圆的轨迹方程专题ppt课件
合集下载
与圆有关的轨迹问题 ppt课件

NhomakorabeaE
F
A•
•C
椭圆
a
例2:
③如图,C是定圆A外的一个定点, D是圆上动点求线段CD的垂直平
分线与半径AD的交点F轨迹
D
A•
•C
F
双曲 线
变 题1:已 知 椭 圆 的 方ax程 22 为 by22 1(a b0), F1,F2分 别 为 左 右,焦 Q是点椭 圆 上 任 意,从 一 右 焦 点 F2作F1QF2外 角 平 分 线 的,垂 垂足 线为 P,求 点P的 轨 迹 方. 程
B M A
① C(1,0)是定圆A: x2+y2=4 例2: 内的一个定点,D是圆上的动点,
求线段CD的中点E轨迹
D
E
O•
•C
圆
如果点C在圆外呢?
如果点C在圆外(3,1), 一切照旧
D E
O•
C
圆
例2:
②如图,C是定圆A内的一个定点, D是圆上动点求线段CD的垂直平
分线与半径AD的交点F轨迹
D
故 轨 迹 方 程 为 :x9212y.7 251(x>o)
轨迹轨方迹程
经过点 A(5,0)且与
变例式13::圆 C (x 5)2 y2 49
相外切的圆的圆心 P 的轨迹方程。
M
Cr
A
r-7 P
r
经过点 A(5,0)且与
变例式23::圆 C (x 5)2 y2 49169
相外切的圆的圆心 P 的轨迹方程
外切的圆的圆心 P 的轨迹方程
Mr P
C
7
Ar
解:圆C的圆心C(-5,0),
设动圆P的半径为r
y
即|PA|=r
P
F
A•
•C
椭圆
a
例2:
③如图,C是定圆A外的一个定点, D是圆上动点求线段CD的垂直平
分线与半径AD的交点F轨迹
D
A•
•C
F
双曲 线
变 题1:已 知 椭 圆 的 方ax程 22 为 by22 1(a b0), F1,F2分 别 为 左 右,焦 Q是点椭 圆 上 任 意,从 一 右 焦 点 F2作F1QF2外 角 平 分 线 的,垂 垂足 线为 P,求 点P的 轨 迹 方. 程
B M A
① C(1,0)是定圆A: x2+y2=4 例2: 内的一个定点,D是圆上的动点,
求线段CD的中点E轨迹
D
E
O•
•C
圆
如果点C在圆外呢?
如果点C在圆外(3,1), 一切照旧
D E
O•
C
圆
例2:
②如图,C是定圆A内的一个定点, D是圆上动点求线段CD的垂直平
分线与半径AD的交点F轨迹
D
故 轨 迹 方 程 为 :x9212y.7 251(x>o)
轨迹轨方迹程
经过点 A(5,0)且与
变例式13::圆 C (x 5)2 y2 49
相外切的圆的圆心 P 的轨迹方程。
M
Cr
A
r-7 P
r
经过点 A(5,0)且与
变例式23::圆 C (x 5)2 y2 49169
相外切的圆的圆心 P 的轨迹方程
外切的圆的圆心 P 的轨迹方程
Mr P
C
7
Ar
解:圆C的圆心C(-5,0),
设动圆P的半径为r
y
即|PA|=r
P
《轨迹方程的求法》课件

结合现代科技手段,如人工智能、大数据等,对 轨迹方程进行数据分析和挖掘,揭示隐藏的运动 规律和模式。
THANKS
感谢观看
05
总结与展望
轨迹方程的重要性和意义
轨迹方程是描述物体运动规律的 重要工具,对于物理学、工程学 、航天科学等领域具有重要意义
。
通过轨迹方程,我们可以精确地 预测物体未来的位置和运动状态 ,为实际应用提供重要的参考依
据。
掌握轨迹方程的求法,有助于提 高我们对物体运动规律的认识和 理解,为相关领域的研究和发展
04
1. 根据已知条件,确定动点坐标之间的关 系。
2. 运用代数方法,将坐标关系转化为轨迹 方程。
05
06
3. 化简轨迹方程,得到最终结果。
参数法
定义:参数法是指引入参数来
适用范:适用于已知条件较
步骤
表示动点的坐标,从而得到轨
迹方程的方法。
01
为复杂,需要引入参数来表示
动点坐标的情况。
02
03
1. 引入参数,表示动点的坐标 。
3. 根据轨迹上点的坐标,推导出轨迹 方程。
03
常见轨迹方程的求解示例
圆轨迹方程的求解
总结词
通过已知条件,利用圆上三点确定一个圆的定理,求解圆心 和半径。
详细描述
首先确定圆上的三个点,然后利用圆上三点确定一个圆的定 理,即圆心在三个点的中垂线交点上,半径等于三个点到圆 心距离的和的一半,求解出圆心和半径,即可得到圆的轨迹 方程。
轨迹方程可以用来描述行星、卫星等 天体的运动轨迹,帮助我们理解宇宙 中的运动规律。
在物理中,有时需要研究两物体碰撞 后的运动轨迹,通过建立轨迹方程并 求解,可以了解碰撞后的运动状态。
THANKS
感谢观看
05
总结与展望
轨迹方程的重要性和意义
轨迹方程是描述物体运动规律的 重要工具,对于物理学、工程学 、航天科学等领域具有重要意义
。
通过轨迹方程,我们可以精确地 预测物体未来的位置和运动状态 ,为实际应用提供重要的参考依
据。
掌握轨迹方程的求法,有助于提 高我们对物体运动规律的认识和 理解,为相关领域的研究和发展
04
1. 根据已知条件,确定动点坐标之间的关 系。
2. 运用代数方法,将坐标关系转化为轨迹 方程。
05
06
3. 化简轨迹方程,得到最终结果。
参数法
定义:参数法是指引入参数来
适用范:适用于已知条件较
步骤
表示动点的坐标,从而得到轨
迹方程的方法。
01
为复杂,需要引入参数来表示
动点坐标的情况。
02
03
1. 引入参数,表示动点的坐标 。
3. 根据轨迹上点的坐标,推导出轨迹 方程。
03
常见轨迹方程的求解示例
圆轨迹方程的求解
总结词
通过已知条件,利用圆上三点确定一个圆的定理,求解圆心 和半径。
详细描述
首先确定圆上的三个点,然后利用圆上三点确定一个圆的定 理,即圆心在三个点的中垂线交点上,半径等于三个点到圆 心距离的和的一半,求解出圆心和半径,即可得到圆的轨迹 方程。
轨迹方程可以用来描述行星、卫星等 天体的运动轨迹,帮助我们理解宇宙 中的运动规律。
在物理中,有时需要研究两物体碰撞 后的运动轨迹,通过建立轨迹方程并 求解,可以了解碰撞后的运动状态。
圆的方程课件PPT

2.点与圆的位置关系 设点 P 到圆心的距离为 d,圆的半径为 r,则点与圆的位置有 如表所示的对应关系.
位置关系 点在圆外 点在圆上 点在圆内
d 与 r 的关系 ___d_>_r___ ___d_=__r__ ___d_<_r___
自主探究 探究 1:方程(x-a)2+(y-b)2=r2(a,b,r∈R)表示一个圆吗? 为什么?
解:
法一:设圆的方程为(x-a)2+(y-b)2=r2(r>0).
则b5=-0a,2+2-b2=r2, 3-a2+-2-b2=r2.
a=4, 解得b=0,
r= 5.
∴所求圆的方程为(x-4)2+y2=5.
法二:
∵圆过 A(5,2),B(3,-2)两点, ∴圆心一定在线段 AB 的中垂线上. AB 中垂线的方程为 y=-12(x-4), 令 y=0,得 x=4.即圆心坐标 C(4,0), ∴r=|CA|= 5-42+2-02= 5, ∴所求圆的方程为(x-4)2+y2=5.
【答案】未必表示圆,当 r≠0 时,表示圆心为(a,b),半径 为|r|的圆;当 r=0 时,表示一个点(a,b).
探究 2:由圆的标准方程可以得到圆的哪些几何特征? 【答案】由圆的标准方程可直接得到圆的圆心坐标和半径.
预习测评 1.若一圆的标准方程为(x-1)2+(y+5)2=3,则此圆的圆心和 半径分别是( ) A.(-1,5), 3 B.(1,-5), 3 C.(-1,5),3 D.(1,-5),3
错解:由题意可知圆心在直线 y=2x 上,且在线段 AB 的垂直 平分线 x=2 上,由xy==22,x, 可得圆心 C(2,4),r=|AC|= 17, ∴圆 C 的方程为(x-2)2+(y-4)2=17.
圆方程ppt课件ppt课件

03
圆的方程的应用
解析几何中的应用
确定点与圆的位置关系
通过圆的方程,可以判断一个点是否在圆上、 圆内或圆外。
求解圆的切线方程
利用圆的方程,可以求出过某一点的圆的切线 方程。
求解圆心和半径
根据圆的方程,可以求出圆心的坐标和半径的长度。
几何图形中的应用
判断两圆的位置关系
通过比较两个圆的方程,可以判断两圆是相交、相切还是相 离。
03
frac{E}{2})$ 和半径 $frac{sqrt{D^2 + E^2 - 4F}}{2}$。
圆的参数方程
圆的参数方程为 $x = a + rcostheta$,$y = b + rsintheta$,其中 $(a, b)$ 是圆 心坐标,$r$ 是半径,$theta$ 是 参数。
该方程通过参数 $theta$ 描述了 圆上任意一点的坐标。
$(x - h)^{2} + (y - k)^{2} = r^{2}$ ,其中$(h, k)$是圆心坐标,$r$是半 径。
不在同一直线上的三个点可以确定一 个圆,且该圆只经过这三个点。
圆的基本性质
1 2
圆的对称性
圆关于其直径对称,也关于经过其圆心的任何直 线对称。
圆的直径与半径的关系
直径是半径的两倍,半径是直径的一半。
该方程描述了一个以 $(h, k)$ 为圆心,$r$ 为
半径的圆。
当 $r = 0$ 时,方程描 述的是一个点 $(h, k)$。
圆的一般方程
01
圆的一般方程为 $x^2 + y^2 + Dx + Ey + F = 0$。
02
该方程可以表示任意一个圆,其中 $D, E, F$ 是常数。
选择必修 第二章 2.4.1 圆的标准方程 课件(共26张PPT)

究位置关系、距离
等问题
新知引入
类比直线方程的研究过程,如何研究圆的方程呢?
圆
平面直角坐标系
圆的方程
代数运算
利用圆的方程,研究
圆有关的位置关系、
几何度量等问题
新知探究
在平面直角坐标系中,如何确定一个圆?
如图,在平面直角坐标系中,⨀A的圆心A的坐标为(a,b),半径为r,M(x,y)为
圆上任意一点,⨀A就是以下点的集合
多边形和圆是平面几何中的两类基本图形.建立直线的方程后,我们可以运
用它研究多边形这些“直线形”,解决边所在直线的平行或垂直、边与边的交
点以及点到线段所在直线的距离等问题.类似地,为了研究圆的有关性质,解决
与圆有关的问题,我们首先需要建立圆的方程.
我国的墨子云:圆,一中同长也.
意思:圆有一个圆心,圆心到圆周上各点的距离(即半径)都相等.
程①.于是
(5 − )2 +(1 − )2 = 2 ,
൞(7 − )2 +(−3 − )2 = 2 ,.
(2 − )2 +(−8 − )2 = 2
知新探究
【例2】△ABC的三个顶点分别是A(5,1),B(7,-3),C(2,-8),
求△ABC的外接圆的标准方程.
解: 即
2 + 2 − 10 − 2 + 26 = 2 ,
心A间的距离为r,点M就在⨀A上.
这时,我们把上述方程称为圆心为A,半径为r的圆
的标准方程(standard equation of thecircle).
半径r
圆的几何要素: 圆心(a,b)
圆心在坐标原点,
半径为r的圆的标准
三个独立条件求a,b,r确定一个圆的方程.
等问题
新知引入
类比直线方程的研究过程,如何研究圆的方程呢?
圆
平面直角坐标系
圆的方程
代数运算
利用圆的方程,研究
圆有关的位置关系、
几何度量等问题
新知探究
在平面直角坐标系中,如何确定一个圆?
如图,在平面直角坐标系中,⨀A的圆心A的坐标为(a,b),半径为r,M(x,y)为
圆上任意一点,⨀A就是以下点的集合
多边形和圆是平面几何中的两类基本图形.建立直线的方程后,我们可以运
用它研究多边形这些“直线形”,解决边所在直线的平行或垂直、边与边的交
点以及点到线段所在直线的距离等问题.类似地,为了研究圆的有关性质,解决
与圆有关的问题,我们首先需要建立圆的方程.
我国的墨子云:圆,一中同长也.
意思:圆有一个圆心,圆心到圆周上各点的距离(即半径)都相等.
程①.于是
(5 − )2 +(1 − )2 = 2 ,
൞(7 − )2 +(−3 − )2 = 2 ,.
(2 − )2 +(−8 − )2 = 2
知新探究
【例2】△ABC的三个顶点分别是A(5,1),B(7,-3),C(2,-8),
求△ABC的外接圆的标准方程.
解: 即
2 + 2 − 10 − 2 + 26 = 2 ,
心A间的距离为r,点M就在⨀A上.
这时,我们把上述方程称为圆心为A,半径为r的圆
的标准方程(standard equation of thecircle).
半径r
圆的几何要素: 圆心(a,b)
圆心在坐标原点,
半径为r的圆的标准
三个独立条件求a,b,r确定一个圆的方程.
人教A版高中数学必修二课件:圆的方程的综合应用 (共49张PPT)

点A29, 0.
1 求圆弧C2的方程; 2曲线C上是否存在点P,满足PA 30PO?若存
在,指出有几个这样的点;若不存在,请说明理由;
3已知直线l:x my 14 0与曲线C交于E、F两
点,当EF 33时,求坐标原点O到直线l的距离.
解析:(1)圆弧C1所在圆的方程为x2 y2 169,
5
解:令圆心坐标为( a,b),半径为 r,
y
则r2 12 a2 ①
由(2)知 ACB 90 r 2 b ②
由(3)
a 2b 12 (2)2
5 5
a 2b 1 ③
. 1 r C
|a| |b| r
oA
Bx
联立①②消去 r 2b2 a2 1 ④
③④
a 2b2
2b a2
1
2 方法1:当t=0时,圆C:x 2+y 2=4;
当t=1时,圆C:x2+y2-2x-2y=0.
解方程组
x 2
x2
y2 y2
4 2x
2
y
, 解得 0
x
y
0或 2
x
y
2 0
将
x y
0 2
代入圆C的方程,左边=-4t
2+4t不恒等于0;
将
x
y
2 0
代入圆C的方程,左边=0=右边,
故圆C过定点2, 0.
方法2:将圆C的方程整理为( x 2+y 2-4)
+(-2x+4)t+(-2y)t 2=0.
x2 y2 4 0
令 2x 4 0 2 y 0
,
解得
x
y
2 0
.
故圆C过定点2, 0.
动圆过定点问题有两种解法: 一是先从动圆系中取出两个已知圆,求出它们 的交点坐标,再将求得的坐标代入动圆中验证; 二是将动圆方程改写为关于参数t的等式,再 利用多项式恒等理论列出关于x,y的方程组,解得 定点坐标.
1 求圆弧C2的方程; 2曲线C上是否存在点P,满足PA 30PO?若存
在,指出有几个这样的点;若不存在,请说明理由;
3已知直线l:x my 14 0与曲线C交于E、F两
点,当EF 33时,求坐标原点O到直线l的距离.
解析:(1)圆弧C1所在圆的方程为x2 y2 169,
5
解:令圆心坐标为( a,b),半径为 r,
y
则r2 12 a2 ①
由(2)知 ACB 90 r 2 b ②
由(3)
a 2b 12 (2)2
5 5
a 2b 1 ③
. 1 r C
|a| |b| r
oA
Bx
联立①②消去 r 2b2 a2 1 ④
③④
a 2b2
2b a2
1
2 方法1:当t=0时,圆C:x 2+y 2=4;
当t=1时,圆C:x2+y2-2x-2y=0.
解方程组
x 2
x2
y2 y2
4 2x
2
y
, 解得 0
x
y
0或 2
x
y
2 0
将
x y
0 2
代入圆C的方程,左边=-4t
2+4t不恒等于0;
将
x
y
2 0
代入圆C的方程,左边=0=右边,
故圆C过定点2, 0.
方法2:将圆C的方程整理为( x 2+y 2-4)
+(-2x+4)t+(-2y)t 2=0.
x2 y2 4 0
令 2x 4 0 2 y 0
,
解得
x
y
2 0
.
故圆C过定点2, 0.
动圆过定点问题有两种解法: 一是先从动圆系中取出两个已知圆,求出它们 的交点坐标,再将求得的坐标代入动圆中验证; 二是将动圆方程改写为关于参数t的等式,再 利用多项式恒等理论列出关于x,y的方程组,解得 定点坐标.
圆的一般方程轨迹问题解析ppt课件
例5.已知:一个圆的直径的两端点是A(x1,y1) 、B(x2,y2).
证明:圆的方程是 (x-x1)(x-x2)+(y-y1)(y-y2)=0
解法一:求圆心、求半径 •P
解法二:相关点法
P点满足PA⊥PB
A
• C
B
即 yy1 yy2 1
xx1 xx2
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
【分析】设M(x,y), A(x0,y0)
因为M是AB的中点,
所以
x
y
x0 4 2
y0 3 2
解得
x0 y0
2x 2y
4 3
又因为点A在圆(x+1)2+y2=4上,
y
M(x,y) B(4,3)
A (x0,y0)
o
x
所以(2x-4+1)2+(2y-3)2=4,
得 (x3)2(y3)2 1为所求。
【变式】过点P (4,0)作直线与圆x2+y2=4相交于不同 两点A、B ,求线段AB的中点M的轨迹方程,并说 明轨迹的形状。
(x-2)2+y2=4
(0≤x< 1)
y
A M B
o
Px
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
∴端点C的轨迹方程是
(x-4)2+(y-2)2=10(
x y
35且xy
5 -1
).
故端点C的轨迹是以A(4,2)为圆心, 1 0 为半径的圆,
圆的标准方程ppt课件
_____5______.
解析:圆 C : x2 y2 25 的圆心为C(0,0) ,半径r = 5 , 因为 AC (8 0)2 (6 0)2 10 5 ,所以点 A 在圆外, 所以 AP 的最小值为 AC r 10 5 5 ,故答案为:5.
总结一下
圆的标准方程
6.已知 A2,2、 B2,6 ,则以 AB 为直径的圆的标准方程为_x_2____.y4 2 8
解析:线段 AB 的中点坐标为0, 4 , AB 2 22 2 62 4 2 ,
所以,所求圆的半径为 2 2 ,故所求圆的标准方程为 x2 y 42 8 .
7.已知点 A(8, 6) 与圆C : x2 y2 25 ,P 是圆 C 上任意一点,则 AP 的最小值是
求圆的标准方程的两种方法
1.待定系数法.先设圆的标准方法 x a 2 y b 2 r2 ,再根据条件列出关于 a, b,r 的三个独立方程,通过解方程组求出 a,b,r 的值,从而得到圆的标准方程, 如例题 2 的解法.这是一种代数解法. 2.直接求解法.先根据题目条件求出圆心和半径,直接写出圆的标准方程,如例 3 的解法,这种解法往往需要圆的几何性质.
例 3 已知圆心为 C 的圆经过 A(1,1) ,B(2 ,2) 两点,且圆心 C 在直线l : x y 1 0 上, 求此圆的标准方程.
分析:设圆心 C 的坐标为 a,b .由已知条件可知, CA CB ,且a b 1 0 , 由此可以求出圆心坐标和坐标.
解:解法1:
设圆心 C 的坐标为 (a ,b) . 因为圆心 C 在直线 l : x y 1 0 上,所以 a b 1 0 .① 因为 A,B 是圆上两点,所以| CA| | CB | . 根据两点间距离公式,有 (a 1)2 (b 1)2 (a 2)2 (b 2)2 , 即 a 3b 3 0 .② 由①②可得 a 3,b 2 . 所以圆心 C 的坐标是 (3, 2) . 圆的半径 r | AC | (1 3)2 (1 2)2 5 .
解析:圆 C : x2 y2 25 的圆心为C(0,0) ,半径r = 5 , 因为 AC (8 0)2 (6 0)2 10 5 ,所以点 A 在圆外, 所以 AP 的最小值为 AC r 10 5 5 ,故答案为:5.
总结一下
圆的标准方程
6.已知 A2,2、 B2,6 ,则以 AB 为直径的圆的标准方程为_x_2____.y4 2 8
解析:线段 AB 的中点坐标为0, 4 , AB 2 22 2 62 4 2 ,
所以,所求圆的半径为 2 2 ,故所求圆的标准方程为 x2 y 42 8 .
7.已知点 A(8, 6) 与圆C : x2 y2 25 ,P 是圆 C 上任意一点,则 AP 的最小值是
求圆的标准方程的两种方法
1.待定系数法.先设圆的标准方法 x a 2 y b 2 r2 ,再根据条件列出关于 a, b,r 的三个独立方程,通过解方程组求出 a,b,r 的值,从而得到圆的标准方程, 如例题 2 的解法.这是一种代数解法. 2.直接求解法.先根据题目条件求出圆心和半径,直接写出圆的标准方程,如例 3 的解法,这种解法往往需要圆的几何性质.
例 3 已知圆心为 C 的圆经过 A(1,1) ,B(2 ,2) 两点,且圆心 C 在直线l : x y 1 0 上, 求此圆的标准方程.
分析:设圆心 C 的坐标为 a,b .由已知条件可知, CA CB ,且a b 1 0 , 由此可以求出圆心坐标和坐标.
解:解法1:
设圆心 C 的坐标为 (a ,b) . 因为圆心 C 在直线 l : x y 1 0 上,所以 a b 1 0 .① 因为 A,B 是圆上两点,所以| CA| | CB | . 根据两点间距离公式,有 (a 1)2 (b 1)2 (a 2)2 (b 2)2 , 即 a 3b 3 0 .② 由①②可得 a 3,b 2 . 所以圆心 C 的坐标是 (3, 2) . 圆的半径 r | AC | (1 3)2 (1 2)2 5 .
圆的轨迹方程ppt课件
x0 2
y0 0
x,
y.
M是AP的中点,
2
2
y
P x0 , y0 ,
M x, y
即x0 2 x 2, y0 2 y.①
O
点A( x0 , y0 )在圆上, x0 y0 4.②
2
2
将①代入②得 (2 x 2) 2 (2 y ) 2 4.
和“去掉多余”的点.
求轨迹方程的关键:动中找定——在动点运动的过程中
找出动点满足的不变的性质。
轨迹方程
− 6 2 + ²=32.
所以点的轨迹是以 (6,2)为圆心,半径为4 2的一个圆.
轨迹
求轨迹方程——①(坐标法)
[例1](P89-9)已知点M与两个定点O(0,0),A(3,0)的距离之比为
2
2
点P的轨迹方程为x y 4, 且
,
.
y 0 y 0
点P的轨迹是圆心为(0,0), 半径为2的圆,
并除去点(2,0), ( 2,0).
求轨迹方程——④消参法
P 89.10. 在平面直角坐标中, 如果点P的坐标( x , y )
x a r cos ,
满足
y
2
2
m
1
(
m
1)
2
c( m 2 1)
2mc
表示圆心在
, 0 , 半径是
的圆
2
m 1
m 1
小结:坐标法求动点轨迹问题的基本步骤
第一步
第二步
第三步
建立适当的平面直角坐标系
寻找动点满足的几何关系
2.4.1圆的标准方程课件共23张PPT
上、圆内,还是圆外.
解:由已知得,圆心A的位置为线段P1P2的中 6) ,
P1 P2
利用两点间距离公式得 r =
=
2
4 - 6 + 9 - 3
圆的标准方程为: (x-5)2+(y-6) 2=10.
2
2
2
= 10.
2.已知P 1(4, 9) , P 2(6, 3)两点,求以线段P 1P 2为直径
-8) , 求△ABC的外接圆的标准方程.
解:线段AB的垂直平分线l1的方程是 x - 2 y - 8 = 0
同理, 线段AC的垂直平分线l2的方程是 x + 3 y + 7 = 0
x -2y-8 = 0
圆心的坐标就是方程组
的解 .
x +3y +7 = 0
x = 2,
所以, 圆心C的坐标(2 , -3) , 圆的半径
分析:设圆心C的坐标为(a, b) . 由已知条件可知 |CA|=
|CB|, 且a-b+1=0 . 由此可求出圆心坐标和半径 .
又因为线段AB是圆的一条弦 , 根据平面几何知识, AB
的中点与圆心C的连线垂直于AB , 由此可得到另一种解法.
解法1:设圆心C的坐标为(a, b) . 因为圆心C在直线 l :
分析: 不在同一条直线上的三个点可以确定一个圆 ,
三角形有唯一的外接圆 . 显然已知的三个点不在同一条直
线上 . 只要确定了a, b, r , 圆的标准方程就确定了.
例2 △ABC的三个顶点分别是A(5, 1) , B(7, -3) , C(2,
-8) , 求△ABC的外接圆的标准方程.
2
2
2
解: 设所求的方程是 x - a + y - b = r
解:由已知得,圆心A的位置为线段P1P2的中 6) ,
P1 P2
利用两点间距离公式得 r =
=
2
4 - 6 + 9 - 3
圆的标准方程为: (x-5)2+(y-6) 2=10.
2
2
2
= 10.
2.已知P 1(4, 9) , P 2(6, 3)两点,求以线段P 1P 2为直径
-8) , 求△ABC的外接圆的标准方程.
解:线段AB的垂直平分线l1的方程是 x - 2 y - 8 = 0
同理, 线段AC的垂直平分线l2的方程是 x + 3 y + 7 = 0
x -2y-8 = 0
圆心的坐标就是方程组
的解 .
x +3y +7 = 0
x = 2,
所以, 圆心C的坐标(2 , -3) , 圆的半径
分析:设圆心C的坐标为(a, b) . 由已知条件可知 |CA|=
|CB|, 且a-b+1=0 . 由此可求出圆心坐标和半径 .
又因为线段AB是圆的一条弦 , 根据平面几何知识, AB
的中点与圆心C的连线垂直于AB , 由此可得到另一种解法.
解法1:设圆心C的坐标为(a, b) . 因为圆心C在直线 l :
分析: 不在同一条直线上的三个点可以确定一个圆 ,
三角形有唯一的外接圆 . 显然已知的三个点不在同一条直
线上 . 只要确定了a, b, r , 圆的标准方程就确定了.
例2 △ABC的三个顶点分别是A(5, 1) , B(7, -3) , C(2,
-8) , 求△ABC的外接圆的标准方程.
2
2
2
解: 设所求的方程是 x - a + y - b = r
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆的轨迹方程
1
例3 己知圆心为C的圆经过点A(1,1)和B(2,-2),且 圆心在直线l:x-y+1=0上,求圆心为C的圆的标准方 程.
yl
A
Co
x上的动点,点M为OP(O为原点) 中点,求动点M的轨迹方程
2.已知线段AB的端点B的坐标是(4,3),端点A在圆 (x 1)2 y2 4上运动,求线段AB的中点M的轨迹
6.已知点M与两个定点 O(0,0),A(3,0) 的距离的比为 1 ,求点M的轨迹方程 .
2
4
方程
3.已知两定点A(- 2,0)、B(1,1),若动点P 满足 PA 2 PB,则点P轨迹方程所包围的图 形面积为?
3
4.长为2a的线段AB的两个端点A和B分别在x轴和 y轴上滑动,求线段AB的中点的轨迹方程;
5.等腰三角形的顶点A的坐标是(4,2),底边 一个端点B的坐标是(3,5),求另一个端点C 的轨迹方程,并说明它是什么图形?
1
例3 己知圆心为C的圆经过点A(1,1)和B(2,-2),且 圆心在直线l:x-y+1=0上,求圆心为C的圆的标准方 程.
yl
A
Co
x上的动点,点M为OP(O为原点) 中点,求动点M的轨迹方程
2.已知线段AB的端点B的坐标是(4,3),端点A在圆 (x 1)2 y2 4上运动,求线段AB的中点M的轨迹
6.已知点M与两个定点 O(0,0),A(3,0) 的距离的比为 1 ,求点M的轨迹方程 .
2
4
方程
3.已知两定点A(- 2,0)、B(1,1),若动点P 满足 PA 2 PB,则点P轨迹方程所包围的图 形面积为?
3
4.长为2a的线段AB的两个端点A和B分别在x轴和 y轴上滑动,求线段AB的中点的轨迹方程;
5.等腰三角形的顶点A的坐标是(4,2),底边 一个端点B的坐标是(3,5),求另一个端点C 的轨迹方程,并说明它是什么图形?