高中数学 三角函数
高中数学-三角函数公式汇总

高中数学-三角函数公式汇总以下是高中数学三角函数公式的汇总:一、任意角的三角函数:在角α的终边上任取一点P(x,y),记:r=x²+y²正弦:sinα=y/r余弦:cosα=x/r正切:tanα=y/x余切:cotα=x/y正割:secα=r/x余割:cscα=r/y注:我们还可以用单位圆中的有向线段表示任意角的三角函数,如图,与单位圆有关的有向线段MP、OM、AT分别叫做角α的正弦线、余弦线、正切线。
二、同角三角函数的基本关系式:倒数关系:sinα·cscα=1,cosα·secα=1,tanα·cotα=1.商数关系:tanα=sinα/cosα,cotα=cosα/sinα。
平方关系:sin²α+cos²α=1,1+tan²α=sec²α,1+cot²α=csc²α。
三、诱导公式:⑴ α+2kπ(k∈Z)、-α、π+α、π-α、2π-α的三角函数值,等于α的同名函数值,前面加上一个把α看成锐角时原函数值的符号。
(口诀:函数名不变,符号看象限)⑵π/3+α、π/3-α、π-α、π+α的三角函数值,等于α的异名函数值,前面加上一个把α看成锐角时原函数值的符号。
(口诀:函数名改变,符号看象限)四、和角公式和差角公式:sin(α+β)=sinα·cosβ+cosα·sinβsin(α-β)=sinα·cosβ-cosα·sinβcos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)五、二倍角公式:sin2α=2sinα·cosαcos2α=cos²α-sin²α=2cos²α-1=1-2sin²α…(∗)tan2α=2tanα/(1-tan²α)二倍角的余弦公式(∗)有以下常用变形:(规律:降幂扩角,升幂缩角)1+cos2α=2cos²α1-cos2α=2sin²α1+sin2α=(sinα+cosα)²1-sin2α=(sinα-cosα)²cos2α=(1+cos2α)/(1-cos2α)sin2α=(1-cos2α)/(1+cos2α)tanα=sin2α/(1+cos2α)1.根据公式,cos2α=sin2α=tan2α=1/(1+tan2α),tanα可以用半角的正切表示。
高中数学三角函数公式大全全解

高中数学三角函数公式大全全解三角函数公式1.正弦定理:$a/\sin A=b/\sin B=c/\sin C=2R$($R$为三角形外接圆半径)。
2.余弦定理:$a^2=b^2+c^2-2bc\cos A$。
$b^2=a^2+c^2-2ac\cos B$。
$c^2=a^2+b^2-2ab\cos C$。
3.海伦公式:$S_{\triangle}=\sqrt{p(p-a)(p-b)(p-c)}$。
其中$p=(a+b+c)/2$,$S_{\triangle}$为三角形面积。
4.诱导公式:奇变偶不变,符号看象限。
sin(-\alpha)=-\sin\alpha$,$\sin(\pi-\alpha)=\sin\alpha$,$\cos(-\alpha)=\cos\alpha$,$\cos(\pi-\alpha)=-\cos\alpha$,$\tan(-\alpha)=-\tan\alpha$,$\tan(\pi-\alpha)=\tan\alpha$,$\cot(-\alpha)=-\cot\alpha$,$\cot(\pi-\alpha)=-\cot\alpha$。
5.和差角公式:sin(\alpha\pm\beta)=\sin\alpha\cos\beta\pm\cos\alpha\sin\beta $,$\cos(\alpha\pm\beta)=\cos\alpha\cos\beta\mp\sin\alpha\sin\beta$,$\tan(\alpha\pm\beta)=(\tan\alpha\pm\tan\beta)/(1\mp\tan\alpha\tan \beta)$。
6.二倍角公式:(含万能公式)sin 2\theta=2\sin\theta\cos\theta=2\tan\theta/(1+\tan^2\theta)$,$\cos 2\theta=\cos^2\theta-\sin^2\theta=1-2\sin^2\theta= (1-\tan^2\theta)/(1+\tan^2\theta)$,$\tan 2\theta=2\tan\theta/(1-\tan^2\theta)$。
高中数学三角函数万能公式

高中数学三角函数万能公式
三角函数是高中数学学习的一个重点,那幺,数学三角函数有哪些万能公式呢?下面小编整理了一些相关信息,供大家参考!
1 三角函数有哪些万能公式一、(1)(sinα) +(cosα) =1
(2)1+(tanα) =(secα)
(3)1+(cotα) =(cscα)
证明下面两式,只需将一式,左右同除(sinα) ,第二个除(cosα) 即可
(4)对于任意非直角三角形,总有
tanA+tanB+tanC=tanAtanBtanC
二、设tan(A/2)=t
sinA=2t/(1+t ) (A≠2kπ+π,k∈Z)
tanA=2t/(1-t ) (A≠2kπ+π,k∈Z)
cosA=(1-t )/(1+t ) (A≠2kπ+π k∈Z)
就是说sinA.tanA.cosA 都可以用tan(A/2)来表示,当要求一串函数式最值的
时候,就可以用万能公式,推导成只含有一个变量的函数,最值就很好求了。
三、sinα=[2tan(α/2)]/{1+[tan(α/2)] }
cosα=[1-tan(α/2) ]/{1+[tan(α/2)] }
tanα=[2tan(α/2)]/{1-[tan(α/2)] }
将sinα、cosα、tanα代换成tan(α/2)的式子,这种代换称为万能置换.
1 三角函数相关公式有哪些1.半角公式
tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);
cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.。
高中数学- 三角函数公式总结

高中数学-三角函数公式总结一、任意角的三角函数在角α的终边上任取..一点),(y x P ,记:22y x r +=,正弦:ry =αsin 余弦:rx =αcos 正切:xy=αtan 二、同角三角函数的基本关系式商数关系:αααcos sin tan =,平方关系:1cos sin 22=+αα三、诱导公式(奇变偶不变,符号看象限)⑴παk 2+)(Z k ∈、α-、απ+、απ-、απ-2的三角函数值,等于α的同名函数值,前面加上一个把α看成..锐角时原函数值的符号。
⑵απ+2、απ-2、απ+23、απ-23的三角函数值,等于α的异名函数值,前面加上一个把α看成..锐角时原函数值的符号。
公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin (2k π+α)=sin α(k ∈Z )cos (2k π+α)=cos α(k ∈Z )tan (2k π+α)=tan α(k ∈Z )公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin (π+α)=-sin αcos (π+α)=-cos αtan (π+α)=tan α公式三:任意角α与-α的三角函数值之间的关系:sin (-α)=-sin αcos (-α)=cos αtan (-α)=-tan α公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin (π-α)=sin αcos (π-α)=-cos αtan (π-α)=-tan α公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin (2π-α)=-sin αcos (2π-α)=cos αtan (2π-α)=-tan α微生筑梦公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin (π/2+α)=cos αsin (π/2-α)=cos αcos (π/2+α)=-sin αcos (π/2-α)=sin αtan (π/2+α)=-cot αtan (π/2-α)=cot αsin (3π/2+α)=-cos αsin (3π/2-α)=-cos αcos (3π/2+α)=sin αcos (3π/2-α)=-sin αtan (3π/2+α)=-cot αtan (3π/2-α)=cot α四、和角公式和差角公式βαβαβαsin sin cos cos )cos(⋅+⋅=-βαβαβαsin sin cos cos )cos(⋅-⋅=+βαβαβαsin cos cos sin )sin(⋅+⋅=+βαβαβαsin cos cos sin )sin(⋅-⋅=-βαβαβαtan tan 1tan tan )tan(⋅-+=+βαβαβαtan tan 1tan tan )tan(⋅+-=-五、二倍角公式αααcos sin 22sin =ααααα2222sin 211cos 2sin cos 2cos -=-=-=ααα2tan 1tan 22tan -=六、辅助角公式)sin(cos sin 22ϕ++=+x b a x b x a 其中:角ϕ的终边所在的象限与点),(b a 所在的象限相同,22sin b a b +=ϕ,22cos b a a +=ϕ,ab=ϕtan 。
高中数学三角函数知识点整理

高中数学三角函数知识点整理在高中数学课程中,三角函数是一个非常重要且基础的概念。
三角函数包括正弦函数、余弦函数、正切函数等,它们在数学中有着广泛的应用。
一、正弦函数正弦函数是三角函数中的一种,通常用sin表示。
正弦函数的定义域为实数集,值域为[-1, 1]。
正弦函数的图像是一条周期性振荡的曲线,其周期为2π。
在直角三角形中,正弦函数可以表示为对边与斜边的比值,即sinθ=对边/斜边。
二、余弦函数余弦函数是三角函数中的另一种常见函数,通常用cos表示。
余弦函数的定义域为实数集,值域为[-1, 1]。
余弦函数的图像也是一条周期性的曲线,其周期也为2π。
在直角三角形中,余弦函数可以表示为邻边与斜边的比值,即cosθ=邻边/斜边。
三、正切函数正切函数是三角函数中的另一重要函数,通常用tan表示。
正切函数的定义域不包括所有使余弦函数值为零的实数,其值域为所有实数。
正切函数的图像是一条振荡的曲线,不存在周期。
在直角三角形中,正切函数可以表示为对边与邻边的比值,即tanθ=对边/邻边。
四、三角函数的基本性质三角函数具有一些基本性质,如周期性、奇偶性和对称性等。
正弦函数和余弦函数都是偶函数,而正切函数是奇函数。
正弦函数和余弦函数都是周期函数,其周期为2π。
而正切函数是无周期性的。
五、三角函数的图像和性质正弦函数的图像为一条周期性振荡的曲线,对称于y轴。
余弦函数的图像也是一条周期性振荡的曲线,对称于x轴。
而正切函数的图像则是在一些点上有无穷大的奇点。
综上所述,三角函数是数学中非常重要的一部分,学习三角函数知识有助于理解数学中的许多问题和现象,特别是在几何和物理等领域有着广泛的应用。
希望通过本文的整理,能够帮助读者更好地理解和掌握高中数学中的三角函数知识点。
高中数学三角函数公式大全

2
⑥ 1 cos 2 cos 2
2
8.积化和差公式: (选择记忆) 1 1 sin cos sin( ) sin( ) cos sin sin( ) sin( ) 2 2 1 1 cos cos cos( ) cos( ) sin sin cos( ) cos 2 2 9.和差化积公式:
tan - tg - tg + tg - tg + tg tan + ctg - ctg + ctg - ctg
cot - ctg - ctg + ctg - ctg + ctg cot + tg - tg + tg - tg
- sin + sin - sin - sin + sin sin
2 tan 1 tan 2
7.半角公式: (符号的选择由
所在的象限确定) 2
① s1 cos 2
② sin 2
2
1 cos 2
③ cos
2
1 cos 2
④ cos 2
2
⑤ 1 cos 2 sin 2
① sin sin 2 sin
2 2 cos ③ cos cos 2 cos 2 2
cos
② sin sin 2 cos
2
sin
2 2
④ cos cos 2 sin
2
sin
tan tan 1 tan tan
高中数学 三角函数
高中数学:三角函数一、概述三角函数是高中数学的一个重要组成部分,是解决许多数学问题的关键工具。
它涉及的角度、边长、面积等,都是几何和代数的核心元素。
通过学习三角函数,我们可以更好地理解图形的关系,掌握数学的基本概念。
二、三角函数的定义三角函数是以角度为自变量,角度对应的边长为因变量的函数。
常用的三角函数包括正弦函数(sine)、余弦函数(cosine)和正切函数(tangent)。
这些函数的定义如下:1、正弦函数:sine(θ) = y边长 / r (其中,θ是角度,r是从原点到点的距离)2、余弦函数:cosine(θ) = x边长 / r3、正切函数:tangent(θ) = y边长 / x边长三、三角函数的基本性质1、周期性:正弦函数和余弦函数都具有周期性,周期为 2π。
正切函数的周期性稍有不同,为π。
2、振幅:三角函数的振幅随着角度的变化而变化。
例如,当角度增加时,正弦函数的值也会增加。
3、相位:不同的三角函数具有不同的相位。
例如,正弦函数的相位落后余弦函数相位π/2。
4、奇偶性:正弦函数和正切函数是奇函数,余弦函数是偶函数。
5、导数:三角函数的导数与其自身函数有关。
例如,正弦函数的导数是余弦函数,余弦函数的导数是负的正弦函数。
四、三角函数的实际应用三角函数在现实生活中有着广泛的应用,包括但不限于以下几个方面:1、物理:在物理学中,三角函数被广泛应用于描述波动、振动、电磁场等物理现象。
例如,简谐振动可以用正弦或余弦函数来描述。
2、工程:在土木工程和机械工程中,三角函数被用于计算角度、长度等物理量。
例如,在桥梁设计、建筑设计等过程中,需要使用三角函数来计算最佳的角度和长度。
3、计算机科学:在计算机图形学中,三角函数被用于生成二维和三维图形。
例如,使用正弦和余弦函数可以生成平滑的渐变效果。
4、金融:在金融学中,三角函数被用于衍生品定价和风险管理。
例如,Black-Scholes定价模型就使用了正态分布(一种特殊的三角函数)。
高中数学课件三角函数ppt课件完整版
归纳法等方法推导出诱导公式。
03
诱导公式的应用
在解三角函数的方程、求三角函数的值、证明三角恒等式等方面有广泛
应用。例如,利用诱导公式可以简化计算过程,提高解题效率。
恒等式及其证明方法
恒等式的基本形式
两个解析式之间的一种等价关系,即对于某个变量或一组变量的取值范围内,无论这些变量 取何值,等式都成立。
拓展延伸:反三角函数简介
01
02
03
04
反三角函数的定义
反正弦、反余弦、反正切等反 三角函数的定义及性质。
反三角函数的图像
反正弦、反余弦、反正切函数 的图像及其与对应三角函数的
关系。
反三角函数的应用
在几何、物理等领域中的应用, 如角度计算、长度测量等。
反三角函数的计算
利用计算器或数学软件进行计 算,求解三角方程等问题。
高中数学课件三角函 数ppt课件完整版
REPORTING
目录
• 三角函数基本概念与性质 • 三角函数诱导公式与恒等式 • 三角函数的加减乘除运算 • 三角函数在解三角形中的应用 • 三角函数在数列和概率统计中的应用 • 总结回顾与拓展延伸
PART 01
三角函数基本概念与性质
REPORTING
三角函数的定义及性质
PART 05
三角函数在数列和概率统 计中的应用
REPORTING
三角函数在数列求和中的应用
利用三角函数的周期 性,将数列求和转化 为定积分计算
结合三角函数的图像 和性质,分析数列的 收敛性和求和结果
通过三角函数的和差 化积公式,简化数列 求和过程
三角函数在概率统计中的应用
利用三角函数表示周期性随机 变量的概率密度函数
高中数学三角函数公式
高中数学三角函数公式高中数学中的三角函数公式包括基本三角函数的定义和性质,以及一些常见的三角函数的和差角公式、倍角公式、半角公式等。
本文将详细介绍这些公式。
一、基本三角函数的定义和性质:1. 正弦函数(sine function): 在一个任意角A对应的单位圆上,从原点出发,到达终点的弦与x轴正半轴之间的角的正弦称为角A的正弦。
用sin(A)表示。
2. 余弦函数(cosine function): 在一个任意角A对应的单位圆上,从原点出发,到达终点的弦与x轴正半轴之间的角的余弦称为角A的余弦。
用cos(A)表示。
3. 正切函数(tangent function): 在一个任意角A对应的单位圆上,从原点出发,到达终点的弦与x轴正半轴之间的角的正切称为角A的正切。
用tan(A)表示。
这些基本三角函数在不同象限的定义和性质如下:- 在第一象限,sin(A)>0, cos(A)>0, tan(A)>0。
- 在第二象限,sin(A)>0, cos(A)<0, tan(A)>0。
- 在第三象限,sin(A)<0, cos(A)<0, tan(A)>0。
- 在第四象限,sin(A)<0, cos(A)>0, tan(A)>0。
二、三角函数的和差角公式:1.正弦函数的和差角公式:sin(A±B) = sin(A)cos(B) ± cos(A)sin(B)2.余弦函数的和差角公式:cos(A±B) = cos(A)cos(B) ∓ sin(A)sin(B)3.正切函数的和差角公式:tan(A±B) = (tan(A) ± tan(B)) / (1 ∓ tan(A)tan(B))三、三角函数的倍角公式:1.正弦函数的倍角公式:sin(2A) = 2sin(A)cos(A)2.余弦函数的倍角公式:cos(2A) = cos^2(A) - sin^2(A) = 2cos^2(A) - 1 = 1 - 2sin^2(A)3.正切函数的倍角公式:tan(2A) = (2tan(A)) / (1 - tan^2(A))四、三角函数的半角公式:1.正弦函数的半角公式:sin(A/2) = ±√((1 - cos(A))/2)2.余弦函数的半角公式:cos(A/2) = ±√((1 + cos(A))/2)3.正切函数的半角公式:tan(A/2) = ±√((1 - cos(A)) / (1 + cos(A)))其中正负号取决于角A的象限。
高中数学三角函数常用公式
高中数学三角函数常用公式三角函数是高中数学中非常重要的内容,掌握了三角函数的常用公式,能够对解题提供很大的帮助。
下面是一些常用的三角函数公式。
1.基本公式:正弦函数(sin):sin(A+B) = sinA * cosB + cosA * sinBsin(A-B) = sinA * cosB - cosA * sinBsin2A = 2 * sinA * cosA余弦函数(cos):cos(A+B) = cosA * cosB - sinA * sinBcos(A-B) = cosA * cosB + sinA * sinBcos2A = cos^2A - sin^2A = 2cos^2A-1 = 1-2sin^2A正切函数(tan):tan(A+B) = (tanA + tanB) / (1 - tanA * tanB)2.万能公式:sinA = 2tan(A/2) / (1 + tan^2(A/2))cosA = (1 - tan^2(A/2)) / (1 + tan^2(A/2))tanA = 2tan(A/2) / (1 - tan^2(A/2))3.诱导公式:s in(π/2 - A) = cosAcos(π/2 - A) = sinAtan(π/2 - A) = 1 / tanAcot(π/2 - A) = 1 / tanAsec(π/2 - A) = 1 / cosAcsc(π/2 - A) = 1 / sinA 4.任意角公式:sin(-A) = -sinAcos(-A) = cosAtan(-A) = -tanAtan(A + π) = tanAsin(π - A) = sinAcos(π - A) = -cosAsin(A + π) = -sinAcos(A + π) = -cosAsin(2π -A) = -sinAcos(2π - A) = cosAsin(A + 2π) = sinAcos(A + 2π) = cosA5.等差关系:sin(A + nπ) = sinAcos(A + nπ) = cosAtan(A + nπ) = tanA6.倍角公式:sin(2A) = 2sinAcosAcos(2A) = cos^2A - sin^2A = 2cos^2A - 1 = 1 - 2sin^2Atan(2A) = (2tanA) / (1 - tan^2A)7.半角公式:sin(A/2) = ±√((1 - cosA) / 2)cos(A/2) = ±√((1 + cosA) / 2)tan(A/2) = ±√((1 - cosA) / (1 + cosA))8.三角恒等式:sin^2A + cos^2A = 11 + tan^2A = sec^2A1 + cot^2A = csc^2A这些是高中数学中常用的三角函数公式,掌握了这些公式,能够在解题过程中准确、快速地计算三角函数的值,帮助解决许多复杂的问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学三角函数一、教学分析三角函数是数学中常见的一类关于角度的函数。
也就是说以角度为自变量,角度对应任意两边的比值为因变量的函数叫三角函数,三角函数将直角三角形的内角和它的两个边长度的比值相关联,也可以等价地用与单位圆有关的各种线段的长度来定义。
三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。
三角函数是基本初等函数之一,它是中学数学的重要内容之一,它的认知基础主要是几何中圆的性质、相似形的有关知识,在必修ⅰ中建立的函数概念以及指数函数、对数函数的研究方法。
主要的学习内容是三角函数是概念、图像和性质,以及三角函数模型的简单应用;研究方法主要是代数变形和图像分析。
因此,三角函数的研究已经初步把几何与代数联系起来了。
本章所介绍的知识,既是解决生产实际问题的工具,又是学习后继内容和高等数学的基础,三角函数是数学中重要的数学模型之一,是研究度量几何的基础,又是研究自然界周期变化规律最强有力的数学工具。
三角函数作为描述周期现象的重要数学模型,与其他学科联系紧密。
二、目标建议1.总体要求三角函数就是基本初等函数,它就是叙述周期现象的关键数学模型,在数学和其他领域有著关键促进作用。
在本模块中,学生将通过实例,自学三角函数及其基本性质,体会三角函数在化解具备周期变化规律的问题中的促进作用。
2.具体要求(1)任一角、弧度制:介绍任一角的概念和弧度制,能够展开弧度与角度的互化。
①借助单位圆理解任意角三角函数(正弦、余弦、正切)的定义。
②利用单位圆中的三角函数线推论出来诱导公式(正弦、余弦、正弦),能画出来y=sinx,y=cosx,y=tanx的图像,介绍三角函数的周期性。
③借助图像理解正弦函数、余弦函数在[0,2],正切函数在上的性质(如单调性、最大和最小值、图像与x轴的交点等)。
④认知同角三角函数的基本关系式:⑤结合具体实例,了解的实际意义;能借助计算器或计算机画出的图像,观察参数对函数图像变化的影响。
⑥可以用三角函数化解一些直观实际问题,体会三角函数就是叙述周期变化现象的关键函数模型。
三、重点和难点分析1.认知三角函数就是刻画周期现象的关键模型“三角函数”拓展了函数模型,三角函数模型是刻画周期现象变化规律的最重要、最基本的数学模型,可以直接表述实际问题,更重要的是用它来解决实际问题。
2.弧度制概念的创建一方面,学生已经熟悉并掌握了角度制,因此,在学习弧度制时,会对学习弧度制的必要性产生怀疑,因而缺乏积极性;另一方面,由于弧度制的定义方法比较特殊,表面上看不出这种定义的优越性,因而对这种更加抽象、更加不易理解的新的度量制容易产生畏难心理。
在教学中应注意解决学生学习心理上的障碍。
3.正弦型函数的图像转换由于变换过程较长,变化较多,所以学生不易掌握。
在教学时可以采取先分解,再综合,化整为零,逐个突破,然后再统一归纳的方法。
最终,使学生能对变换的根据有全面而深刻的了解。
4.利用单位圆和函数图像自学三角函数三角函数的基础是几何中的相似形和圆,而研究方法又主要是代数的,因此三角函数的学习集中地体现了数形结合的思想,在代数和几何之间建立了初步的联系。
任意角、任意角的三角函数、三角函数的周期性、诱导公式、同角三角函数关系以及三角函数的图像等都可以通过单位圆进行直观的理解。
5.综合运用公式展开表达式、化简、证明。
培养学生根据题目的不同特点,选择适当的公式,设计简捷合理的解题方法;初中代数中学习过的算术根、绝对值等基本概念和三角式结合起来,使学生适应这种新的变化,顺利地把二者结合起来,并熟练地掌握和应用。
四、课时精心安排本章教学时间约需17课时,具体分配如下,1、周期现象约1课时2、角的概念的推广约1课时3、弧度制约1课时4、正弦函数和余弦函数的定义与诱导公式约4课时5、正弦函数的性质与图像约2课时6、余弦函数的图像与性质约1课时7、正弦函数约1课时8、函数的图像约3课时9、三角函数的直观应用领域约1课时本章小结约2课时五、教学建议与学法指导1.教学建议(1)充份发掘教材潜力和身边的数学充分运用教材中所提供的钱塘江潮的潮汐现象、地球围着太阳转、钟摆、水车、摩天轮等自然界、日常生活、生产实践中的实例,使学生感受到自然界中存在着大量遵循周期性运动变化的现象,同时也让学生逐渐认识到三角函数是刻画周期现象的重要模型。
(2)教学中要注重数学思想方法的扩散无论是概念教学、性质教学还是习题讲解,本单元教学应始终渗透着旋转、对称变换及数形结合的思想方法,使学生初步形成用运动变化的观点以及借助图形的直观性来分析、解决问题。
(3)恰当地采用信息技术信息技术应为数学的教学服务,教学中不应为用信息技术而用,关键要看其能否为教学目标服务,达到传统方法难以达到的效果。
在本单元,有相当多的章节适合使用信息技术,如周期性、函数的图像及其变换等等,要尽力用多媒体进行直观展示,提高教学效果。
2.学法指导(1)经历数学建模的过程;(2)利用单位圆和正弦函数图像两种方式自学三角函数的有关科学知识;(3)借助多媒体信息技术,深化对知识的理解。
一、教学目标1.知识与技能(1)能利用三角函数的定义及单位圆中的三角函数线推论三角函数的诱导公式。
(2)能够运用诱导公式,把任意角的三角函数的`化简、求值问题转化为锐角三角函数的化简、求值问题。
2.过程与方法(1)经历由几何直观探讨数量关系式的过程,培养学生数学发现能力和概括能力。
(2)通过对诱导公式的探究和运用,培育化归能力,提升学生分析问题和解决问题的能力。
3.情感、态度、价值观(1)通过对诱导公式的探究,培育学生的积极探索能力、钻研精神和科学态度。
(2)在诱导公式的探求过程中,运用合作学习的方式进行,培养学生团结协作的精神。
二、教学重点与难点教学重点:探求π-a的诱导公式。
π+a与-a的诱导公式在小结π-a的诱导公式发现过程的基础上,教师引导学生推出。
教学难点:π+a,-a与角a终边边线的几何关系,辨认出由终边边线关系引致(与单位圆交点)的座标关系,运用任一角三角函数的定义求出诱导公式的“研究路线图”。
三、教学方法与教学手段问题教学法、合作自学法,融合多媒体课件四、教学过程角的概念已经由锐角扩展至了任一角,前面已经自学过任一角的三角函数,那么任一角的三角函数值怎么谋呢?先看看一个具体内容的问题。
(一)问题提出如何将任一角三角函数表达式问题转变为0°~°角三角函数表达式问题。
【问题1】求°角的正弦、余弦值.通常地,由三角函数的定义可以晓得,终边相同的角的同一三角函数值成正比,三角函数倚重的就是终边边线关系。
即为存有:sin(a+k·°)=sinα,cos(a+k·°)=cosα,(k∈z),tan(a+k·°)=tanα。
这组公式用弧度制可以表示成sin(a+2kπ)=sinα,cos(a+2kπ)=cosα,(k∈z)(公式一),tan(a+2kπ)=tanα。
如何利用对称推导出角π-a与角a的三角函数之间的关系。
由上一组公式,我们晓得,终边相同的角的同一三角函数值一定成正比。
反过来呢?如果两个角的三角函数值成正比,它们的终边一定相同吗?比如说:【问题2】你能找出和30°角正弦值相等,但终边不同的角吗?角π-a与角a的终边关于y轴对称,存有sin(π-a)=sina,cos(π-a)=-cosa,(公式二)tan(π-a)=-tana。
〖思考〗请大家回顾一下,刚才我们是如何获得这组公式(公式二)的?因为与角a终边关于y轴对称就是角π-a,利用这种等距关系,获得它们的终边与单位圆的交点的纵坐标成正比,横坐标互为相反数。
于是,我们就获得了角π-a与角a的三角函数值之间的关系:正弦值成正比,余弦值互为相反数,进而,就获得我们研究三角函数诱导公式的路线图:角间关系→等距关系→座标关系→三角函数值间关系。
(三)自主探究如何利用等距推论出来π+a,-a与a的三角函数值之间的关系。
刚才我们利用单位圆,得到了终边关于y轴对称的角π-a与角a的三角函数值之间的关系,下面我们还可以研究什么呢?【问题3】两个角的终边关于x轴对称,你存有什么结论?两个角的终边关于原点等距呢?角-a与角a的终边关于x轴对称,有:sin(-a)=-sina,cos(-a)=cosa,(公式三)tan(-a)=-tana。
角π+a与角a终边关于原点o等距,存有:sin(π+a)=-sina,cos(π+a)=-cosa,(公式四)tan(π+a)=tana。
上面的公式一~四都称为三角函数的诱导公式。
(四)直观应用领域例求下列各三角函数值:(1)sinp;(2)cos(-60°);(3)tan(-°)【问题4】总结一下,我们就是怎样赢得诱导公式的?研究的过程中,你存有哪些体会?知识上,学会了四组诱导公式;思想方法层面:诱导公式体现了由未知转化为已知的化归思想;诱导公式所揭示的是终边具有某种对称关系的两个角三角函数之间的关系。
主要体现了化归和数形结合的数学思想。
具体可以表示如下:(六)分层作业1、阅读课本,体会三角函数诱导公式推导过程中的思想方法;2、必搞题课本23页133、选做题(1)你能够由公式二、三、四中的任一两组公式推论至另外一组公式吗?(2)角α和角β的终边还有哪些特殊的位置关系,你能探究出它们的三角函数值之间的关系吗?一、教材分析(一)内容说明函数就是中学数学的关键内容,中学数学对函数的研究大致分为了三个阶段。
三角函数是最具代表性的一种基本初等函数。
4.8节是第二章《函数》学习的延伸,也是第四章《三角函数》的核心内容,是在前面已经学习过正、余弦函数的图象、三角函数的有关概念和公式基础上进行的,其知识和方法将为后续内容的学习打下基础,有承上启下的作用。
本节课就是数形融合思想方法的较好素材。
数形融合就是数学研究中的关键思想方法和解题方法。
著名数学家华罗庚先生的诗句:数缺形时少直观,形少数时难入微,数形结合百般好,隔裂分家万事休......可以说精辟地道出了数形结合的重要性。
本节通过对数形融合的进一步重新认识,可以改良自学方法,进一步增强自学数学的自信心和兴趣。
另外,三角函数的曲线性质也彰显了数学的等距之美、人与自然之美。
因此,本节课在教材中的知识作用和思想地位是相当重要的。
(二)课时精心安排4.8节教材安排为4课时,我计划用5课时(三)目标和轻、难点1.教学目标教学目标的确认,考量了以下几点:(1)高一学生有一定的抽象思维能力,而形象思维在学习中占有不可替代的地位,所以本节要紧紧抓住数形结合方法进行探索;(2)本班学生对数学科特别就是函数内容的自学存有畏难情绪,所以在内容上要减少浅难度。