、填空题(每题5分,满分20分,将答案填在答题纸上)13. (5 分)已知sin (旦n+ 0) +2sin (»n— 0) =0,则tan + 0)= .5 10 514. (5分)已知锐角厶ABC的外接圆O的半径为1,Z B=,贝U 一:•对的取值6范围为_______ .15. (5分)数列{&}满足亠广江:厂--—厂亠则数列{a n}的前100项和为_______ .16. (5分)函数y=f (x)图象上不同两点A (X1, y1), B (X2, y2)处的切线的斜率分别是k A, k B,规定© (A, B)=叫曲线y=f (x)在点A与点B之|AB|间的弯曲度”给出以下命题:(1)函数y=x3- x2+1图象上两点A、B的横坐标分别为1, 2,则(((A, B)>(2)存在这样的函数,图象上任意两点之间的弯曲度”为常数;(3)设点A、B是抛物线,y=:A1上不同的两点,贝U © (A, B)< 2;(4)设曲线y=e x上不同两点A (刘,y) B (沁,y2),且- X2=1,若t? ©(A,B)v 1恒成立,则实数t的取值范围是(-%, 1);以上正确命题的序号为________ (写出所有正确的)三、解答题(本大题共5小题,共70分■解答应写出文字说明、证明过程或演算步骤.)17. (12分)如图,在△ ABC中,/ B==, D为边BC上的点,E为AD上的点,且AE=8, AC=4 厂,/ CED=.4(1)求CE的长(2)若CD=5,求cos/ DAB 的值.18. (12分)如图所示,A, B分别是单位圆与x轴、y轴正半轴的交点,点P在单位圆上,/ AOP羽(O V 0< n), C点坐标为(-2, 0),平行四边形OAQP的面积为S.(1)求771?丘+s的最大值;(2)若CB// OP,求sin (29- 一)的值.619. (12分)已知数列{a n}满足对任意的n€ N*都有a n>0, 且aj+a23+-+a n3=2(a[+a2+・・+a n).(1)求数列{a n}的通项公式;(2)设数列的前n项和为S n,不等式s n > 仁(1-a)式对任意3 a的正整数n恒成立,求实数a的取值范围..20. (12分)已知函数f (x) =lnx-h.y71, a€ R.(1)求函数f (x)的单调区间;(2)若关于x的不等式f (x)<( a- 1) x- 1恒成立,求整数a的最小值.21. (12 分)已知函数f(x) =axe x-( a- 1) (x+1) 2(其中a€ R, e 为自然对数的底数,e=2.718128…).(1)若f (x)仅有一个极值点,求a的取值范围;(2)证明:当■<-,时,f (x)有两个零点X1, X2,且-3<X1+X2<- 2.选做题:请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]f y" 7 广【Hi u e22. (10分)将圆一'二(9为参数)上的每一点的横坐标保持不变, 标变为原纵坐来的1倍,得到曲线C.(1)求出C的普通方程;(2)设A, B是曲线C上的任意两点,且0A丄0B,求的值.|OAP |0B|2[选修4-5:不等式选讲]23. 已知函数f(x) =|x-2|+| 2x+a| , a€ R.(1)当a=1时,解不等式f (x)> 5;(2)若存在x o满足f (x o) +|x°-2| v3,求a的取值范围.20仃-2018学年河北省衡水中学高三(上)第二次调研数学试卷(理科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的■1. (5 分)已知集合A={x|*v2x< 2} , B={x| ln (x —0},贝U A A(?R B)= £匕()A. ? B•(- 1,,[] C. [「,,1)D. (—1, 1]【解答】解:T A={x| 丄v2x<2} ={x| — 1 v x< 1},B={x| In (x —丄)W0}={x|丄v2 2 2x w :},2s•-?R B={X|X>1或x「. },则A A(?R B) = (—1,-].故选:B.2. (5分)已知i为虚数单位,二为复数z的共轭复数,若,则z=()A. 1+iB. 1 —iC. 3+iD. 3—i【解答】解:设z=a+bi (a,b € R),若,则a+bi+2 (a- bi)=9- i,即为3a—bi=9 —i,即3a=9, b=1,解得a=3,b=1,则z=3+i,故选:C.3. (5分)设正项等比数列{a n}的前n项和为S n,且亠一v 1,若a3+a5=20,a3a5=64,a n则S4=()A. 63 或126B. 252C. 120D. 63【解答】解:•••—< 1,a n••• 0v q v 1,-a3a5=64, a3+a5=209•a s和a s为方程x2- 20x+64=0的两根,••• a n>0, 0v q v 1,•- a3 > a5,•a3=16, a5=4,•q二,2--a1 =64, a2=32, a3=16, a4=8,•B=a1+a2+a3+a4=64+32+16+8=120,故选:C4. (5分)(丄+x)(1 - -)4的展开式中x的系数是()xA. 1B. 2C. 3D. 12【解答】解=(丄+x)(1 - 4 ■ +6x- 4x :. +x2),X X•展开式中x的系数为1X 1+2X仁3.故答案为:C.5. (5 分)已知△ ABC中,tanA (sinC— sinB)=cosB— cosC,则厶ABC为()A. 等腰三角形B. Z A=60°的三角形C•等腰三角形或/ A=60°的三角形D.等腰直角三角形【解答】解:tanA (sinC— sinB) =cosB— cosC,整理得:, cosA贝U: sinAsinC— sinAsinB=cosAcos- cosAcosC sinAsin C+cosAcosC=s inAsin BcosAcosB即:cos (A- C) =cos (A- B),贝U:①A-C=A- B,解得:B=C所以:△ ABC是等腰三角形.②A- C=B- A,解得:2A=B^C,由于:A+B+C=180, 则:A=60°,所以:△ ABC是/ A=60°的三角形.综上所述:△ ABC是等腰三角形或/ A=60°的三角形.故选:C6. (5分)已知等差数列{a n}的公差d M0,且a i, a3, a i3成等比数列,若a i=1, S h是数列{a n}前n项的和,则 * " (n€ N+)的最小值为()订3A. 4B. 3C. 2 =- 2D. '2【解答】解::a1=1, a1、a3、盹成等比数列,•••( 1+2d) 2=1+12d.得d=2或d=0 (舍去),--On =2n - 1,••• sn=JU=n2,片+3 2n+2令t=n+1,则」廿-2 > 6-2=4%+3 t22^+16当且仅当t=3,即n=2时,•的最小值为4.故选:A.7. (5分)如图,网格纸上小正方形的边长为1,粗线画出的是某三棱锥的三视图,则该三棱锥的体积为()3 33【解答】解:由主视图和侧视图可知三棱锥倒立放置,棱锥的底面ABC水平放置,故三棱锥的高为h=4,结合俯视图可知三棱锥的底面为俯视图中的左上三角形,••• S 底二=4,• v= : =■■.故选:B.8. (5分)已知函数f(x)=asinx+cosx (a为常数,x€ R)的图象关于直线二—6对称,则函数g (x)=sinx+acosx的图象()A.关于点:芈•,对称B.关于点:「斗.门对称C. 关于直线」:一对称D.关于直线).对称3 6【解答】解:•••函数f (x ) =asinx+cosx(a为常数,x € R )的图象关于直线・对称,=f (三),即 仁X^a 」,二a 』^,3 2 2 3Vs . 2A /S . / 71 x=asinx+cosx= - sinx+cosx= sin (x+ ),3 3 3故函数 g (x ) =sinx+acosx=sin+ - cosx= ■- sin (x+ ),3 3 6当x= 时,g (x )=- 为最大值,故A 错误,故g (x )的图象关于直线 3 3 对称,即C 正确. 当x= 时,g (x )=工0,故B 错误. 33当乂=二时,g (x ) =1,不是最值,故g (X )的图象不关于直线x=—对称,排除6 6 D . 故选:C.az-y+2^09. (5分)设a >0,若关于x , y 的不等式组x+y-2>0,表示的可行域与圆(x x-2<0 -2) 2+y 2=9存在公共点,则z=x+2y 的最大值的取值范围为( )A . [8, 10] B. (6, +x )C . (6, 8]D . [8, +^)【解答】解:如图,作出不等式组大致表示的可行域.>1 0圆(x - 2) 2+/=9是以(2, 0)为圆心,以3为半径的圆,而直线ax- y+2=0恒过定点(0, 2),当直线ax- y+2=0过(2, 3)时,a 冷. 数形结合可得a 「[.化目标函数z=x+2y 为y=斗三•-f (0) ••• f(x)由图可知,当目标函数过点(2, 2a+2)时,z 取得最大值为4a+6, ••• a •—,二 z>8.••• z=>+2y 的最大值的取值范围为[8, +x). 故选:D .7110. (5分)已知函数f (x ) =2si n ( 妨+1 ( 0, | <^),其图象与直线y=- 1相邻两个交点的距离为n,若f (x )> 1对?x €(-2L ,匹)恒成立,12 3 则©的取值范围是( )【解答】解:函数f (x ) =2sin (3X©) +1 ( 3> 0, | ©| < ),其图象与直线2y=- 1相邻两个交点的距离为n, 故函数的周期为红=冗,••• 3 =2 f (x ) =2sin (2x+ ©) +1 .若 f (x ) > 1 对? x € (- ,)恒成立,即当 x € (-, 一)时,sin (2x+©) lb 0 lb o> 0恒成立,故有 2k nV 2?(- , ) +©< 2? +©< 2k n +n ,求得 2k n + ©< 2k n +, k €Z ,12 3 6 3结合所给的选项, 故选:D .11. (5分)已知定义在R 上的奇函数f ( x )的导函数为f'(x ),当x < 0时,f ( x ) 满足2f (x ) +xf ( x )< xf (x ),则f (x )在R 上的零点个数为( )A . 1 B. 3C. 5 D . 1 或 3【解答】解:构造函数F (x ) =「]:(x < 0),2x£(芷)丘玄 +K '(x)巳*-兀2£(K )巴* H[2f(x)+xf‘ (x)ixf(x)]= = ‘ ,因为 2f (x ) +xf (x )< xf (x ), x < 0, 所以 F ' (x )> 0,所以F' (x )A .所以函数F (x )在x v 0时是增函数,又 F ( 0) =0 所以当 x v 0, F (x )v F (0) =0成立, 2因为对任意x v 0,二〉0,所以f (x )v 0,e x 由于f (X )是奇函数,所以x >0时f (x )> 0, 即f (x ) =0只有一个根就是0. 故选A .xlnx -2X 3 X 〉023 6 的图象上有且仅有四个不同的点关 x +yx> 尺D于直线y=- 1的对称点在y=kx- 1的图象上,则实数k 的取值范围是( )A. 「一 .B.亠•亠C.「 1. D.1.'/lriK -2X 3 X 〉023 八、的图象上有且仅有四个不同的点关x于直线y=- 1的对称点在y=kx- 1的图象上,而函数y=kx- 1关于直线y=- 1的对称图象为y=- kx - 1,ylnx ~2x, x 〉02 3 / “的图象与y=- kx - 1的图象有且只有四个不同的交点, x +豆尺,X 乞=0 \lnx-2xi 宜〉0 -: 的图象与y=- kx - 1的图象如下, +不垃,工乞易知直线y=- kx - 1恒过点A (0,- 1),设直线 AC 与 y=xlnx- 2x 相切于点 C (x , xlnx - 2x ), y ' =1-1, +L .i d xlnx _2x+l 故 lnx - 1=,x解得,x=1; 故 k AC = - 1 ;设直线AB 与y=x 2+[x 相切于点B (x , x 2+「x ),£ £12. (5分)已知函数f (x )= 【解答】解:•••函数f (x )= ••• f (x)= 作函数f (x )='22 2 解得,x=— 1;故 k AB =- 2+ =-]; 故-1v- k v- 1 , 2故]v k v 1; 2二、填空题(每题5分,满分20分,将答案填在答题纸上)191 197113. (5 分)已知 sin (=n +B) +2sin n — 0) =0,贝U tan + 0) = 2. 5 LU 5 【解答】解:T sin (J n +0) +2si n ( ■ n - 0) =sin ( + 0) —2sin (— 0)=)5 10 510=sin + 0 — 2cos + 0) =0,5 5 ••• sin (+ 0) =2cos (+ 0),二 tan (+ 0) =2,555故答案为:2.14.(5分)已知锐角^ ABC 的外接圆0的半径为1,Z ,则「「的取值 范围为 (3, -【解答】解:如图,O 的半径为1,Z B=「,••• ・亠一, sinA sinC C 厂-.,b二 .,・:=ca?cos =4X__ sin Asi n (〔6 2 6 = •"*.'•. 「 II . ::1<= '二:一 n'=.-.I 「1_'•=•,*:-•••二—二,.••二.二3 2 33 323•「f 「€( 3, — ■ d • 故答案为:(3,二心:).15. (5分)数列{&}满足土广:2让-J _丁」,则数列{an }的前100项 和为 5100.【解答】解:根据题意,数列{a n }满足-,_「,:「 --、I ,则有 a 2=a i +2, a 3= - a 2+4= - a i +2, a 4=a 3+6=— a i +8,则 a=2sinA, c=2sinC C则a什a?+a3+a4=12;同理求得:a5+a6+a7+a8=28, a9+a io+a11+a12=44;100=4X 25,数列{a n}的前100项满足0, S8-0, S2 -S8, ••是以12为首项,16为公差的等差数列,则数列{a n}的前100 项和S=25X 12+ ' ■ X 16=5100;2故答案为:5100.16. (5分)函数y=f (x)图象上不同两点 A (X1, y1), B (X2,目2)处的切线的斜率分别是k A, k B,规定© (A, B) =「叫曲线y=f (x)在点A与点B之I AB |间的弯曲度”给出以下命题:(1)函数y=x3- x2+1图象上两点A、B的横坐标分别为1, 2,则(((A, B) > ~;(2)存在这样的函数,图象上任意两点之间的弯曲度”为常数;(3)设点A、B是抛物线,丫=启1上不同的两点,贝U © (A, B)< 2;(4)设曲线y=e x上不同两点A (刘,y) B (沁,y2),且X1 - X2=1,若t? ©(A,B)v 1恒成立,则实数t的取值范围是(-%, 1);以上正确命题的序号为(2) (3) (写出所有正确的)【解答】解:对于(1),由y=x3- /+1,得y' =3-2x,则:. I 丨,:.二■:,y1=1,y2=5,则1工丨,「1 :" ,,ZA f kJ 呂_ 了# L /八卓、口©(A, B)=汀「,(° 错误;对于(2),常数函数y=1满足图象上任意两点之间的弯曲度”为常数,(2)正确;对于(3),设 A (为,yj , B (X2 , y2), y'=则k A - k B=2x1 - 2x2 , I AB I 二q(冥]-盖2)2 —乂2^) 2=J (肚[一梵2)2[l+(X[ + )<2)2〕正确;对于(4 ),由 y=e ,得 y ' =e , ©( A , B )=匕巧卡七|纠t?(((A , B )v 1恒成立,即二「恒成立,t=1时该式 成立,•••( 4)错误. 故答案为:(2)( 3).三、解答题(本大题共5小题,共70分■解答应写出文字说明、证明过程或演算 步骤.)17 . (12分)如图,在△ ABC 中,/ B==,D 为边BC 上的点,E 为AD 上的点, 且 AE=8, AC=4 ~;,/ CED=. (1)求CE 的长(2)若 CD=5,求 cos / DAB 的值.【解答】(本题满分为12分) 解: (1):m …-丁 -;,••- (1 分)在厶 AEC 中,由余弦定理得 AC 2=A E ?+C E ?- 2AE?CEco / AEC ,••- (2 分):-,…(4 分)• 1 t 二匚'.•••( 5分)I ^A _k 02 I K ] - K 2-(2)在厶CDE 中,由正弦定理得' :',•••(6分)sinZCDE sinZCEDJo• • I 儿••• ■ • '|p1,…(7 分)5•••点D 在边BC 上, •••丄 ,而二二, 5 2CDE 只能为钝角,••- (8 分) •—二],…9 分)•-, ••- (10 分)18. (12分)如图所示,A , B 分别是单位圆与x 轴、y 轴正半轴的交点,点P 在 单位圆上,/ AOP=0 (O V 0< n ), C 点坐标为(-2, 0),平行四边形OAQP 的面 积为S.所以():■.= .;■+ 卜'二(1+cos B, sin 0).又平行四边形OAQP 的面积为10…(12分)0), B (0 , 1). P (cos 0, sin 0),因为四所以⑴? =1+cos 0.(3 分)=||二一「[|£丄sinz^CDEsinn7v V3_W3-3边形OAQP 是平行四边形, 的值.(1)求玉? g +S 的最大值;S=| i ? I '| sin 0=sin 0,所以 0丿? j+S=1+cos 0+sin 0= sin ( 0+ ) +1. (5 分) 4又 O v 9< n, 所以当0=时,丘;?、.i+S 的最大值为 匚+1 . (7 分) 4(2)由题意,知 CB = (2, 1), 0P = (cos B, sin B), 因为 CB// OP,所以 cos 0=2sin O.2 2又 0< 0< n, cos 0+s in 0=1, 解得 sin 0= ■ - , cos 0= ■ ■,5 5 ,cos 2 0=CO £0- sin 2所以 sin (20--) =sin 2 论一 -cos 2 斷 一=;s =_分)19. (12分)已知数列{a n }满足对任意的n € N*都有a n >0, 且 a 13+a 23+-+a n 3= (6+a 2+・・+a n ) 2.(1) 求数列{a n }的通项公式;(2) 设数列 「 I 的前n 项和为S n ,不等式s n > 『(1-a )式对任意5 讣2 3 a 的正整数n 恒成立,求实数a 的取值范围..【解答】解:(1 )va 13+a 23+^ +a n 3= (a 1+a 2+・・+a ) 2,①则有 a 13+a 23+・・+a n 3+.. . - = (a 1+a 2+・・+a n +a n +1)2,② ② -①,得...-二(a 1+a 2+・・+a n +a n +1)2-( a [+a 2+・・+a n ) 2, ••• a n > 0, .-=2 (a 1+a 2+・・+a n ) +an +1,③同样有=2 (a 〔+a 2+…+a n -1)+a n (n 》2),④ ③ -④,得,…■-丄3+什a n .• a n +1 - a n =1,又 a 2- a 1=1,即当 n > 1 时都有 a n +1 - a n =1 ,所以 sin2 0=2sin 0cos.(13•••数列{a n }是首项为1,公差为1的等差数列, 二 Oi=n .⑵由(1)知a n =n,则 s J (】• s n = 一 + 一 + 一 +••+「+ a l a 3务 02二 O v a < 1.20. (12分)已知函数 f (x ) =lnx - -厂,a € R . (1) 求函数f (x )的单调区间;(2) 若关于x 的不等式f (x )<( a - 1) x - 1恒成立,求整数a 的最小值. 【解答】解:(1) -:‘■,ZX函数f (x )的定义域为(0, +X ).当a <0时,f (x )> 0,则f (x )在区间(0, +x)内单调递增; 当a >0时,令f (x ) =0,则—或 -(舍去负值), 当[卜m ;丄时,f (x )>o , f (X )为增函数,J [ (1 - 一)+(]__) +(__])…(丄 2 3 2 4 3 5 n-1n+1丄(1』-^―-^―) 2 2 n+1 n+2 =「-,+ ).4 2 n+1 n+2 s n +1 - s n => O ,•数列{S n }单调递增,• •( S) min =S=丄.3S n > log a (1 - a )对任意正整数n 恒成立,3要使不等式 叫-占)]只要log a ( 1- a).• 1 - a >a , 即 0<a <;.当:―时 ,f (x )v 0, f (x )为减函数.所以当a <0时,f (X )的单调递增区间为(0, +X ),无单调递减区间; 当a >0时,f (x )的单调递增区间为■' .,单调递减区间为I , •:.(2)由 |, ,■ ■ 1 ,i , 得 2 ( lnx+x+1) w a (2x+x 2),因为x >0,所以原命题等价于一[汀二〒"“在区间(0,+x)内恒成立.令h (x ) =2lnx+x ,贝U h (x )在区间(0, +x)内单调递增, 由 h (1) =1>0, -I i i,所以存在唯一:,「厂.1.,使h (刈)=0,即2lnx 0+x o =O,所以当0v X V X o 时,g' (x )> 0, g (x )为增函数, 当x >x 0时,g' (x )V 0, g (x )为减函数,2(ln x n + x n +l) x n + 211所以x=X 0时,/=. =,所以._[;—又:.■' | . 1.,则「一 一乙xo因为a €乙所以a >2, 故整数a 的最小值为2.21. (12 分)已知函数 f (x ) =axe x -( a - 1) (x+1) 2 (其中 a € R, e 为自然对 数的底数,e=2.718128…).(1) 若f (x )仅有一个极值点,求a 的取值范围;(2) 证明:当■■■--亠时,f (x )有两个零点X 1, X 2,且-3V X 1+X 2V-2. 【解答】(1)解:f (x ) =ae X +axg -2 (a - 1) (x+1) = (x+1) (ae x - 2a+2), 由 f (x ) =0 得到 x=- 1 或 ae x - 2a+2=0 (*) 由于f (x )仅有一个极值点, 关于x 的方程(*)必无解, ①当a=0时,(*)无解,符合题意,②当a ^0时,由(* )得亠^-,故由.得O v a < 1,a 曰x z +2x二-2 仗+l)(21nx+Q:,由于这两种情况都有,当X V- 1时,f (x)v 0,于是f (X)为减函数,当x>- 1时,f (x)>0,于是f (x)为增函数,•••仅x=- 1为f (x)的极值点,综上可得a的取值范围是[0,1];(2)证明:由(1)当J…亠时,x=- 1为f (x)的极小值点,2又一「_ I -.J I'..' 对于恒成立,e e ‘-「一I对于J ' :'1恒成立,e 2f (0) =-(a- 1)>0对于l恒成立,a•当-2v x v- 1时,f (x)有一个零点X1,当-1v x v 0时,f (x)有另一个零点X2,即—2v X1 v- 1,- 1 v x2V 0,且■' ■ ■ 1. :■ ■■. ■::■■■: . ; 1' 1:■' ,(#)所以-3v X1+X2<- 1,下面再证明X1+X2<- 2,即证X1 v- 2 —X2,由—1 v X2 v 0 得-2v- 2 - X2<—1,由于x v - 1, f (X)为减函数,于是只需证明f (X1 )> f (- 2 - X2),也就是证明 f ( - 2 - X2 ) v 0 , f (-2-耳?)二目(-2-卫三)e (-x 2T ) £二&(-2-叱)巴2-(旷1) (X ? + 1)'借助( # ) 代换可得z —r, 、-2-x,,令g (x) = (- 2 - x) e-2-X- xe X(- 1 v x v 0),则g' (x) = (x+1) (e 2 x-e x),I h (x) =e-2-x- e x为(-1, 0)的减函数,且h (- 1) =0,• g' (x) = (x+1) (e-2-x- e x)v 0 在(-1, 0)恒成立,于是g (x)为(-1, 0)的减函数,即g (x)v g (- 1) =0,••• f (- 2- X 2)< 0,这就证明了 X i +X 2<- 2, 综上所述,-3<x 1+x 2<- 2 .选做题:请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题 记分.[选修4-4:坐标系与参数方程]22. (10分)将圆(K=2c0S ^ ( B 为参数)上的每一点的横坐标保持不变,纵坐(y=2sin0 标变为原来的I 倍,得到曲线C.2 (1) 求出C 的普通方程;(2) 设A ,B 是曲线C 上的任意两点,且 OA 丄OB,求一: ------ - 的值.|0A|2 |0B|2【解答】解:(1)设(x i , y i )为圆上的任意一点,在已知的变换下变为 C 上的 点(x ,y ),Jx=2cos e(2)以坐标原点O 为极点,x 轴正半轴为极轴,建立极坐标系,在极坐标系中, 曲线C 化为极坐标方程得: 贝U|OA|=p, |OB|=p.2 p COS (0cos B ・ r---- ----- +sin f ■+ 4'[选修4-5:不等式选讲]23. 已知函数 f (x ) =|x -2|+| 2x+a| , a € R.(1) 当a=1时,解不等式f (x )> 5;(2) 若存在x o 满足f (x o ) +|x 。

试题 河北省衡水中学2018-2019学年高三年级上学期四调考试数学(理)试卷 Word版含解析1

2018—2019学年河北省衡水中学高三年级上学期四调考试数学(理)试题数学注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、单选题 1.下列命题正确的个数为 ①梯形一定是平面图形;②若两条直线和第三条直线所成的角相等,则这两条直线平行;③两两相交的三条直线最多可以确定三个平面;④如果两个平面有三个公共点,则这两个平面重合.A .0B .1C .2D .32.已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和,若S 8=4S 4,则a 4= A .52 B .3 C .72 D .43.已知双曲线my 2−x 2=1(m ∈R)与抛物线x 2=8y 有相同的焦点,则该双曲线的渐近线方程为A .y =±√3xB .y =±3xC .y =±13x D .y =±√33x4.如图,一只蚂蚁从点A 出发沿着水平面的线条爬行到点C ,再由点C 沿着置于水平面的长方体的棱爬行至顶点B ,则它可以爬行的不同的最短路径有A .40条B .60条C .80条D .120条 5.函数f(x)=x 2−2|x|的图象大致是 A . B . C . D . 6.若tan(x 2+π4)+tan(x 2−π4)=32,则tanx = A .−2 B .2 C .34 D .−34 7.某县教育局招聘了8名小学教师,其中3名语文教师,3名数学教师,2名全科教师,需要分配到A,B 两个学校任教,其中每个学校都需要2名语文教师和2名数学教师,则分配方案种数为 A .72 B .56 C .57 D .63 8.一个简单几何体的三视图如图所示,则该几何体的体积为 A .96π+36 B .72π+48 C .48π+96 D .24π+48 9.已知函数f(x)=cosxsin2x ,下列结论不正确的是 A .y =f(x)的图象关于点(π,0)中心对称此卷只装订不密封 班级姓名准考证号考场号座位号B .y =f(x)既是奇函数,又是周期函数C .y =f(x)的图象关于直线x =π2对称D .y =f(x)的最大值为√3210.如图所示,某几何体由底面半径和高均为5的圆柱与半径为5的半球面对接而成,该封闭几何体内部放入一个小圆柱体,且圆柱体的上下底面均与外层圆柱的底面平行,则小圆柱体积的最大值为A .2000π9B .4000π27C .81πD .128π11.已知y 2=4x 的准线交x 轴于点Q ,焦点为F ,过Q 且斜率大于0的直线交y 2=4x 于A,B ,∠AFB =600,则|AB|=A .4√76 B .4√73 C .4 D .312.已知f (x )={x 2,x ≤0−x (e 1−x +ax2−a),x >0 是减函数,且f (x )+bx 有三个零点,则b 的取值范围为A .(0,ln22)∪[e −1,+∞) B .(0,ln22)C .[e −1,+∞)D .{ln22}∪[e−1,+∞)二、解答题13.数列{a n }满足a 1=6,a n+1=6a n −9a n (n ∈N ∗).(1)求证:数列{1a n −3}是等差数列;(2)求数列{lga n }的前999项和.14.在四棱锥P −ABCD ,AB//CD ,∠ABC =900,BC =CD =PD =2,AB =4,PA ⊥BD ,平面PBC ⊥平面PCD ,M,N 分别是AD,PB 中点.(1)证明:PD ⊥平面ABCD ; (2)求MN 与平面PDA 所成角的正弦值. 15.在ΔABC 中,内角A,B,C 所对的边分别为a,b,c ,已知b 2+c 2−a 2=accosC +c 2cosA . (1)求角A 的大小; (2)若ΔABC 的面积S ΔABC =25√34,且a =5,求sinB +sinC . 16.如图,直线AQ ⊥平面α,直线AQ ⊥平行四边形,四棱锥的顶点P 在平面α上,AB =√7,AD =√3,AD ⊥DB ,AC ∩BD =O,OP//AQ,AQ =2,M,N 分别是AQ 与CD 的中点. (1)求证:MN//平面QBC ; (2)求二面角M −CB −Q 的余弦值. 17.如图,椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的左右焦点分别为F 1,F 2,离心率为√32,过抛物线C 2:x 2=4by 焦点F 的直线交抛物线于M,N 两点,当|MF|=74时,M 点在x 轴上的射影为F 1,连接NO,MO)并延长分别交C 1于A,B 两点,连接AB ,ΔOMN 与ΔOAB 的面积分别记为S ΔOMN ,S ΔOAB ,设λ= S ΔOMN S ΔOAB .(1)求椭圆C 1和抛物线C 2的方程;(2)求λ的取值范围.18.已知函数f(x)=ax 32−lnx −23的图象的一条切线为x 轴.(1)求实数a 的值;(2)令g(x)=|f(x)+f′(x)|,若存在不相等的两个实数x 1,x 2满足g(x 1)=g(x 2),求证:x 1x 2<1.三、填空题19.已知向量m ⃑⃑ ,n ⃑ 夹角为600,且|m ⃑⃑ |=1,|2m ⃑⃑ +n ⃑ |=√10,则|n ⃑ |=_______.20.已知直三棱柱ABC −A 1B 1C 1中,∠ABC =1200,AB =2,BC =CC 1=1,则异面直线AB 1与BC 1所成角的余弦值为_______.21.某校毕业典礼由6个节目组成,考虑整体效果,对节目演出顺序有如下要求:节目甲必须排在前三位,且节目丙、丁必须排在一起,则该校毕业典礼节目演出顺序的编排方案共有______种.22.三棱锥P −ABC 中,PA ⊥平面ABC ,ΔABC 为正三角形,外接球表面积为12π,则三棱锥P −ABC 的体积V P−ABC 的最大值为______.2018—2019学年河北省衡水中学高三年级上学期四调考试数学(理)试题数学 答 案参考答案1.C【解析】分析:逐一判断每个命题的真假,得到正确命题的个数.详解:对于①,由于两条平行直线确定一个平面,所以梯形可以确定一个平面,所以该命题是真命题;对于②,两条直线和第三条直线所成的角相等,则这两条直线平行或异面或相交,所以该命题是假命题;对于③,两两相交的三条直线最多可以确定三个平面,是真命题;对于④,如果两个平面有三个公共点,则这两个平面相交或重合,所以该命题是假命题.故答案为:C.点睛:(1)本题主要考查空间直线平面的位置关系,意在考查学生对这些基础知识的掌握水平和空间想象能力.(2)对于类似这种空间直线平面位置关系的命题的判断,一般可以利用举反例的方法和直接证明法,大家要灵活选择方法判断.2.C【解析】【分析】利用等差数列前n 项和公式,代入S 8=4S 4即可求出a 1=12,再利用等差数列通项公式就能算出a 4.【详解】∵{a n }是公差为1的等差数列,S 8=4S 4,∴8a 1+8×7×12=4×(4a 1+4×3×12)解得a 1=12,则a 4=12+3×1=72,故选C.【点睛】 本题考查等差数列的通项公式及其前n 项和公式的运用,是基础题。

【全国百强校】河北省衡水中学2017届高三上学期四调考试理数试题解析(解析版)

河北省衡水中学2017届高三上学期四调考试理科数学试题第Ⅰ卷(选择题 共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}21log A x N x k =∈<<,集合A 中至少有3个元素,则( ) A .8k > B .8k ≥ C .16k > D .16k ≥ 【答案】C考点:1.集合的运算;2.对数函数的性质. 2. 若()1z i i +=,则z 等于( )A .1BC .D .12【答案】C 【解析】试题分析:由()1z i i +=得()()()11111122i i i z i i i i -===+++-,所以z ==,故选C. 考点:1.复数相关的概念;2.复数的运算.3. 在明朝程大位《算法统宗》中有这样的一首歌谣:“远看巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”这首古诗描述的这个宝塔其古称浮屠,本题说它一共有7层,每层悬挂的红灯数是上一层的2倍,共有381盏灯,问塔顶有几盏灯?( ) A .5 B .6 C .4 D .3 【答案】D 【解析】试题分析:由题意可知,每层悬挂的灯数从上到下依次构成比差数列,公比为2,设顶层的灯数为1a ,则77111(12)(2112738112a a a -==--)=,解之得13a =,故选D.考点:1.数学文化;2.等比数列的性质与求和.4. 已知双曲线()2222:10 0x y C a b a b-=>>,,则C 的渐近线方程为( ) A .14y x =± B .13y x =± C.12y x =± D .y x =±【答案】C考点:双曲线的标准议程与几何性质.5. 执行如图所示的程序框图,则输出的结果为( )A .4B .9 C.7 D .5 【答案】B 【解析】试题分析:模拟算法,开始:输入0,0,1T S n ===;2,9(11)18,123,T S n T S ==+==+=≥不成立; 328,9(31)36,325,T S n T S ===+==+=≥不成立; 5232,9(51)54,527,T S n T S ===+==+=≥不成立; 72128,9(71)63,729,T S n T S ===+==+=≥成立;输出9n =,结束得算法.故选B.考点:程序框图.6. 已知函数()()()cos 0f x A x ωϕω=+>的部分图象如图所示,下面结论错误的是( )A .函数()f x 的最小正周期为23πB .函数()f x 的图象可由()()cos g x A x ω=的图象向右平移12π个单位得到 C.函数()f x 的图象关于直线12x π=对称D .函数()f x 在区间 42ππ⎛⎫ ⎪⎝⎭,上单调递增【答案】D考点:三角函数的图象和性质.7. 德国著名数学家狄利克雷在数学领域成就显著,以其名命名的函数() 1 0 x f x x ⎧=⎨⎩,为有理数,为无理数,称为狄利克雷函数,则关于函数()f x 有以下四个命题: ①()()1f f x =;②函数()f x 是偶函数;③任意一个非零有理数T ,()()f x T f x +=对任意x R ∈恒成立;④存在三个点()()()()()()112233 A x f x B x f x C x f x ,,,,,,使得ABC △为等边三角形. 其中真命题的个数是( )A .4B .3 C.2 D .1 【答案】A考点:1.函数的奇偶性;2.函数的周期性;3.分段函数的表示与求值. 8. 某几何体的三视图如图所示,则该几何体的体积为( )A .10B .20 C.40 D .60 【答案】B 【解析】试题分析:由三视图可知该几何体的直观图如下图所示,且三角形ABC 是以角A 为直角的直角三角形,4,3AB AC ==,从而5BC =,又5BD =,且BD ⊥平面ABC ,故四边形BCED 中边长为5的正方形,过A 作AH BC ⊥于H ,由易知AH ⊥平面BCED ,在直角三角形ABC 中可求得125AH =,从而ABCD 11125520335A BCED V V S AH -==⨯⨯=⨯⨯⨯=正方形,故选B.考点:1.三视图;2.多面体和体积.9. 已知A 、B 是椭圆()222210x y a b a b +=>>长轴的两个端点,M 、N 是椭圆上关于x 轴对称的两点,直线AM 、BN 的斜率分别为()1212 0k k k k≠,,则12k k +的最小值为( )A .1 BD【答案】A考点:1.双曲线的标准方程与几何性质;2.基本不等式;3.斜率公式.【名师点睛】本题考查双曲线的标准方程与几何性质、基本不等式、斜率公式,属中档题;双曲线的标准方程与几何性质是高考的热点,特别是双曲线的性质,几乎每年均有涉及,主要以选择题、填空题为主,解题时,应利用图形,挖掘题目中的隐含条件,结合图形求解.10. 在棱长为6的正方体1111ABCD A B C D -中,M 是BC 的中点,点P 是面11DCC D 所在的平面内的动点,且满足APD MPC ∠=∠,则三棱锥P BCD -的体积最大值是( )A .36B .C.24 D . 【答案】A考点:1.线面垂直的判定与性质;2.轨迹方程的求法;3.多面体的体积.11. 已知函数()()()3ln 1 01 1 0x x f x x x -<⎧⎪=⎨-+≥⎪⎩,,,若()f x ax ≥恒成立,则实数a 的取值范围是( ) A .20 3⎡⎤⎢⎥⎣⎦,B .30 4⎡⎤⎢⎥⎣⎦, C.[]0 1, D .30 2⎡⎤⎢⎥⎣⎦, 【答案】B 【解析】试题分析:在同一坐标系内作出函数()()()3ln 1 01 1 0x x f x x x -<⎧⎪=⎨-+≥⎪⎩,,与函数y ax =和图象,通过图象可知,当直线y ax =绕着原点从x 轴旋转到与图中直线l 重合时,符合题意,当0x >时,2()3(1)f x x '=-,设直线l与函数()y f x =的切点为00(,)P x y ,则3200000(1)3(1)y x x x x --==,解之得032x =,所以直线l 的斜率2333(1)24k =⨯-=,所以a 的取值范围为30 4⎡⎤⎢⎥⎣⎦,,故选B.考点:1.函数与不等式;2.导数的几何意义.【名师点睛】本题考查函数与不等式、导数的几何意义,属中档题;导数的几何意义是每年高考的必考内容,利用导数解决不等式恒成立问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的范围;或参变分离,构造函数,直接把问题转化为函数的最值问题;或通过数列结合解题.12. 已知过抛物线()2:20G y px p =>焦点F 的直线l 与抛物线G 交于M 、N 两点(M 在x 轴上方),满足3MF FN =,163MN =,则以M 为圆心且与抛物线准线相切的圆的标准方程为( )A .2211633x y ⎛⎛⎫-+= ⎪ ⎝⎭⎝⎭ B .2211633x y ⎛⎛⎫-+= ⎪ ⎝⎭⎝⎭C.()(22316x y -+-= D .()(22316x y -+=【答案】C考点:1.抛物线的标准方程与几何性质;2.直线与抛物线的位置关系;2.圆的标准方程.【名师点睛】本题考查抛物线的标准方程与几何性质、直线与抛物线的位置关系、圆的标准方程,属难题;在解抛物线有关问题时,凡涉及抛物线上的点到焦点的距离时,一般要运用定义转化为到准线的距离处理;抛物线的焦点弦一直是高考的热点,对于焦点弦的性质应牢固掌握.第Ⅱ卷(非选择题共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 若x、y满足约束条件1040xx yx y-≥⎧⎪-≤⎨⎪+-≤⎩,则1yx-的最大值为.【答案】2考点:线性规划.14. 在ABC △中, 3 5AB AC ==,,若O 为ABC △外接圆的圆心(即满足OA OB OC ==),则AO BC ⋅的值为 . 【答案】8考点:数量积的几何运算.【名师点睛】本题考查数量积的几何运算,属中档题;平面向量的数量积有两种运算,一是依据长度与夹角,即数量积的几何意义运算,一是利用坐标运算,本题充分利用向量线性运算的几何意义与数量积的几何意义进行运算,运算量不大,考查子学生逻辑思维能力,体现了数形结合的数学思想. 15. 已知数列{}n a 的各项均为正数,11142 n n n n a a a a a ++=-=+,,若数列11n n a a -⎧⎫⎨⎬+⎩⎭的前n 项和为5,则n = .【答案】120 【解析】试题分析:数列11n n a a -⎧⎫⎨⎬+⎩⎭的前n 项和为321121211223111154444n n n a a a a a a a a a a a a a a +-----+++=++==+++,所以122n a +=, 又114 n n n na a a a ++-=+,所以221 4n n a a +-=,由此可得22211444,2244,120n a a n n n n +=+=+∴=+=,即应填120.考点:1.数列求和;2.累和法求数列通项.【名师点睛】本题考查数列求和,累和法求数列通项,属中档题;由数列的递推公式求通项公式时,若递推关系为a n +1=a n +f (n )或a n +1=f (n )·a n ,则可以分别通过累加、累乘法求得通项公式,另外,通过迭代法也可以求得上面两类数列的通项公式,数列求和的常用方法有倒序相加法,错位相减法,裂项相消法,分组求和法,并项求和法等,可根据通项特点进行选用.16. 过抛物线()220y px p =>的焦点F 的直线l 与抛物线在第一象限的交点为A ,与抛物线的准线的的交点为B ,点A 在抛物线的准线上的射影为C ,若 48AF FB BA BC =⋅=,,则抛物线的方程为 . 【答案】24y x =考点:1.抛物线的标准方程与几何性质;2.向量数量积的几何意义.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. (本小题满分12分)在ABC △中,内角A 、B 、C 所对的边分别为 a b c ,,,已知 4 6 2b c C B ===,,. (1)求cos B 的值; (2)求ABC △的面积.【答案】(1)34;(2试题解析:(1)在ABC △中,sin sin b c B C =,因为 4 6 2b c C B ===,,,所以46sin sin 2B B=,即 46sin 2sin cos B B B =,又sin 0B ≠,∴3cos 4B =.(2)由(1)知3cos 4B =,从而sin B =.因此sin sin 22sin cos C B B B ==21cos cos22cos 18C B B ==-=.所以()()13sin sin sin sin cos cos sin 84A B C B C B C B C π=--=+=++=所以ABC △的面积为1462⨯⨯=. 考点:1.正弦定理;2.三角恒等变换;3.三角形内角和与三角形面积公式.【名师点睛】本题考查正弦定理、三角恒等变换、三角形内角和与三角形面积公式,属中档题. 正、余弦定理是揭示三角形边角关系的重要定理,直接运用正弦定理解决一类已知三角形两边及一角对边求其它元素,或已知两边及一边对角求其它元素的问题,这时要讨论三角形解的个数问题;利用余弦定理可以快捷求第三边直接运用余弦定理解决一类已知三角形两边及夹角求第三边或者是已知三个边求角的问题;知道两边和其中一边的对角,利用余弦定理可以快捷求第三边. 18. (本小题满分12分)如图所示,在三棱柱111ABC A B C -中,11AA B B 为正方形,11BB C C 为菱形,1160BB C ∠=︒,平面11AA B B ⊥平面11BB C C .(1)求证:11B C AC ⊥;(2)设点E 、F 分别是1B C ,1AA 的中点,试判断直线EF 与平面ABC 的位置关系,并说明理由; (3)求二面角1B AC C --的余弦值.【答案】(1)见解析;(2) EF ∥平面ABC ;.试题解析:(1)连接1BC ,在正方形11ABB A 中,1AB BB ⊥, 因为平面11AA B B ⊥平面11BB C C ,平面11AA B B平面111BB C C BB =,AB ⊂平面11ABB A ,所以AB ⊥平面11BB C C ,因为1B C ⊥平面11BB C C ,所以1AB B C ⊥.在菱形11BB C C 中,11BC B C ⊥,因为1BC ⊥面1ABC ,AB ⊥平面1ABC ,1BC AB B =,所以1B C ⊥平面1ABC ,因为1AC ⊥平面1ABC ,所以11B C AC ⊥.(2)EF ∥平面ABC ,理由如下:取BC 的中点G ,连接GE 、GA ,因为E 是1B C 的中点,所以1GE BB ∥,且112GE BB =,因为F 是 1AA 的中点,所以112AF AA =. 在正方形11ABB A 中,1111 AA BB AA BB =∥,,所以GE AF ∥,且GE AF =. ∴四边形GEFA 为平行四边形,所以EF GA ∥. 因为EF ABC ⊄平面,GA ABC ⊂平面, 所以EF ABC ∥平面.(3)在平面11BB C C 内过点B 作1Bz BB ⊥,由(1)可知:11AB BB C C ⊥平面,以点B 为坐标原点,分别以BA 、1BB 所在的直线为x 、y 轴,建立如图所示的空间直角坐标系B xyz -,设()2 0 0A ,,,则()10 2 0B ,,.在菱形11BB C C 中,1160BB C ∠=︒,所以(0 1 C -,,(10 1 C ,. 设平面1ACC 的一个法向量为() 1x y =n ,,. 因为100n AC n CC ⎧⋅=⎪⎨⋅=⎪⎩即()(()() 1 2 1 0 10 2 00x y x y ⎧⋅--=⎪⎨⋅=⎪⎩,,,,,,,,所以0x y ⎧=⎪⎨⎪=⎩0 1n ⎫=⎪⎪⎝⎭,,, 由(1)可知:1CB 是平面1ABC 的一个法向量.所以(1110 10 3 cos nCB n CB n CB ⎛⎫⋅ ⎪ ⎪⋅⎝<>===⋅,,,,,,所以二面角1B AC C --. 考点:1.面面垂直的判定与性质;2.线面平行、垂直的判定与性质;3.空间向量的应用.【名师点睛】本题考查.面面垂直的判定与性质、线面平行、垂直的判定与性质及空间向量的应用,属中档题;解答空间几何体中的平行、垂直关系时,一般要根据已知条件把空间中的线线、线面、面面之间的平行、垂直关系进行转化,转化时要正确运用有关的定理,找出足够的条件进行推理;求二面角,则通过求两个半平面的法向量的夹角间接求解.此时建立恰当的空间直角坐标系以及正确求出各点的坐标是解题的关键所在.19. (本小题满分12分)如图,在平面直角坐标系xOy 中,已知()00 R x y ,是椭圆22:12412x y C +=上的一点,从原点O 向圆()()2200:8R x x y y -+-=作两条切线,分别交椭圆于P ,Q .(1)若R 点在第一象限,且直线OP ,OQ 互相垂直,求圆R 的方程; (2)若直线OP ,OQ 的斜率存在,并记为12 k k ,,求12k k 的值; (3)试问22OP OQ +是否为定值?若是,求出该值;若不是,说明理由.【答案】(1)((228x y-+-=;(2)12-;(3)36.试题解析:(1)由圆R的方程知圆R的半径r=,因为直线OP,OQ互相垂直,且和圆R相切,所以4OR==,即220016x y+=①又点R在椭圆C上,所以220012412x y+=②联立①②,解得0xy⎧=⎪⎨=⎪⎩R的方程为((228x y-+-=.(2)因为直线1:OP y k x=和2:OQ y k x=都与圆R==212288yk kx-⋅=-,因为点()00R x y,在椭圆C上,所以220012412x y+=,即22001122y x=-,所以2122141228xk kx-==--.(3)方法一(1)当直线OP、OQ不落在坐标轴上时,设()11P x y,,()22Q x y,,由(2)知12210k k+=,所以121221y yx x=,故2222121214y y x x=,因为()11P x y,,()22Q x y,,在椭圆C上,所以221112412x y+=,222212412x y+=,即22111122y x=-,22221122y x=-,所以222212121111212224x x x x⎛⎫⎛⎫--=⎪⎪⎝⎭⎝⎭,整理得221224x x +=,所以222212121112121222y y x x ⎛⎫⎛⎫+=-+-= ⎪ ⎪⎝⎭⎝⎭,所以()()22222222221122121236OP OQ x y x y x x y y +=+++=+++=.(2)当直线OP 、OQ 落在坐标轴上时,显然有2236OP OQ +=. 综上:2236OP OQ +=.考点:1.椭圆的标准方程与几何性质;2.圆的标准方程;3.直线与圆的位置关系. 20. (本小题满分12分)设椭圆()2222:10x y C a b a b +=>>的左、右焦点分别为1F 、2F ,上顶点为A ,过A 与2AF 垂直的直线交x 轴负半轴于Q 点,且12220F F F Q +=. (1)求椭圆C 的离心率;(2)若过A 、Q 、2F 三点的圆恰好与直线30x --=相切,求椭圆C 的方程;(3)过2F 的直线l 与(2)中椭圆交于不同的两点M 、N ,则1F MN △的内切圆的面积是否存在最大值?若存在,求出这个最大值及此时的直线方程;若不存在,请说明理由.【答案】(1)12;(2) 22143x y +=;(3)1F MN △的内切圆的面积的最大值为916π,此时直线l 的方程为1x =.(3)设1F MN △的内切圆的半径为R ,则1F MN △的周长为48a =,由此可得112121212F MN S F F y y y y =⋅-=-△,设直线l 的方程为1x my =+,与椭圆方程联立得()2234690my my ++-=,由根与系数关系代入112F MNS y y =-=△,换元令t =()12121211313F MN t S t t t t==≥-+△,可知当1t =时,14F MN S R =△有最大值3,从而求出内切圆面积的最大值与相应的直线方程即可.试题解析:(1)由题()0 A b ,,1F 为2QF 的中点.设()()12 0 0F c F c -,,,,则()3 0Q c -,, ()3 AQ c b =--,,()2 AF c b =-,,由题2AQ AF ⊥,即22230AQ AF c b ⋅=-+=,∴()22230c a c -+-=即224a c =,∴12c e a ==. (2)由题2Rt QAF △外接圆圆心为斜边2QF 的中点()1 0F c -,,半径2r c =, ∵由题2Rt QAF △外接圆与直线30x --=相切,∴d r =,即322c c --=,即34c c +=,∴1c =,22a c ==,b =C 的方程为22143x y +=.(3)设()11 M x y ,,()22 N x y ,,由题12 y y ,异号,设1F MN △的内切圆的半径为R ,则1F MN △的周长为48a =,()111142F MN S MN F M F N R R =++=△, 因此要使1F MN △内切圆的面积最大,只需R 最大,此时1F MN S △也最大,112121212F MN S F F y y y y =⋅-=-△, 由题知,直线l 的斜率不为零,可设直线l 的方程为1x my =+,由221143x my x y =+⎧⎪⎨+=⎪⎩得()2234690m y my ++-=,由韦达定理得122634m y y m -+=+,122934y y m -=+,(0m R ∆>∈⇒)112F MN S y y =-=△令t =1t ≥,()12121211313F MN t S t t t t==≥-+△, 当1t =时,14F MN S R =△有最大值3,此时,0m =,max 34R =, 故1F MN △的内切圆的面积的最大值为916π,此时直线l 的方程为1x =. 考点:1.椭圆的标准方程与几何性质;2.直线与椭圆的位置关系;3.直线与圆的位置关系. 21. (本小题满分12分) 已知0t >,设函数()()3231312t f x x x tx +=-++.(1)存在()00 2x ∈,,使得()0f x 是()f x 在[]0 2,上的最大值,求t 的取值范围; (2)()2x f x xe m ≤-+对任意[0 )x ∈+∞,恒成立时,m 的最大值为1,求t 的取值范围.【答案】(1)5[ )3+∞,;(2) 1(0 ]3,.(2)()()()323223131313123131222x x x t t t x x tx xe m m xe x x tx x e x x t +++⎛⎫-++≤-+⇔≤-+-+=-+-+ ⎪⎝⎭,构造函数()()23132x t g x e x x t +=-+-,道m 的最大值为1,等价于()()231302x t g x e x x t +=-+-≥在区间[0 )+∞,上恒成立,由于()0130g t =-≥,则103t <≤,此时()0g x '>恒成立,即()g x 在区间[0 )+∞,上单调递增,符合题意.试题解析:(1)()()()()2'331331f x x t x t x x t =-++=--,①当01t <<时,()f x 在()0 t ,上单调递增,在() 1t ,单调递减,在()1 2,单调递增,∴()()2f t f ≥,由()()2f t f ≥,得3234t t -+≥在01t <<时无解, ②当1t =时,不合题意;③当12t <<时,()f x 在()0 1,单调递增,在()1 t ,递减,在() 2t ,单调递增, ∴()()1212f f t ⎧≥⎪⎨<<⎪⎩即1332212t t ⎧+≥⎪⎨⎪<<⎩,∴523t ≤<,④当2t ≥时,()f x 在()0 1,单调递增,在()1 2,单调递减,满足条件, 综上所述:5[ )3t ∈+∞,时,存在()00 2x ∈,,使得()0f x 是()f x 在[]0 2,上的最大值. ∴()()0130g x g t ≥=-≥,满足条件,∴t 的取值范围是1(0 ]3,.考点:1.导数与函数的单调性、极值,最值;2.函数与不等式.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. (本小题满分10分)选修4-4:坐标系与参数方程已知圆锥曲线2cos :x C y αα=⎧⎪⎨=⎪⎩(α为参数)和定点(0 A ,1F 、2F 是此圆锥曲线的左、右焦点,以原点O 为极点,以x 轴的正半轴为极轴建立极坐标系. (1)求直线2AF 的直角坐标方程;(2)经过点1F 且与直线2AF 垂直的直线l 交此圆锥曲线于M 、N 两点,求12MF NF -的值.【答案】0y +-=;(2. 试题解析:(1)曲线2cos :x C y αα=⎧⎪⎨=⎪⎩可化为22143x y +=,其轨迹为椭圆,焦点为()1 1 0F -,,()21 0F ,.经过(0 A 和()21 0F ,的直线方程为11x =0y +-=. (2)由(1)知,直线2AF的斜率为2l AF ⊥,所以l,倾斜角为30︒, 所以l的参数方程为112x y t ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数). 代入椭圆C的方程中,得213360t --=. 因为 M N ,在点1F的两侧,所以1112MF NF t t -=+=. 考点:1.参数方程与普通方程的互化;2.直线参数方程的应用. 23. (本小题满分10分)选修4-5:不等式选讲 设()34f x x x =-+-. (1)解不等式()2f x ≤;(2)若存在实数x 满足()1f x ax ≤-,试求实数a 的取值范围. 【答案】(1) 59 22⎡⎤⎢⎥⎣⎦,;(2)()1 2[ )2-∞-+∞,, 【解析】试题分析:(1)由绝对值的意义去掉绝对值符号,将函数()f x 表示成分段函数的形式,作出函数()f x 的图象,数形结合可得到不等式的解集;(2)在同一坐标系内作出函数()y f x =与函数1y ax =-的图象,数形结合可求出a 的范围.(2)函数1y ax =-的图象是过点()0 1-,的直线, 当且仅当函数()y f x =与直线1y ax =-有公共点时,存在题设的x .由图象知,a 的取值范围为()12[ )2-∞-+∞,,.考点:1.含绝对值不等式的解法;2.分段函数的表示与作图;3.函数与不等式.。

【全国百强校】河北省衡水中学2017届高三上学期四调考试理数试题解析(解析版)

河北省衡水中学2017届高三上学期四调考试理科数学试题第Ⅰ卷(选择题 共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项 是符合题目要求的.1. 已知集合{}21log A x N x k =∈<<,集合A 中至少有3个元素,则( ) A .8k > B .8k ≥ C .16k > D .16k ≥ 【答案】C考点:1.集合的运算;2.对数函数的性质. 2. 若()1z i i +=,则z 等于( )A .1BC .2D .12【答案】C 【解析】试题分析:由()1z i i +=得()()()11111122i i i z i i i i -===+++-,所以z ==,故选C.考点:1.复数相关的概念;2.复数的运算.3. 在明朝程大位《算法统宗》中有这样的一首歌谣:“远看巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”这首古诗描述的这个宝塔其古称浮屠,本题说它一共有7层,每层悬挂的红灯数是上一层的2倍,共有381盏灯,问塔顶有几盏灯?( ) A .5 B .6 C .4 D .3 【答案】D 【解析】试题分析:由题意可知,每层悬挂的灯数从上到下依次构成比差数列,公比为2,设顶层的灯数为1a ,则77111(12)(2112738112a a a -==--)=,解之得13a =,故选D. 考点:1.数学文化;2.等比数列的性质与求和.4. 已知双曲线()2222:10 0x y C a b a b-=>>,,则C 的渐近线方程为( ) A .14y x =± B .13y x =± C.12y x =± D .y x =±【答案】C考点:双曲线的标准议程与几何性质.5. 执行如图所示的程序框图,则输出的结果为( )A .4B .9 C.7 D .5 【答案】B 【解析】试题分析:模拟算法,开始:输入0,0,1T S n ===;2,9(11)18,123,T S n T S ==+==+=≥不成立; 328,9(31)36,325,T S n T S ===+==+=≥不成立; 5232,9(51)54,527,T S n T S ===+==+=≥不成立; 72128,9(71)63,729,T S n T S ===+==+=≥成立;输出9n =,结束得算法.故选B.考点:程序框图.6. 已知函数()()()cos 0f x A x ωϕω=+>的部分图象如图所示,下面结论错误的是( )A .函数()f x 的最小正周期为23πB .函数()f x 的图象可由()()cos g x A x ω=的图象向右平移12π个单位得到 C.函数()f x 的图象关于直线12x π=对称D .函数()f x 在区间 42ππ⎛⎫ ⎪⎝⎭,上单调递增【答案】D考点:三角函数的图象和性质.7. 德国著名数学家狄利克雷在数学领域成就显著,以其名命名的函数() 1 0 x f x x ⎧=⎨⎩,为有理数,为无理数,称为狄利克雷函数,则关于函数()f x 有以下四个命题: ①()()1f f x =; ②函数()f x 是偶函数;③任意一个非零有理数T ,()()f x T f x +=对任意x R ∈恒成立;④存在三个点()()()()()()112233 A x f x B x f x C x f x ,,,,,,使得ABC △为等边三角形.其中真命题的个数是( )A .4B .3 C.2 D .1 【答案】A考点:1.函数的奇偶性;2.函数的周期性;3.分段函数的表示与求值. 8. 某几何体的三视图如图所示,则该几何体的体积为( )A .10B .20 C.40 D .60 【答案】B 【解析】试题分析:由三视图可知该几何体的直观图如下图所示,且三角形ABC 是以角A 为直角的直角三角形,4,3AB AC ==,从而5BC =,又5BD =,且BD ⊥平面ABC ,故四边形BCED 中边长为5的正方形,过A 作AH BC ⊥于H ,由易知AH ⊥平面BCED ,在直角三角形ABC 中可求得125AH =,从而ABCD 11125520335A BCED V V S AH -==⨯⨯=⨯⨯⨯=正方形,故选B.考点:1.三视图;2.多面体和体积.9. 已知A 、B 是椭圆()222210x y a b a b +=>>长轴的两个端点,M 、N 是椭圆上关于x 轴对称的两点,直线AM 、BN 的斜率分别为()1212 0k k k k≠,,则12k k +的最小值为( )A .1 BD【答案】A考点:1.双曲线的标准方程与几何性质;2.基本不等式;3.斜率公式.【名师点睛】本题考查双曲线的标准方程与几何性质、基本不等式、斜率公式,属中档题;双曲线的标准方程与几何性质是高考的热点,特别是双曲线的性质,几乎每年均有涉及,主要以选择题、填空题为主,解题时,应利用图形,挖掘题目中的隐含条件,结合图形求解.10. 在棱长为6的正方体1111ABCD A B C D -中,M 是BC 的中点,点P 是面11DCC D 所在的平面内的动点,且满足APD MPC ∠=∠,则三棱锥P BCD -的体积最大值是( )A .36B .24 D . 【答案】A考点:1.线面垂直的判定与性质;2.轨迹方程的求法;3.多面体的体积.11. 已知函数()()()3ln 1 01 1 0x x f x x x -<⎧⎪=⎨-+≥⎪⎩,,,若()f x ax ≥恒成立,则实数a 的取值范围是( ) A .20 3⎡⎤⎢⎥⎣⎦,B .30 4⎡⎤⎢⎥⎣⎦, C.[]0 1, D .30 2⎡⎤⎢⎥⎣⎦, 【答案】B 【解析】试题分析:在同一坐标系内作出函数()()()3ln 1 01 1 0x x f x x x -<⎧⎪=⎨-+≥⎪⎩,,与函数y ax =和图象,通过图象可知,当直线y ax =绕着原点从x 轴旋转到与图中直线l 重合时,符合题意,当0x >时,2()3(1)f x x '=-,设直线l 与函数()y f x =的切点为00(,)P x y ,则3200000(1)3(1)y x x x x --==,解之得032x =,所以直线l 的斜率2333(1)24k =⨯-=,所以a 的取值范围为30 4⎡⎤⎢⎥⎣⎦,,故选B.考点:1.函数与不等式;2.导数的几何意义.【名师点睛】本题考查函数与不等式、导数的几何意义,属中档题;导数的几何意义是每年高考的必考内容,利用导数解决不等式恒成立问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的范围;或参变分离,构造函数,直接把问题转化为函数的最值问题;或通过数列结合解题.12. 已知过抛物线()2:20G y px p =>焦点F 的直线l 与抛物线G 交于M 、N 两点(M 在x 轴上方),满足3MF FN =,163MN =,则以M 为圆心且与抛物线准线相切的圆的标准方程为( )A .2211633x y ⎛⎛⎫-+= ⎪ ⎝⎭⎝⎭ B .2211633x y ⎛⎛⎫-+= ⎪ ⎝⎭⎝⎭C.()(22316x y -+-= D .()(22316x y -+=【答案】C考点:1.抛物线的标准方程与几何性质;2.直线与抛物线的位置关系;2.圆的标准方程.【名师点睛】本题考查抛物线的标准方程与几何性质、直线与抛物线的位置关系、圆的标准方程,属难题;在解抛物线有关问题时,凡涉及抛物线上的点到焦点的距离时,一般要运用定义转化为到准线的距离处理;抛物线的焦点弦一直是高考的热点,对于焦点弦的性质应牢固掌握.第Ⅱ卷(非选择题 共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 若x 、y 满足约束条件10040x x y x y -≥⎧⎪-≤⎨⎪+-≤⎩,则1y x -的最大值为 .【答案】2考点:线性规划.14. 在ABC △中, 3 5AB AC ==,,若O 为ABC △外接圆的圆心(即满足OA OB OC ==),则AO BC ⋅的值为 . 【答案】8考点:数量积的几何运算.【名师点睛】本题考查数量积的几何运算,属中档题;平面向量的数量积有两种运算,一是依据长度与夹角,即数量积的几何意义运算,一是利用坐标运算,本题充分利用向量线性运算的几何意义与数量积的几何意义进行运算,运算量不大,考查子学生逻辑思维能力,体现了数形结合的数学思想. 15. 已知数列{}n a 的各项均为正数,11142 n n n n a a a a a ++=-=+,,若数列11n n a a -⎧⎫⎨⎬+⎩⎭的前n 项和为5,则n = .【答案】120 【解析】试题分析:数列11n n a a -⎧⎫⎨⎬+⎩⎭的前n 项和为321121211223111154444n n n a a a a a a a a a a a a a a +-----+++=++==+++,所以122n a +=, 又114n n n na a a a ++-=+,所以221 4n n a a +-=,由此可得22211444,2244,120n a a n n n n +=+=+∴=+=,即应填120.考点:1.数列求和;2.累和法求数列通项.【名师点睛】本题考查数列求和,累和法求数列通项,属中档题;由数列的递推公式求通项公式时,若递推关系为a n +1=a n +f (n )或a n +1=f (n )·a n ,则可以分别通过累加、累乘法求得通项公式,另外,通过迭代法也可以求得上面两类数列的通项公式,数列求和的常用方法有倒序相加法,错位相减法,裂项相消法,分组求和法,并项求和法等,可根据通项特点进行选用.16. 过抛物线()220y px p =>的焦点F 的直线l 与抛物线在第一象限的交点为A ,与抛物线的准线的的交点为B ,点A 在抛物线的准线上的射影为C ,若 48AF FB BA BC =⋅=,,则抛物线的方程为 . 【答案】24y x =考点:1.抛物线的标准方程与几何性质;2.向量数量积的几何意义.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. (本小题满分12分)在ABC △中,内角A 、B 、C 所对的边分别为 a b c ,,,已知 4 6 2b c C B ===,,. (1)求cos B 的值; (2)求ABC △的面积.【答案】(1)34;(2.试题解析:(1)在ABC △中,sin sin b c B C =,因为 4 6 2b c C B ===,,,所以46sin sin 2B B=,即46sin 2sin cos B B B =,又sin 0B ≠,∴3cos 4B =.(2)由(1)知3cos 4B =,从而sin B =.因此sin sin 22sin cos C B B B ===21cos cos22cos 18C B B ==-=.所以()()13sin sin sin sin cos cos sin 84A B C B C B C B C π=--=+=+=+=所以ABC △的面积为1462⨯⨯考点:1.正弦定理;2.三角恒等变换;3.三角形内角和与三角形面积公式.【名师点睛】本题考查正弦定理、三角恒等变换、三角形内角和与三角形面积公式,属中档题. 正、余弦定理是揭示三角形边角关系的重要定理,直接运用正弦定理解决一类已知三角形两边及一角对边求其它元素,或已知两边及一边对角求其它元素的问题,这时要讨论三角形解的个数问题;利用余弦定理可以快捷求第三边直接运用余弦定理解决一类已知三角形两边及夹角求第三边或者是已知三个边求角的问题;知道两边和其中一边的对角,利用余弦定理可以快捷求第三边. 18. (本小题满分12分)如图所示,在三棱柱111ABC A B C -中,11AA B B 为正方形,11BB C C 为菱形,1160BB C ∠=︒,平面11AA B B ⊥平面11BB C C .(1)求证:11B C AC ⊥;(2)设点E 、F 分别是1B C ,1AA 的中点,试判断直线EF 与平面ABC 的位置关系,并说明理由; (3)求二面角1B AC C --的余弦值.【答案】(1)见解析;(2) EF ∥平面ABC ;.试题解析:(1)连接1BC ,在正方形11ABB A 中,1AB BB ⊥, 因为平面11AA B B ⊥平面11BB C C ,平面11AA B B平面111BB C C BB =,AB ⊂平面11ABB A ,所以AB ⊥平面11BB C C ,因为1B C ⊥平面11BB C C ,所以1AB B C ⊥.在菱形11BB C C 中,11BC B C ⊥,因为1BC ⊥面1ABC ,AB ⊥平面1ABC ,1BC AB B =,所以1B C ⊥平面1ABC ,因为1AC ⊥平面1ABC ,所以11B C AC ⊥.(2)EF ∥平面ABC ,理由如下:取BC 的中点G ,连接GE 、GA ,因为E 是1B C 的中点,所以1GE BB ∥,且112GE BB =,因为F 是 1AA 的中点,所以112AF AA =. 在正方形11ABB A 中,1111 AA BB AA BB =∥,,所以GE AF ∥,且GE AF =. ∴四边形GEFA 为平行四边形,所以EF GA ∥. 因为EF ABC ⊄平面,GA ABC ⊂平面, 所以EF ABC ∥平面.(3)在平面11BB C C 内过点B 作1Bz BB ⊥,由(1)可知:11AB BB C C ⊥平面,以点B 为坐标原点,分别以BA 、1BB 所在的直线为x 、y 轴,建立如图所示的空间直角坐标系B xyz -,设()2 0 0A ,,,则()10 2 0B ,,.在菱形11BB C C 中,1160BB C ∠=︒,所以(0 1 C -,,(10 1 C ,. 设平面1ACC 的一个法向量为() 1x y =n ,,.因为100n AC n CC ⎧⋅=⎪⎨⋅=⎪⎩即()(()() 1 2 1 0 10 2 00x y x y ⎧⋅--=⎪⎨⋅=⎪⎩,,,,,,,,所以0x y ⎧=⎪⎨⎪=⎩0 1n ⎫=⎪⎪⎝⎭,,, 由(1)可知:1CB 是平面1ABC 的一个法向量.所以(1110 10 3 cos nCB n CB n CB ⎛⎫⋅ ⎪ ⎪⋅⎝<>===⋅,,,,,,所以二面角1B AC C --. 考点:1.面面垂直的判定与性质;2.线面平行、垂直的判定与性质;3.空间向量的应用.【名师点睛】本题考查.面面垂直的判定与性质、线面平行、垂直的判定与性质及空间向量的应用,属中档题;解答空间几何体中的平行、垂直关系时,一般要根据已知条件把空间中的线线、线面、面面之间的平行、垂直关系进行转化,转化时要正确运用有关的定理,找出足够的条件进行推理;求二面角,则通过求两个半平面的法向量的夹角间接求解.此时建立恰当的空间直角坐标系以及正确求出各点的坐标是解题的关键所在.19. (本小题满分12分)如图,在平面直角坐标系xOy 中,已知()00 R x y ,是椭圆22:12412x y C +=上的一点,从原点O 向圆()()2200:8R x x y y -+-=作两条切线,分别交椭圆于P ,Q .(1)若R 点在第一象限,且直线OP ,OQ 互相垂直,求圆R的方程; (2)若直线OP ,OQ 的斜率存在,并记为12 k k ,,求12k k 的值; (3)试问22OP OQ +是否为定值?若是,求出该值;若不是,说明理由. 【答案】(1)((228x y -+-=;(2)12-;(3)36.试题解析:(1)由圆R的方程知圆R的半径r=OP,OQ互相垂直,且和圆R相切,所以4OR==,即220016x y+=①又点R在椭圆C上,所以220012412x y+=②联立①②,解得0xy⎧=⎪⎨=⎪⎩R的方程为((228x y-+-=.(2)因为直线1:OP y k x=和2:OQ y k x=都与圆R==212288yk kx-⋅=-,因为点()00R x y,在椭圆C上,所以220012412x y+=,即22001122y x=-,所以2122141228xk kx-==--.(3)方法一(1)当直线OP、OQ不落在坐标轴上时,设()11P x y,,()22Q x y,,由(2)知12210k k+=,所以121221y yx x=,故2222121214y y x x=,因为()11P x y,,()22Q x y,,在椭圆C上,所以221112412x y+=,222212412x y+=,即22111122y x=-,22221122y x=-,所以222212121111212224x x x x⎛⎫⎛⎫--=⎪⎪⎝⎭⎝⎭,整理得221224x x+=,所以222212121112121222y y x x⎛⎫⎛⎫+=-+-=⎪ ⎪⎝⎭⎝⎭,所以()()22222222221122121236OP OQ x y x y x x y y +=+++=+++=.(2)当直线OP 、OQ 落在坐标轴上时,显然有2236OP OQ +=. 综上:2236OP OQ +=.考点:1.椭圆的标准方程与几何性质;2.圆的标准方程;3.直线与圆的位置关系. 20. (本小题满分12分)设椭圆()2222:10x y C a b a b +=>>的左、右焦点分别为1F 、2F ,上顶点为A ,过A 与2AF 垂直的直线交x 轴负半轴于Q 点,且12220F F F Q +=. (1)求椭圆C 的离心率;(2)若过A 、Q 、2F 三点的圆恰好与直线330x y --=相切,求椭圆C 的方程;(3)过2F 的直线l 与(2)中椭圆交于不同的两点M 、N ,则1F MN △的内切圆的面积是否存在最大值?若存在,求出这个最大值及此时的直线方程;若不存在,请说明理由.【答案】(1)12;(2) 22143x y +=;(3)1F MN △的内切圆的面积的最大值为916π,此时直线l 的方程为1x =.(3)设1F MN △的内切圆的半径为R ,则1F MN △的周长为48a =,由此可得112121212F MN S F F y y y y =⋅-=-△,设直线l 的方程为1x my =+,与椭圆方程联立得()2234690my my ++-=,由根与系数关系代入112F MNS y y =-=△,换元令t =()12121211313F MN t S t t t t==≥-+△,可知当1t =时,14F MN S R =△有最大值3,从而求出内切圆面积的最大值与相应的直线方程即可.试题解析:(1)由题()0 A b ,,1F 为2QF 的中点.设()()12 0 0F c F c -,,,,则()3 0Q c -,, ()3 AQ c b =--,,()2 AF c b =-,,由题2AQ AF ⊥,即22230AQ AF c b ⋅=-+=,∴()22230c a c -+-=即224a c =,∴12c e a ==. (2)由题2Rt QAF △外接圆圆心为斜边2QF 的中点()1 0F c -,,半径2r c =, ∵由题2Rt QAF △外接圆与直线30x -=相切,∴d r =,即322c c --=,即34c c +=,∴1c =,22a c ==,b =C 的方程为22143x y +=.(3)设()11 M x y ,,()22 N x y ,,由题12 y y ,异号,设1F MN △的内切圆的半径为R ,则1F MN △的周长为48a =,()111142F MN S MN F M F N R R =++=△, 因此要使1F MN △内切圆的面积最大,只需R 最大,此时1F MN S △也最大,112121212F MN S F F y y y y =⋅-=-△, 由题知,直线l 的斜率不为零,可设直线l 的方程为1x my =+, 由221143x my x y =+⎧⎪⎨+=⎪⎩得()2234690m y my ++-=,由韦达定理得122634m y y m -+=+,122934y y m -=+,(0m R ∆>∈⇒)112F MN S y y =-==△令t =1t ≥,()12121211313F MN t S t t t t==≥-+△, 当1t =时,14F MN S R =△有最大值3,此时,0m =,max 34R =,故1F MN △的内切圆的面积的最大值为916π,此时直线l 的方程为1x =. 考点:1.椭圆的标准方程与几何性质;2.直线与椭圆的位置关系;3.直线与圆的位置关系. 21. (本小题满分12分) 已知0t >,设函数()()3231312t f x x x tx +=-++.(1)存在()00 2x ∈,,使得()0f x 是()f x 在[]0 2,上的最大值,求t 的取值范围; (2)()2x f x xe m ≤-+对任意[0 )x ∈+∞,恒成立时,m 的最大值为1,求t 的取值范围.【答案】(1)5[ )3+∞,;(2) 1(0 ]3,.(2)()()()323223131313123131222x x x t t t x x tx xe m m xe x x tx x e x x t +++⎛⎫-++≤-+⇔≤-+-+=-+-+ ⎪⎝⎭,构造函数()()23132x t g x e x x t +=-+-,道m 的最大值为1,等价于()()231302x t g x e x x t +=-+-≥在区间[0 )+∞,上恒成立,由于()0130g t =-≥,则103t <≤,此时()0g x '>恒成立,即()g x 在区间[0 )+∞,上单调递增,符合题意.试题解析:(1)()()()()2'331331f x x t x t x x t =-++=--,①当01t <<时,()f x 在()0 t ,上单调递增,在() 1t ,单调递减,在()1 2,单调递增, ∴()()2f t f ≥,由()()2f t f ≥,得3234t t -+≥在01t <<时无解, ②当1t =时,不合题意;③当12t <<时,()f x 在()0 1,单调递增,在()1 t ,递减,在() 2t ,单调递增, ∴()()1212f f t ⎧≥⎪⎨<<⎪⎩即1332212t t ⎧+≥⎪⎨⎪<<⎩,∴523t ≤<,④当2t ≥时,()f x 在()0 1,单调递增,在()1 2,单调递减,满足条件, 综上所述:5[ )3t ∈+∞,时,存在()00 2x ∈,,使得()0f x 是()f x 在[]0 2,上的最大值.∴()()0130g x g t ≥=-≥,满足条件,∴t 的取值范围是1(0 ]3,.考点:1.导数与函数的单调性、极值,最值;2.函数与不等式.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. (本小题满分10分)选修4-4:坐标系与参数方程已知圆锥曲线2cos :x C y αα=⎧⎪⎨=⎪⎩(α为参数)和定点(0 A ,1F 、2F 是此圆锥曲线的左、右焦点,以原点O 为极点,以x 轴的正半轴为极轴建立极坐标系. (1)求直线2AF 的直角坐标方程;(2)经过点1F 且与直线2AF 垂直的直线l 交此圆锥曲线于M 、N 两点,求12MF NF -的值.【答案】0y +-=;(2试题解析:(1)曲线2cos :x C y αα=⎧⎪⎨=⎪⎩可化为22143x y +=,其轨迹为椭圆,焦点为()1 1 0F -,,()21 0F ,.经过(0 A 和()21 0F ,的直线方程为11x +=0y +. (2)由(1)知,直线2AF的斜率为2l AF ⊥,所以l,倾斜角为30︒, 所以l的参数方程为112x y t ⎧=-⎪⎪⎨⎪=⎪⎩(t 为参数).代入椭圆C的方程中,得213360t --=. 因为 M N ,在点1F的两侧,所以1112MF NF t t -=+考点:1.参数方程与普通方程的互化;2.直线参数方程的应用. 23. (本小题满分10分)选修4-5:不等式选讲 设()34f x x x =-+-. (1)解不等式()2f x ≤;(2)若存在实数x 满足()1f x ax ≤-,试求实数a 的取值范围. 【答案】(1) 59 22⎡⎤⎢⎥⎣⎦,;(2)()1 2[ )2-∞-+∞,,【解析】试题分析:(1)由绝对值的意义去掉绝对值符号,将函数()f x 表示成分段函数的形式,作出函数()f x 的图象,数形结合可得到不等式的解集;(2)在同一坐标系内作出函数()yf x =与函数1y ax =-的图象,数形结合可求出a 的范围.(2)函数1y ax =-的图象是过点()0 1-,的直线, 当且仅当函数()y f x =与直线1y ax =-有公共点时,存在题设的x .由图象知,a 的取值范围为()12[ )2-∞-+∞,,.考点:1.含绝对值不等式的解法;2.分段函数的表示与作图;3.函数与不等式.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档