蜗轮蜗杆
蜗轮蜗杆旋向判定

蜗轮蜗杆 蜗旋杆向传判动定
任务一 认识蜗轮蜗杆传动
蜗杆
蜗轮
2、蜗轮与蜗杆的轴线在空间成 ( 平行、相交、交错)位置 。
[串点成面·握全局]
一、近代交通业发展的原因、特点及影响 1.原因 (1)先进的中国人为救国救民,积极兴办近代交通业,促 进中国社会发展。 (2)列强侵华的需要。为扩大在华利益,加强控制、镇压 中国人民的反抗,控制和操纵中国交通建设。 (3)工业革命的成果传入中国,为近代交通业的发展提供 了物质条件。
()
A.江南制造总局的汽车
B.洋人发明的火车
C.轮船招商局的轮船
D.福州船政局的军舰
[解析] 由材料信息“19世纪七十年代,由江苏沿江居民 到上海”可判断最有可能是轮船招商局的轮船。
[答案] C
[题组冲关]
1.中国近代史上首次打破列强垄断局面的交通行业是 ( )
A.公路运输
B.铁路运输
C.轮船运输
解析:从图片中可以了解到各国举的灯笼是火车形状, 20世纪初的这一幅漫画正反映了帝国主义掠夺中国铁路 权益。B项说法错误,C项不能反映漫画的主题,D项时 间上不一致。 答案:A
[典题例析] [例2] (2010·福建高考)上海是近代中国茶叶的一个外销
中心。1884年,福建茶叶市场出现了茶叶收购价格与上海
C.通过互联网 D.乘坐火车赴各地了解
解析:本题考查中国近代物质生活的变迁。注意题干信
息“20世纪初”“最快捷的方式”,因此应选B,火车速度 远不及电报快。20世纪30年代民航飞机才在中国出现, 互联网出现在20世纪90年代。 答案:B
蜗轮蜗杆计算

蜗轮的计算公式:1传动比=蜗轮齿数×蜗杆头数2中心距=(蜗轮节圆直径+蜗轮节圆直径)△2三。
蜗轮中径=(齿数+2)×模数4蜗轮齿数×蜗轮模数5蜗杆螺距直径=蜗杆外径-2×模数6蜗杆引线=π×元件×头数7螺旋角(前角)TGB=(模数×头数)×蜗杆节径基本参数:蜗轮蜗杆模数m、压力角、蜗杆直径系数Q、导程角、蜗杆头数、蜗杆齿数、齿高系数(1)、间隙系数(0.2)。
其中,模数m和压力角是蜗轮轴表面的模数和压力角,即蜗轮端面的模数和压力角,两者均为标准值。
蜗杆直径系数q是蜗杆分度圆直径与其模数M的比值。
蜗轮蜗杆正确啮合的条件:在中间平面,蜗杆和蜗轮的模数和压力角分别相等,即蜗轮端面的模数等于蜗杆轴线的模数,即标准值。
蜗轮端面的压力角应等于蜗杆的轴向压力角和标准值,即==M。
当蜗轮的交角一定时,必须保证蜗轮和蜗杆的螺旋方向一致。
蜗轮结构通常用于在两个交错轴之间传递运动和动力。
蜗轮相当于中间平面上的齿轮和齿条,蜗杆和螺钉的形状相似。
分类这些系列大致包括:1。
Wh系列蜗轮减速器:wht/whx/whs/whc2;CW系列蜗轮减速器:CWU/CWS/cwo3;WP系列蜗轮减速器:WPA/WPS/WPW/WPE/wpz/wpd4;TP系列包络蜗轮减速器:TPU/TPS/TPA/tpg5;PW型平面双包环面环面蜗杆减速器;另外,根据蜗杆的形状,蜗杆传动可分为圆柱蜗杆传动、环形蜗杆传动和斜蜗杆传动。
[1]组织特征1该机构比交错斜齿轮机构具有更大的传动比。
2两轮啮合齿面间存在线接触,其承载能力远高于交错斜齿轮机构。
三。
蜗杆传动相当于螺旋传动,即多齿啮合传动,传动平稳,噪音低。
4当蜗杆的导程角小于啮合齿间的等效摩擦角时,该机构具有自锁性能,可以实现反向自锁,即只有蜗杆可以驱动蜗轮,而不能驱动蜗轮。
起重机械采用自锁蜗杆机构,其反向自锁性能能起到安全防护作用。
蜗轮蜗杆传动原理

蜗轮蜗杆传动蜗轮蜗杆传动用于两轴交叉成90度,但彼此既不平行又不相交的情况下,通常在蜗轮传动中,蜗杆是主动件,而蜗轮是被动件。
蜗轮蜗杆传动有如下特点:1)结构紧凑、并能获得很大的传动比,一般传动比为7-80。
2) 工作平稳无噪音3) 传动功率范围大4)可以自锁5)传动效率低,蜗轮常需用有色金属制造。
蜗杆的螺旋有单头与多头之分。
传动比的计算如下:I=n1/n2=z/Kn1-蜗杆的转速 n2-蜗轮的转速 K-蜗杆头数 Z-蜗轮的齿数蜗轮及蜗杆机构一、用途:蜗轮蜗杆机构常用来传递两交错轴之间的运动和动力。
蜗轮与蜗杆在其中间平面内相当於齿轮与齿条,蜗杆又与螺杆形状相似。
二、基本参数:模数m、压力角、蜗杆直径系数q、导程角、蜗杆头数、蜗轮齿数、齿顶高系数(取1)及顶隙系数(取0.2)。
其中,模数m和压力角是指蜗杆轴面的模数和压力角,亦即蜗轮轴面的模数和压力角,且均为标准值;蜗杆直径系数q为蜗杆分度圆直径与其模数m的比值,三、蜗轮蜗杆正确啮合的条件1 中间平面内蜗杆与蜗轮的模数和压力角分别相等,即蜗轮的端面模数等於蜗杆的轴面模数且为标准值;蜗轮的端面压力角应等於蜗杆的轴面压力角且为标准值,即==m ,==2 当蜗轮蜗杆的交错角为时,还需保证,而且蜗轮与蜗杆螺旋线旋向必须相同。
四、几何尺寸计算与圆柱齿轮基本相同,需注意的几个问题是:蜗杆导程角()是蜗杆分度圆柱上螺旋线的切线与蜗杆端面之间的夹角,与螺杆螺旋角的关系为,蜗轮的螺旋角,大则传动效率高,当小於啮合齿间当量摩擦角时,机构自锁。
引入蜗杆直径系数q是为了限制蜗轮滚刀的数目,使蜗杆分度圆直径进行了标准化m一定时,q大则大,蜗杆轴的刚度及强度相应增大;一定时,q小则导程角增大,传动效率相应提高。
蜗杆头数推荐值为1、2、4、6,当取小值时,其传动比大,且具有自锁性;当取大值时,传动效率高。
与圆柱齿轮传动不同,蜗杆蜗轮机构传动比不等於,而是,蜗杆蜗轮机构的中心距不等於,而是。
蜗轮蜗杆的原理及应用

蜗轮蜗杆的原理及应用蜗轮蜗杆是一种传动装置,其主要原理是利用蜗杆和蜗轮的齿轮副传动,是一种具有较大传动比的传动装置。
下面将从原理和应用两个方面进行详细阐述。
一、原理:1. 蜗杆的原理:蜗杆是一种带有斜拦齿的圆柱形螺旋齿轮。
其工作原理是通过蜗杆的旋转运动,使蜗杆周围的蜗轮做回转运动。
由于蜗杆的齿数较小,与蜗轮的齿数成比例,因此蜗轮的转速较蜗杆的转速明显降低,实现了较大的传动比。
蜗杆的斜拦齿使其具有自锁功能,可以防止传动系统的逆转。
2. 蜗轮的原理:蜗轮是一种带有蜗杆齿的轮形零件,与蜗杆配合使用。
蜗轮的齿数一般较大,与蜗杆的齿数成比例。
当蜗杆旋转时,由于蜗杆齿与蜗轮齿的啮合,使蜗轮做回转运动。
由于蜗轮的大齿数,因此蜗轮的转速很低。
同时,蜗轮与蜗杆的配合精度要求较高,以确保传动的可靠性和稳定性。
3. 蜗轮蜗杆的原理:蜗轮和蜗杆之间的齿轮传动原理使得蜗杆的转速大大降低,同时转矩升高。
蜗杆的斜拦齿具有自锁功能,可以防止传动系统的逆转。
由于蜗杆蜗轮的传动比一般较大(通常为1:40-1:300),因此蜗轮蜗杆传动被广泛应用于需要大传动比的场合。
二、应用:1. 工业领域:蜗轮蜗杆传动广泛应用于工业生产中的各种机械设备,如输送机、搅拌机、搅拌桨、起重机、冷冻机等。
这些设备一般需要大传动比,并且需要稳定的传动和较大的传动力矩。
2. 机械工程领域:在机械工程领域,蜗轮蜗杆传动也有着广泛的应用。
例如,在车辆的转向机构中,蜗轮蜗杆传动可以实现方向盘到车轮的传动;在船舶的舵机机构中,也可以利用蜗轮蜗杆传动实现舵的转动。
3. 精密仪器领域:蜗轮蜗杆传动由于其精度要求较高,常用于精密仪器中的传动装置。
例如,精密测量仪器、光学仪器、数控设备等,都可以采用蜗轮蜗杆传动实现精密传动和准确控制。
4. 机床工具领域:在机床工具领域,蜗轮蜗杆传动也得到了广泛应用。
例如,车床、铣床、钻床等机床中的进给机构,往往采用蜗轮蜗杆传动实现工件和刀具的精确进给。
《蜗轮蜗杆》课件

02
蜗轮蜗杆的分类
按传动型式分类
圆柱蜗杆传动
主要用于传递空间垂直交错轴之间的运动和 动力,如减速器、增速器等。
圆锥蜗杆传动
主要用于传递空间相互垂直交错轴之间的运 动和动力,如车床的进给机构等。
圆弧蜗杆传动
主要用于传递空间相互垂直交错轴之间的运 动和动力,如圆弧车刀的进给机构等。
按蜗杆形状分类
01
用寿命。
轻量化材料
采用轻质材料,降低蜗轮蜗杆的 重量,提高其运动性能和效率。
耐磨材料
选用具有优异耐磨性能的材料, 减少蜗轮蜗杆的磨损,延长其使
用寿命。
制造工艺的改进
精密铸造
采用精密铸造技术,提高蜗轮蜗杆的几何精度和 表面质量。
热处理技术
优化热处理工艺,提高材料的硬度和抗疲劳性能 。
表面处理
采用喷涂、渗碳淬火等表面处理技术,增强蜗轮 蜗杆的耐磨性和抗腐蚀性。
《蜗轮蜗杆》PPT课件
目录
• 蜗轮蜗杆简介 • 蜗轮蜗杆的分类 • 蜗轮蜗杆的特点 • 蜗轮蜗杆的设计与制造 • 蜗轮蜗杆的维护与保养 • 蜗轮蜗杆的发展趋势与展望
01
蜗轮蜗杆简介
蜗轮蜗杆的定义
01
蜗轮蜗杆是一种常见的传动装置 ,由蜗杆和蜗轮组成,常用于减 速传动。
02
蜗杆通常是一个具有螺旋线的轴 ,而蜗轮则是一个具有与蜗杆相 匹配的轮齿的齿轮。
防止过度磨损
控制载荷
在工作中,应控制蜗轮蜗杆的载荷,避免过载导致过度磨损。
避免突然启动和停止
在启动和停止时,应缓慢进行,避免突然的冲击和振动,以减少磨 损。
及时更换
如发现蜗轮蜗杆磨损严重,应及时更换,以免造成更大的损失。
06
机械设计-蜗轮蜗杆

13
在保证足够强度的条件下,要求材料配对使用。 要求: 具有良好的减摩性、耐磨性、跑合性和抗胶合能力 特点:软硬搭配 蜗杆硬:优质碳素钢、合金结构钢 经表面硬化及调质处理,见表8-5 蜗轮软:铸锡青铜、无锡青铜、灰铸铁, 见表8-6;8-7。
第十章 蜗杆传动
14
第四节 蜗杆传动的强度计算
一、转向(复习)
小齿轮
d
b
斜线
曲线
蜗杆 蜗轮
大齿轮(两侧面往下拉,包住蜗杆)
第十章 蜗杆传动
3
第一节 蜗杆传动的特点和类型
一、特点 集齿轮传动、螺旋传动为一体 1.蜗杆的轮齿——螺旋线 (左、右旋) 单(多)线蜗杆:蜗杆转一周,蜗轮转过一(多)齿 2. i 大,结构紧凑 Z1=1~4 Z2很大 传递动力时:i = 8~80 仅传递运动可达到:i =1000 3.具有自锁性
阿基米德蜗杆:αx=20°
法向直廓蜗杆、渐开线蜗杆:αn=20°
标准值
第十章 蜗杆传动 2.蜗杆导程角γ和分度圆直径d1
pz=zpx1
8γ
s np tanψ = = πd1 πd1
pZ πmZ1 mZ1 tanγ = = = πd1 πd1 d1
Z1 Z1 ∴ d1 = m = qm q= ——蜗杆直径参数 tanγ tanγ 加工蜗轮时需用与蜗杆参数、几何尺寸(除齿顶高 高出一个顶隙外)完全相同的滚刀
解: 1.选类型、精度等级和材料:阿基米德蜗杆;8级精度 蜗杆:45钢,表面淬火,硬度(45-50)HRC
蜗轮:铸锡青铜ZCuSn10Pb1, 砂模铸造
2.确定齿数: 表8-3取: Z1=2,Z2=i Z1=40 初设:η=0.80
见P151
表8-6:[σ]H=200MPa
蜗轮蜗杆的传动设计原理
蜗轮蜗杆的传动设计原理蜗轮蜗杆传动是一种常见的机械传动方式,具有传动比大、承载能力强、传动平稳等优点,常用于工业机械设备中。
其传动原理是通过蜗轮和蜗杆之间的啮合来实现转矩和转速的传递。
蜗轮蜗杆传动由蜗轮(也称为蜗杆齿轮)和蜗杆组成,蜗轮的外形为螺旋状,蜗杆的外形为带有螺旋槽的杆状。
当蜗轮和蜗杆啮合时,通过蜗轮的旋转使蜗杆产生旋转运动,从而实现传递动力。
蜗轮和蜗杆之间的啮合形成斜面传动,有效地提高了传动的效率。
蜗轮蜗杆传动的设计原理主要包括以下几个方面:一、蜗杆的螺旋角度:蜗轮的螺旋角度对传动效率和稳定性有重要影响。
螺旋角度越小,蜗杆旋转一周所实现的传动比越大,但摩擦力和损耗也会增加。
因此,在设计中需要合理选择螺旋角度,以平衡传动比和效率。
二、蜗轮和蜗杆的材质和硬度:蜗轮通常选择高强度、耐磨损的材料制造,如合金钢。
蜗杆则通常选择高硬度、耐磨损的材料制造,如硬化钢或淬火淬硬钢。
选用合适的材质和硬度能够提高蜗轮蜗杆传动的承载能力和使用寿命。
三、蜗轮蜗杆的啮合准确度:蜗轮蜗杆的啮合准确度直接影响传动的稳定性和传动效率。
要求蜗轮蜗杆的啮合面光洁平整,啮合角度准确,否则容易产生额外的摩擦和磨损,降低传动效率,甚至导致传动失效。
四、润滑和散热:蜗轮蜗杆传动需要进行充分的润滑,以减少摩擦和磨损。
常见的润滑方式包括润滑油膜润滑、浸油润滑和油浸润滑等。
同时,蜗轮蜗杆传动还需要考虑散热问题,以保证传动过程中温度的稳定性。
五、传动比的选择:蜗轮蜗杆传动的传动比通常为大于1的数值,决定了输入和输出之间的速度和转矩的比例。
传动比的选择需要根据实际应用需求和机械设备的工作特性来确定。
六、传动效率和传动精度的考虑:蜗轮蜗杆传动的效率通常较低,为60%~90%,且传动精度也会受到蜗轮蜗杆啮合面质量的影响。
因此,在设计中需要综合考虑传动效率和传动精度的要求,以满足实际应用的需要。
综上所述,蜗轮蜗杆传动的设计原理包括蜗杆的螺旋角度、蜗轮和蜗杆的材质和硬度、啮合准确度、润滑和散热、传动比的选择,以及传动效率和传动精度的考虑等方面。
机械设计基础第12章蜗轮蜗杆
机械设计基础第12章蜗轮蜗杆蜗轮蜗杆是一种常见的传动机构,广泛应用于机械设备中。
蜗轮蜗杆传动具有体积小、传动比大、传动平稳等特点,在机械设计中有着重要的应用价值。
蜗轮蜗杆传动是一种通用型的不可逆传动,典型的结构包括蜗轮和蜗杆两个部分。
蜗轮是一种螺旋状的齿轮,其齿面与蜗杆的蜗杆螺旋面相配合。
蜗杆是一种具有螺旋线形状的轴,其作为传动元件,通过旋转运动驱动蜗轮。
蜗轮齿与蜗杆螺旋线的位置关系使得蜗轮只能顺时针旋转,而无法逆时针旋转。
这种结构特点决定了蜗轮蜗杆传动是一种不可逆传动。
蜗轮蜗杆传动的主要工作原理是靠蜗杆的螺旋面与蜗轮的齿轮面的啮合来实现传动。
在传动过程中,蜗杆通过旋转带动蜗轮转动,从而实现动力传递。
由于蜗杆的螺旋面与蜗轮的齿轮面接触面积小,所以传动效率相对较低。
为了提高传动效率,降低摩擦损失,需要在蜗轮齿面和蜗杆螺旋面之间添加润滑油。
蜗轮蜗杆传动具有很高的传动比,可达到1:40以上,因此在机械设备中常常使用蜗轮蜗杆传动来实现大速比的传动。
例如在起重机构中,通常采用蜗轮蜗杆传动来提高起重高度。
此外,蜗轮蜗杆传动还可以实现两个轴的不同速度传动,例如在机械车床中使用蜗轮蜗杆传动来实现工件的不同转速。
在机械设计中,蜗轮蜗杆传动的设计需要根据实际应用情况确定传动比、工作环境要求等参数。
首先需要确定传动比,在确定传动比的同时要考虑传动效率和传动正反转的能力。
其次,需要根据工作环境来选择蜗杆和蜗轮的材料,以提高传动的可靠性和耐用性。
还需要注意蜗杆和蜗轮的几何尺寸和配合精度,以保证传动的准确性和稳定性。
此外,在设计过程中还需要进行强度校核、轴承选择等工作,以确保传动的安全可靠。
总之,蜗轮蜗杆传动在机械设计中具有重要的应用价值。
它的特点是传动比大、传动平稳,适用于需要大速比、不可逆传动的场合。
在设计蜗轮蜗杆传动时,需要根据实际应用情况,确定传动比、材料、尺寸、配合精度等参数,以保证传动的稳定性和可靠性。
蜗轮蜗杆的计算
第3章运动参数计算3.1蜗轮相关参数计算模数m决定涡轮的结构尺寸,模数越大,齿厚越大,承载能力越强。
根据强度要求:端面模数:m=2.5 z2=72齿全高:h2=2.2m×2.5=5.5mm分度圆直径:d2=m z=2.5×72=180mm根圆直径:df2=d-2.4m=180-2.4×2.5=174mm顶圆直径:d a2=d2+2m=180+2×2.5=185mm3.2 蜗杆相关参数计算齿顶高:h a1 =m=2.5mm蜗杆头数k=1查表ms=2.5 q=12齿根高:hf1=1.2m=1.2×2.5=3mm分度圆直径:d1=mq=2.5×12=30mm顶圆直径:da1=d1+2m=30+2×2.5=35m根圆直径:df1=d1-2.4m=30-2.4×2.5=24.2mm中心距:a=(d1+d2)/2=(30+180)/2=105mm表3-2涡轮蜗杆的计算参数结果3.3型螺纹参数计算(1)公称直径:设T型螺纹公称直径为100mm现有电动机:22kw 转速:750r/min则:T=9550p/n=9550×(22/750)=280.1 N·m中径处的F1=2T/d=(2×208.1×1000)/94=5959.6N丝杠提示力:F1提=(πd×F1)/p=(3.14×94×5959.6)/12=146586N=14.66吨因为设计要求的提升力为10吨F1提>F1许所以公称直径d=100mm满足设计要求且安全(2)螺距:p=12 a c= 0.5(3)牙型角:α=30°(4)中径:d2=d-0.5p=100-0.5×12=94mm(5)外螺纹内经:d内=d-2(0.5p+a c)=87mmd外=d=100mm(6)内螺纹顶径:d顶=d-2(0.5p+a c)=87mm(7)头数:k=1(8)旋向:右旋.3.4 计算丝杆在一分钟之内提升高度N电=750r/min n杆=750r/minZ轮/ Z杆=n轮/ n杆即72/1=750/n轮n轮≈10r/min 蜗轮转一圈,T型螺纹提升一个螺距(12mm)所以丝杆1分钟提升高度为:H=10t=10×12=120mm。
蜗轮蜗杆材料
蜗轮蜗杆材料蜗轮蜗杆传动是一种常见的传动形式,具有传动比大、传动平稳、噪音小等优点,因此在工业生产中得到了广泛应用。
而蜗轮蜗杆材料作为蜗轮蜗杆传动的重要组成部分,对传动性能起着至关重要的作用。
本文将对蜗轮蜗杆材料进行介绍和分析。
首先,蜗轮蜗杆材料需要具备一定的硬度和耐磨性。
由于蜗轮蜗杆传动在工作过程中需要承受较大的压力和摩擦,因此材料的硬度和耐磨性是至关重要的。
常见的蜗轮蜗杆材料有铜、铝、合金钢等,它们都具有较高的硬度和耐磨性,能够满足传动的要求。
其次,蜗轮蜗杆材料需要具备良好的耐热性和耐腐蚀性。
在一些特殊的工作环境中,蜗轮蜗杆传动需要承受高温或腐蚀介质的影响,因此材料需要具备良好的耐热性和耐腐蚀性。
一些特殊的合金材料,如镍基合金、钛合金等,具有良好的耐热性和耐腐蚀性,能够满足特殊工况下的使用要求。
此外,蜗轮蜗杆材料还需要具备一定的韧性和强度。
在传动过程中,蜗轮蜗杆需要承受较大的冲击和振动,因此材料需要具备一定的韧性和强度,以保证传动的稳定性和可靠性。
一些高强度的合金钢和特殊合金材料,如硬质合金、钛铝合金等,具有较高的韧性和强度,能够满足传动的要求。
总的来说,蜗轮蜗杆材料需要具备硬度、耐磨性、耐热性、耐腐蚀性、韧性和强度等多种性能,以满足不同工况下的使用要求。
在选择蜗轮蜗杆材料时,需要根据具体的传动要求和工作环境来进行合理的选择,以保证传动的稳定性和可靠性。
综上所述,蜗轮蜗杆材料作为蜗轮蜗杆传动的重要组成部分,对传动性能起着至关重要的作用。
合理选择和应用蜗轮蜗杆材料,能够有效提高传动的效率和可靠性,推动工业生产的发展和进步。
希望本文的介绍和分析能够对蜗轮蜗杆材料的选择和应用提供一定的参考和帮助。