考研数学公式总结

合集下载

考研数学公式大全(含高中部分)

考研数学公式大全(含高中部分)

平面的方程: 1、点法式:A( x x0 ) B( y y0 ) C ( z z 0 ) 0,其中n { A, B, C}, M 0 ( x0 , y0 , z 0 ) 2、一般方程:Ax By Cz D 0 x y z 3、截距世方程: 1 a b c 平面外任意一点到该平 面的距离:d Ax0 By0 Cz 0 D A2 B 2 C 2
十、导数公式:
(tgx) sec 2 x (ctgx) csc 2 x (sec x ) sec x tgx (csc x ) csc x ctgx ( a x ) a x ln a 1 (loga x) x ln a
基本积分表:
(arcsin x)
sin 2 2 sin cos cos 2 2 cos2 1 1 2 sin 2 cos2 sin 2 ctg 2 1 ctg 2 2ctg 2tg tg 2 1 tg 2
·半角公式:
sin 3 3 sin 4 sin 3 cos3 4 cos3 3 cos tg 3 3tg tg 3 1 3tg 2
隐函数的求导公式: Fx F F dy dy d2y 隐函数F ( x, y ) 0, , 2 ( x )+ ( x ) dx Fy x Fy y Fy dx dx Fy F z z 隐函数F ( x, y, z ) 0, x , x Fz y Fz
直线:K 0; 1 半径为a的圆:K . a
定积分的近似计算:
b
矩形法: f ( x)
a
ba ( y0 y1 yn1 ) n ba 1 [ ( y0 yn ) y1 yn1 ] n 2 ba [( y0 yn ) 2( y2 y 4 yn2 ) 4( y1 y3 yn1 )] 3n

考研数学完备公式 (完美打印版)

考研数学完备公式 (完美打印版)
基本积分表:
1 x2 1 (arccos x) 1 x2 1 (arctgx ) 1 x2 1 (arcctgx ) 1 x2
tgxdx ln cos x C ctgxdx ln sin x C sec xdx ln sec x tgx C csc xdx ln csc x ctgx C
b
空间解析几何和向量代数:
-4数学圆梦考研辅导中心|考研数学专业辅导中心
数学圆梦考研辅导中心
空间2点的距离:d M 1 M 2 ( x2 x1 ) 2 ( y 2 y1 ) 2 ( z 2 z1 ) 2 向量在轴上的投影: Pr ju AB AB cos ,是 AB与u轴的夹角。 Pr ju (a1 a2 ) Pr ja1 Pr ja2 a b a b cos a x bx a y b y a z bz , 是一个数量, 两向量之间的夹角: cos i c a b ax bx j ay by k a x b x a y b y a z bz a x a y a z bx b y bz
中值定理与导数应用:
拉格朗日中值定理:f (b) f (a) f ( )(b a) f (b) f (a) f ( ) 柯西中值定理: F (b) F (a) F ( ) 当F( x) x时,柯西中值定理就是拉格朗日中值定理。
曲率:
-3数学圆梦考研辅导中心|考研数学专业辅导中心
梯形法: f ( x)
a b
b
抛物线法: f ( x)
a
定积分应用相关公式:
功:W F s 水压力:F p A m1m2 , k为引力系数 r2 b 1 函数的平均值: y f ( x)dx ba a 引力:F k 均方根: 1 f 2 (t )dt ba a

考研高等数学高数公式

考研高等数学高数公式

考研高等数学高数公式在考研高等数学中,高数公式是非常重要的一部分,掌握了这些公式可以帮助我们更好地理解和解决数学问题。

下面是一些常见的高数公式。

1.导数相关公式:-基本导数公式:$\frac{d(c)}{dx}=0$ (常数导数为0)$\frac{d(x^n)}{dx}=nx^{n-1}$ (幂函数的导数)$\frac{d(\sin x)}{dx}=\cos x$ (正弦函数的导数)$\frac{d(\cos x)}{dx}=-\sin x$ (余弦函数的导数)$\frac{d(\tan x)}{dx}=\sec^2 x$ (正切函数的导数)-乘法法则:$\frac{d(uv)}{dx}=u\frac{dv}{dx}+v\frac{du}{dx}$ (两个函数的乘积的导数)-除法法则:$\frac{d(\frac{u}{v})}{dx}=\frac{v\frac{du}{dx}-u\frac{dv}{dx}}{v^2}$ (两个函数的商的导数)-复合函数求导法则:$\frac{d(u(v))}{dx}=\frac{du}{dv}\cdot\frac{dv}{dx}$ (复合函数的导数)2.积分相关公式:-不定积分公式:$\int kdx=kx+C$ (常数的积分)$\int x^ndx=\frac{1}{n+1}x^{n+1}+C$ (幂函数的不定积分,n不等于-1)$\int e^xdx=e^x+C$ (指数函数的不定积分)$\int \sin xdx=-\cos x+C$ (正弦函数的不定积分)$\int \cos xdx=\sin x+C$ (余弦函数的不定积分)$\int \tan xdx=-\ln,\cos x,+C$ (正切函数的不定积分)-定积分基本公式:$\int_{a}^{b}f(x)dx=F(b)-F(a)$ (定积分的基本公式)$\int_{a}^{b}kdx=k(b-a)$ (常数的定积分)-分部积分法则:$\int u dv=uv-\int v du$ (分部积分法则)3.极限相关公式:-基本极限:$\lim_{x\to 0}\frac{\sin x}{x}=1$ (正弦函数的极限)$\lim_{x\to 0}\frac{1-\cos x}{x}=0$ (余弦函数的极限)-洛必达法则:若$\lim_{x\to a}f(x)=\lim_{x\to a}g(x)=0$,则$\lim_{x\to a}\frac{f(x)}{g(x)}=\lim_{x\to a}\frac{f'(x)}{g'(x)}$ (洛必达法则)-泰勒展开公式:$f(x)=f(a)+f'(a)(x-a)+\frac{f''(a)}{2!}(x-a)^2+\frac{f'''(a)}{3!}(x-a)^3+...$ (泰勒展开公式)以上只是一些高等数学中常用的公式,掌握了这些公式可以帮助我们更好地理解和解决数学问题。

考研泰勒公式大全

考研泰勒公式大全

考研泰勒公式大全考研泰勒公式是考研数学中的一个重要知识点,也是数学分析中的经典内容。

它是基于函数的无数阶导数和函数值之间的关系,可以用来近似计算函数的值。

由于涉及到较多的公式推导和应用场景,下面将详细介绍泰勒公式的推导过程和一些常见的应用。

1.雅可比泰勒公式泰勒公式的最基本形式是雅可比泰勒公式,它可以通过有限次的求导得到。

假设函数f(x)在x=a处具有无限次可导,那么在x=a处,f(x)的泰勒展开式可以写作:f(x)=f(a)+f'(a)(x-a)+f''(a)(x-a)^2/2!+...+f^n(a)(x-a)^n/n!+Rn(x)(1)其中,f'(a)表示f(x)在x=a处的一阶导数,f''(a)表示f(x)在x=a 处的二阶导数,f^n(a)表示f(x)在x=a处的n阶导数,(x-a)^n表示(x-a)的n次幂,n!表示n的阶乘。

公式(1)中的最后一项Rn(x)表示余项,用来衡量泰勒展开式与原函数之间的误差。

当n趋向于无穷大时,如果余项Rn(x)趋于0,则泰勒展开式可以无限逼近原函数f(x),也就是可以用泰勒展开式来近似计算f(x)的值。

2.泰勒公式的推导泰勒公式的推导步骤可以通过数学归纳法来进行证明。

首先,我们有泰勒公式的一阶导数形式:f(x)=f(a)+f'(a)(x-a)+R1(x)其中,R1(x)为余项,我们将其化简为:R1(x)=f(x)-f(a)-f'(a)(x-a)然后,我们对R1(x)进行第一次求导:R1'(x)=f'(x)-f'(a)接着,将R1(x)和R1'(x)带入泰勒公式的形式中,我们可以得到泰勒公式的二阶导数形式:f(x)=f(a)+f'(a)(x-a)+f''(a)(x-a)^2/2!+R2(x)其中,R2(x)为二阶导数形式的余项,其化简步骤为:R2(x)=f(x)-f(a)-f'(a)(x-a)-f''(a)(x-a)^2/2!通过类似的推导方式,我们可以继续得到更高阶导数形式的泰勒公式,即得到公式(1)的形式。

考研数学公式大全--高数--线代--必背公式

考研数学公式大全--高数--线代--必背公式

数学知识点背诵高数部分1. 导数公式22(tan )sec (cot )csc (sec )sec tan (csc )csc cot x xx xx x x x x x'='=-'=⋅'=-⋅22(arcsin )(arccos )1(arctan )11(cot )1x x x x arc x x '='='=+'=-+2. 积分公式2222tan ln cos cot ln sin sec ln sec tan csc ln csc cot sec tan cos csc cot sin sec tan sec csc cot csc xdx x C xdx x Cxdx x x C xdx x x Cdx xdx x C x dx xdx x Cx x xdx x Cx xdx x C=-+=+=++=-+==+==-+⋅=+⋅=-+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰2222221arctan 1ln 21ln 2ln(arcsin dx xC a x a a dx x aC x a a x a dx a xC a x a a x x CxC a=++-=+-++=+--=+=+⎰⎰⎰222ln(2ln 2arcsin 2a x Ca x C a x Ca=+=-++=++22201sin cos nn n n n I xdx xdx I nππ--===⎰⎰3. 和差化积sin sin 2sincos22sin sin 2cos sin22cos cos 2cos cos22cos cos 2sin sin22αβαβαβαβαβαβαβαβαβαβαβαβ+-+=+--=+-+=+--=-4. 积化和差[][][][]1sin cos sin()sin()21cos sin sin()sin()21cos cos cos()cos()21sin sin cos()cos()2αβαβαβαβαβαβαβαβαβαβαβαβ=++-=+--=++-=-+-- 5. 万能公式22tan2sin 1tan 2ααα=+ 221t a n2c o s 1t a n 2ααα-=+ 22t a n2t a n 1t a n2ααα=- 6. 半角公式221cos sin 221cos cos 22αααα-=+= 21c o s t a n 21c o s s i n 1c o s t a n 21c o s s i nαααααααα-=+-==+7. 三倍角公式3332sin 33sin 4sin cos34cos 3cos 3tan tan tan 313tan αααααααααα=-=--=- 8. 三角函数关系图sin costan 1cot sec csc↔↔↔⊗↔↔↔↔↔↔⊗⊗↔↔↔..1.a b c ⊗说明:六边形每个顶点等于两相邻顶点乘积三条对角线上,两端点相乘等于标记的三角形,上面的平方和等于下面的平方9. 等价无穷小33333333222201sin ()61arcsin ()61tan ()31arctan ()31ln(1)()21cos 1()2x x x x o x x x x o x x x x o x x x x o x x x x o x x x o x →=-+=++=++=-++=-+=-+时2011ln 11cos 2(1)1x x x e x a x a x xx x αα→---+-时10. 华里士公式等华里士公式:2200131,222sin cos 132,123n nn n n n n xdx xdx n n n n n πππ--⎧⋅⋅⎪⎪-==⎨--⎪⋅⎪-⎩⎰⎰为正的偶数为大于的奇数20sin 2sin nn xdx xdx ππ=⎰⎰2002c o s ,c o s 0,n nxdx n xdx n ππ⎧⎪=⎨⎪⎩⎰⎰为偶数为奇数2220004sin ,sin =cos 0,n n nxdx n xdx xdx n πππ⎧⎪=⎨⎪⎩⎰⎰⎰为偶数为奇数()()220sin cos f x dx f x dx ππ=⎰⎰ ()()00sin cos f x dx f x dx ππ≠⎰⎰()()()20sin sin sin 2xf x dx f x dx f x dx πππππ==⎰⎰⎰11. 函数展开为幂级数20201+()!2!1(1)1(1)(11)1n nxn n n n nn x x x e x x n n x x x x x x ∞=∞===++++-∞<<+∞=-=-+-+-+-<<+∑∑!20234111213572122011(11)1ln(1)(1)(1)(11)234sin (1)(1)()(21)!3!5!7!(21)!cos (1)1(2)!2!n n n n nn n n n n nnn n nn x x x x x x x x x x x x x x n nx x x x x x x x n n x x x n ∞=∞--=++∞=∞===+++++-<<-+=-=-+-++-+-<≤=-=-+-++-+-∞<<+∞++=-=-+∑∑∑∑()(][]4622(1)()4!6!(2)!(1)(1)(1)(1)12!!(1-1,1;10-1,1;0-1,1)nn nx x x x n n x x x x n αααααααααα-++-+-∞<<+∞---++=+++++≤--<<>时,收敛域为时,收敛域为时,收敛域为12. 幂级数的和函数1211121121212112220(1)11(1)1(1)(1)(1)(1)(1)1(1)1k nn k n n n n n n n n n n n n n n n n n n cx cx x x x nx x x x x x nx x nx x x x nx x nx x x n n x x x x ∞=∞∞-==∞∞-==∞∞+-==∞∞∞-====<-''⎛⎫⎛⎫===< ⎪ ⎪--⎝⎭⎝⎭==<-==<-''''''⎛⎫⎛⎫⎛⎫-=== ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭∑∑∑∑∑∑∑∑∑∑3110001112(1)(1)1ln(1)(11)1n x x x n n n n n x x x t dt t dt dt x x n t ∞∞∞--====<-⎛⎫====---≤< ⎪-⎝⎭∑∑∑⎰⎰⎰13. 狄利克雷收敛定理设()f x 是以2l 为周期的可积函数,如果在[],l l -上()f x 满足: 1)连续或只有有限个第一类间断点; 2)只有有限个极值点;则()f x 的傅里叶级数处处收敛,记其和函数为()S x ,则()01cos sin 2n n n a n x n x S x a b l l ππ∞=⎛⎫=++ ⎪⎝⎭∑,且()()()()()(),00,200,2f x x f x f x S x x f l f l x ⎧⎪⎪-++⎪=⎨⎪⎪-++-⎪⎩为连续点为第一类间断点为端点 14. 周期为2l 的周期函数的傅里叶级数设周期为2l 的周期函数()f x 满足狄利克雷收敛定理的条件,则它的傅里叶级数为()()01cos sin 2n n n a n x n x f x S x a b l l ππ∞=⎛⎫=++ ⎪⎝⎭∑其中系数n a 和n b 分别为:()()1cos (0,1,2,)1sin (1,2,3,)l n l l n l n x a f x dx n l l n x b f x dx n l l ππ--⎧==⎪⎪⎨⎪==⎪⎩⎰⎰ (1)将普通周期函数()f x 在[],l l -上展开为傅里叶级数: 展开系数为()()()01,1cos ,(1,2,3,)1sin ,(1,2,3,)l l l n l l n la f x dx l n x a f x dx n l l n xb f x dx n l l ππ---⎧=⎪⎪⎪==⎨⎪⎪==⎪⎩⎰⎰⎰ (2)将奇偶周期函数()f x 在[],l l -上展开为傅里叶级数:当()f x 为奇函数时,展开为正弦级数()000,0,(1,2,3,)2sin ,(1,2,3,)n l n a a n n x b f x dx n l l π⎧⎪=⎪==⎨⎪⎪==⎩⎰当()f x 为偶函数时,展开为余弦级数()()0002,2cos ,(1,2,3,)0,(1,2,3,)l l nn a f x dx l n x a f x dx n l l b n π⎧=⎪⎪⎪==⎨⎪==⎪⎪⎩⎰⎰ (3)将非对称区间[]0,l 上的函数()f x 展开为正弦级数或余弦级数:将[]0,l 上的函数()f x ,根据要求作奇延拓(若要求展开为正弦级数)或偶延拓(若要求展开为余弦函数),得到[],l l -上的奇函数或偶函数,再根据(2)中的方式展开。

考研数学概率部分公式复习

考研数学概率部分公式复习

考研数学概率部分公式复习概率是数学中一个重要的分支,常以随机试验为基础进行研究,主要研究事件的概率和随机变量的分布。

而概率论的数学基础则包括概率公式、条件概率、独立性、随机变量的分布等等。

在考研中,数学概率部分是必考内容之一,理解和熟练掌握这些公式是非常重要的。

下面就对考研数学概率部分的公式进行复习。

一、基本公式:1.概率公式:对于一个随机试验E,事件A的概率P(A)定义为A发生的次数在试验总次数n中所占的比例。

P(A)=m/n2.互斥事件的概率公式:如果事件A和B互斥(即不能同时发生),则它们的概率满足如下关系:P(A∪B)=P(A)+P(B)3.和事件的概率公式:对于两个事件A和B,它们的概率满足如下关系:P(A∪B)=P(A)+P(B)-P(A∩B)4.减事件的概率公式:对于两个事件A和B,它们的概率满足如下关系:P(A-B)=P(A)-P(A∩B)5.互斥事件的概率和与减公式:对于两个互斥事件A和B,它们的概率满足如下关系:P(A∪B)=P(A)+P(B)P(A-B)=P(A)-P(A∩B)二、条件概率和乘法原理:1.条件概率公式:对于两个事件A和B,且P(A)>0,条件概率P(B,A)定义为在事件A发生的条件下事件B发生的概率。

P(B,A)=P(A∩B)/P(A)2.乘法原理:对于两个事件A和B,它们同时发生的概率等于事件A 发生的概率乘以在事件A发生的条件下事件B发生的概率。

P(A∩B)=P(A)*P(B,A)=P(B)*P(A,B)三、全概率公式和贝叶斯公式:1.全概率公式:如果事件B1,B2,...,Bn构成一个样本空间的一个划分(即互不相交且并起来就是全集),则对于任意事件A,它的概率满足如下关系:P(A)=P(B1)P(A,B1)+P(B2)P(A,B2)+...+P(Bn)P(A,Bn)2.贝叶斯公式:如果事件B1,B2,...,Bn构成一个样本空间的一个划分,则对于任意事件A,它的概率满足如下关系:P(Bi,A)=P(Bi)P(A,Bi)/[P(B1)P(A,B1)+P(B2)P(A,B2)+...+P(Bn)P(A,Bn)]四、随机变量和分布:1.随机变量:随机变量是定义在样本空间上的一个实值函数,它的取值是由随机试验的结果决定的。

(整理)考研数学(三)公式大全

(整理)考研数学(三)公式大全

数学公式导数公式:基本积分表:等价无穷小量代换()时,有:当0→x ϕx x ~sin x x ~tanx x ~arcsinx x ~arctan a x a x ln ~1-x e x ~1-()ax x a~1+x nx n 1~11-+ ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ()x x ~1ln +221~cos 1x x -两个重要极限: 高阶导数公式()n m nm x n m m m x -+--=)1) (1)()!n x nn = ()()n x nx a a a ln =()ax n nax e a e =()⎪⎭⎫ ⎝⎛⋅+=2sin sin πn x x n()⎪⎭⎫ ⎝⎛⋅+=2cos cos πn x x n()()xnx ex n xe +=()()1!11+--=⎪⎭⎫ ⎝⎛-n nna x n a x ——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑泰勒公式:e x=1+x+!22x +!33x +…+!n x n+ …sin x = x-!33x +!55x -!77x +…+)!12()1(12+-+n x n n + …cos x = 1-!22x +!44x -!66x +…+)!2()1(2n x n n -+ …ln (1+x) = x-22x +33x -44x +…+)!1()1(1+-+n x n n + …tan -1x = x-33x +55x -77x +…+)12()1(12+-+n x n n + …(1+x)r =1+r x+!2)1(-r r x 2+!3)2)(1(--r r r x 3+… -1<x<1 中值定理与导数应用:...590457182818284.2)11(lim 1sin lim 0==+=∞→→e xx x x x x拉格朗日中值定理。

考研数学旋转体表面积公式

考研数学旋转体表面积公式

考研数学旋转体表面积公式
旋转体是指一个平面图形绕着某条轴线旋转一周形成的立体图形。

求解旋转体的表面积需要根据具体的旋转体形状来选择相应的公式。

常见的旋转体包括圆锥、圆柱和圆盘等。

下面分别介绍它们的表面积公式:
1. 圆锥的表面积公式:
圆锥的侧面积为 L = πrl,其中 r 为底面半径,l 为母线长度。

圆锥的底面积为 B = πr²,其中 r 为底面半径。

圆锥的总表面积为 S = L + B = πrl + πr²。

2. 圆柱的表面积公式:
圆柱的侧面积为 L = 2πrh,其中 r 为底面半径,h 为高度。

圆柱的底面积为 B = πr²。

圆柱的总表面积为 S = L + 2B = 2πrh + 2πr²。

3. 圆盘的表面积公式:
圆盘的侧面积为 L = 2πrh,其中 r 为半径,h 为高度。

圆盘的底面积为 B = πr²。

圆盘的总表面积为 S = L + B = 2πrh + πr²。

需要注意的是,以上公式中的 r 和 h 分别表示旋转体的半径和高度,具体应根据题目给出的条件进行替换计算。

另外,如
果旋转体的形状与以上所列的不同,可能需要其他相关公式来计算表面积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考研数学公式总结
数学对大多数考研学生来说是一个重要的科目,尤其是在理工类专业中,数学更是至关重要。

在考研数学中,大量的公式需要我们掌握和熟练运用。

本文将对考研数学中常见的公式进行总结,希望对考生复习备考有所帮助。

一、初等数学公式
在考研数学的复习过程中,我们首先需要掌握的是初等数学中的基本公式。

例如:
1. 二项式定理:对于任意实数a、b和自然数n,有(a+b)^n的展开式等于
C(n,0)a^n + C(n,1)a^(n-1)b + ... + C(n,n-1)ab^(n-1) + C(n,n)b^n。

2. 三角函数的和差化积公式:sin(a±b) = sinacosb ± cosasinb,cos(a±b) = cosacosb ∓ sinasinb。

3. 对数运算:log(ab) = loga + logb,log(a/b) = loga - logb,其中a和b分别为
a>0、b>0的实数。

二、高等数学公式
除了初等数学的公式,考研数学中还涉及到大量的高等数学公式。

这些公式主要涵盖微积分、线性代数以及概率论等内容。

下面我们分别介绍其中的一些重要公式。

1. 微积分公式:
(1) 无穷级数的求和公式:求和∑(n=1->∞)a^n = a/(1-a),其中|a|<1。

(2) 微分与积分的关系:若F(x)是f(x)的一个不定积分,则F(x) + C是f(x)的所有不定积分,其中C为常数。

(3) 泰勒展开式:函数f(x)在x=a处的泰勒级数展开式为f(x) = f(a) + f'(a)(x-a) +
f''(a)/2!(x-a)^2 + ...。

2. 线性代数公式:
(1) 矩阵的转置:若A是一个m行n列的矩阵,则A的转置记作A^T,其中
(A^T)_(ij) = A_(ji)。

(2) 行列式的性质:若A是n阶方阵,则A的行列式记作det(A)或|A|,其中|A| = Σ(±)(a1j1)(a2j2)...(anjn)。

3. 概率论公式:
(1) 条件概率公式:若事件B的概率大于零,则在事件B发生的条件下,事件
A的条件概率为P(A|B) = P(A∩B) / P(B)。

(2) 期望公式:对于随机变量X,其期望值(或平均值)定义为E(X) = ΣXP(X),其中X取遍所有可能的取值。

三、数学建模公式
考研数学中的数学建模题目对于考生的数学运用能力有很大的考察。

在解决实
际问题时,我们需要运用一些数学建模的公式,如:
1. 线性规划模型:若目标函数为Z = C_1X_1 + C_2X_2 + ... + C_nX_n,约束条
件为A_11X_1 + A_12X_2 + ... + A_1nX_n ≤ b_1,A_21X_1 + A_22X_2 + ... +
A_2nX_n ≤ b_2,...,A_m1X_1 + A_m2X_2 + ... + A_mnX_n ≤ b_m,X_1 ≥ 0,X_2 ≥ 0,...,X_n ≥ 0,则线性规划问题可以表示为max Z,s.t. AX ≤ b,X ≥ 0。

2. 随机森林模型:随机森林是一个集成学习方法,其基本思想是构建多个决策树,并通过投票或平均的方式进行最终预测。

具体公式略。

综上所述,考研数学中有大量的公式需要我们记忆和熟练运用。

通过熟悉掌握
这些公式,我们能够更好地应对考试中的数学问题,并能够在实际问题中运用数学
解决难题。

因此,希望考生们在备考过程中加强对公式的学习和理解,以提高数学能力,顺利通过考研。

相关文档
最新文档