垂径定理九年级知识点

合集下载

九年级数学垂径定理知识点

九年级数学垂径定理知识点

九年级数学垂径定理知识点数学是一门令我们既爱又恨的学科,而九年级的数学则是更加具有挑战性和深度的一门课程。

在九年级数学中,垂径定理是一个重要的知识点,它不仅在几何学中有广泛的应用,而且在实际生活中也有着许多有趣的应用。

在本文中,我们将一起来探索九年级数学中的垂径定理。

首先,我们来了解一下垂径定理的定义和概念。

垂径定理是几何学中的一个基本定理,它指出:“如果两条直线相交于一个点,并且其中一条直线垂直于另一条直线的过程中所产生的垂直线段与交点的距离相等,那么这两条直线是垂线。

”简单来说,垂径定理就是通过一个垂直线段来判断两条直线是否垂直的方法。

举个例子来说明垂径定理的应用。

假设有一个四边形的对角线相交于一个点,我们需要判断对角线是否垂直。

按照垂径定理,我们可以通过在交点处作一条垂直于对角线的线段,并将它延长至相邻的边上。

如果延长后的线段与相邻边的距离相等,那么我们可以断定对角线是垂直的;反之,如果距离不相等,则对角线不是垂直的。

通过这个简单的方法,我们可以快速判断一个四边形的对角线是否垂直。

垂径定理不仅在几何学中有重要的应用,而且在实际生活中也有许多有趣的应用。

例如,我们在修建房屋时需要确保墙体垂直,这就需要使用垂径定理来检验墙体是否垂直。

另一个应用是在导航系统中,也需要使用垂径定理来计算地球上两点之间的最短距离。

除了应用方面,垂径定理还有着一些有趣的数学性质。

一个有趣的性质是,如果两条直线是垂线,那么它们的斜率乘积为-1。

这个性质是垂径定理的一个重要推论,通过它我们可以更直观地理解垂线的概念。

此外,垂径定理还与其他几何定理有着密切的关系。

例如,垂径定理与直角三角形定理、等腰直角三角形定理以及勾股定理之间有着紧密的联系。

通过运用这些定理,我们可以更好地理解垂径定理的应用,并解决一些复杂的几何问题。

在学习垂径定理时,我们还需要注意一些容易出错的地方。

例如,我们在判断两条直线是否垂直时,不能只通过一个垂直线段的长度是否相等来判断,还需要考虑这个线段是否垂直于另一条直线。

冀教版九年级数学 28.4 垂径定理(学习、上课课件)

冀教版九年级数学  28.4 垂径定理(学习、上课课件)

C. 21 cm D. 2 21 cm
感悟新知
解题秘方:连接半径,构造垂径定理的基本图形 . 知1-练
解:如图 28-4-2, 连接 OA.
∵ OE=2 cm, DE=7 cm,
∴ OD=5 cm,
在使用垂径定理时,若已知圆心,作 垂直于弦的半径(或直径)或连接圆
∴ OA=5 cm, 心和弦的一个端点(即连半径),是
感悟新知
拓宽视野 对于圆中的一条直线,如果具备下列五个
条件中的任意两个,那么一定具备其他三个: (1)过圆心; (2)垂直于弦; (3)平分弦(非直径); (4)平分弦所对的劣弧; (5)平分弦所对的优弧 .
简记为“知二推三” .
知2-讲
感悟新知
知2-练
例2 如图 28-4-4, AB, CD 是⊙ O 的弦, M, N 分别为 AB,CD 的中点,且∠ AMN= ∠ CNM. 求证: AB=CD.
感悟新知
知2-练
解题秘方:根据弦的中点作符合垂径定理推论的 基本图形,再结合全等三角形的判定 和性质进行证明 .
感悟新知
证明:如图 28-4-4,连接 OM, ON, OA, OC. 知2-练
∵ O 为圆心,且 M, N 分别为 AB, CD 的中点, ∴ AB=2AM, CD=2CN, OM ⊥ AB, ON ⊥ CD. ∴∠ OMA= ∠ ONC=90° . ∵∠ AMN= ∠ CNM, ∴∠ OMN= ∠ ONM. ∴ OM=ON. 又∵ OA=OC,
CD 是直径, CD ⊥ AB,
⌒AE=B⌒E, ൠ⇒ቐA⌒D = B⌒D ,
AC = BC .
感悟新知
知1-练
例1 [母题 教材 P164 例 ]如图 28-4-2,⊙ O 的直径 CD 垂 直弦 AB于点 E,且 OE=2 cm, DE=7 cm,则 AB 的 长为( )

九年级圆垂径定理知识点

九年级圆垂径定理知识点

九年级圆垂径定理知识点圆垂径定理是数学中的一个重要定理,它是研究圆的性质和应用的基础。

本文将详细介绍九年级圆垂径定理的相关知识点,帮助你更好地理解和应用这一定理。

一、圆垂径定理的概述圆垂径定理是指:在一个圆中,如果一条直径垂直于另一条弦,那么它一定是这条弦的垂直平分线。

二、圆垂径定理的证明为了证明圆垂径定理,我们可以采用几何证明和代数证明两种方法。

1. 几何证明假设圆的中心为O,半径为r,直径AB垂直于弦CD。

我们需要证明AO = BO。

首先,连接AC和BC,并设AC = x,BC = y。

根据圆的性质,我们知道AO = r,BO = r,AC = BC = r。

又因为AO垂直于CD,所以∠ACO = ∠BCO = 90°。

由三角形的性质可知,AO² = AC² - CO²,BO² = BC² - CO²。

代入已知条件,我们可以得到r² = x² - CO²,r² = y² - CO²。

通过这两个等式,我们可以得到x² - CO² = y² - CO²,即x² = y²。

进而,我们可以得知x = y,即AC = BC。

所以,根据直角三角形的特性,AO = BO,也就是说AO = BO = r。

因此,根据圆的定义,我们可以得出圆垂径定理的结论。

2. 代数证明我们也可以采用代数方法证明圆垂径定理。

设圆的方程为x² + y² = r²(其中,O为坐标原点)。

直径AB垂直于弦CD,且AB的斜率k存在。

根据直线的斜率公式,可以得到直线AB的方程为y = kx。

将直线AB的方程代入圆的方程中,我们可以得到x² + (kx)² =r²。

简化这个方程,可以得到x² + k²x² = r²。

28.4 垂径定理 课件(共20张PPT) 数学冀教版九年级上册

28.4 垂径定理 课件(共20张PPT) 数学冀教版九年级上册
28.4 垂径定理
第二十八章 圆
1.理解并掌握垂径定理及其推论的推导过程. (重点)2.能够运用垂径定理及其推论解决实际问题. (难点)
学习目标
问题 赵州桥的半径是多少?
它的主桥是圆弧形,它的跨度(弧所对的弦的长)为37.4 m,拱高(弧的中点到弦的距离)为7.2 m,你能求出赵州桥主桥拱的半径吗?
情景导入
知识点一:垂径定理
问题1 如图,AB是⊙O的一条弦,做直径CD,使CD⊥AB,垂足为E.沿着CD所在的直线折叠,你能发现图中有哪些相等的线段和弧?为什么?

线段:AE=BE
·
O
A
B
C
E
D
证明:如图所示,连接OA,OB.
在△OAB中,∵OA=OB,OE⊥AB,
∴AE=BE,∠AOE=∠BOE.
解:如图,连接OA.设⊙O的半径为r. ∴ CD为⊙O的直径,AB⊥CD, ∴ AE=BE. ∴AB=8,∴ AE=BE=4, 在 Rt△OAE 中,OA2=OE2+AE2, OE=OD-ED,即r2 = (r-2)2+42. 解得r=5,从而2r=10. 所以直径CD的长为10.
例2 解决求赵州桥拱半径的问题:
如图,用弧AB表示主桥拱,设弧AB所在圆的圆心为O,半径为R.经过圆心O作弦AB的垂线OC,D为垂足,OC与弧AB相交于点C.根据前面的结论可知,D是弦AB的中点,C是弧AB的中点,CD就是拱高.它的主桥是圆弧形,它的跨度(弧所对的弦的长)为37.4 m,拱高(弧的中点到弦的距离)为7.2 m
平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.
垂径定理推论1
几何语言:
你还有其他的结论吗?你发现了什么?
∵ CD是直径,AE=BE,

九年级数学上册专题第14讲圆的有关性质重点、考点知识总结及练习

九年级数学上册专题第14讲圆的有关性质重点、考点知识总结及练习

第14讲圆的有关性质⎧⎪⎪⎨⎪⎪⎩垂径定理弧、弦、圆心角的关系圆的有关性质圆周角定理及推论圆内接四边形的性质 知识点1垂径定理①弦和直径:(1)弦:连接圆上任意两点的线段叫做弦.(2)直径:经过圆心的弦叫做直径。

直径等于半径的两倍。

②弧:(1) 弧:圆上任意两点间的部分叫做圆弧,简称弧,用符号⌒表示,以A,B 为端点的的弧记作AB ⌒,读作弧AB.(2)半圆、优弧、劣弧:圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。

大于半圆的弧叫做优弧,优弧大于180º用三个字母表示,如 ACB .小于半圆的弧叫做劣弧,如AB 。

(3)等弧:在同圆或者等圆中能够相互重合的弧是等弧,度数或者长度相等的弧不一定是等弧。

③弦心距:(1)圆心到弦的距离叫做弦心距。

(2)圆心角、弧、弦、弦心距之间的相等关系:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的圆心角也相等,所对弦的弦心距也相等。

四者有一个相等,则其他三个都相等。

圆心到弦的垂线段的长度称为这条弦的弦心距。

④圆的性质:(1)旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心.在同圆或等圆中,两个圆心角,两条弧,两条弦,两条弦心距,这四组量中的任意一组相等,那么它所对应的其他各组分别相等.(2)轴对称:圆是轴对称图形,直径所在的直线是它的对称轴。

⑤垂径定理及推论:(1)垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.(2)平分弦(此弦不能是直径)的直径垂直于弦,并且平分弦所对的两条弧.(3)弦的垂直平分线过圆心,且平分弦对的两条弧.(4)平分一条弦所对的两条弧的直线过圆心,且垂直平分此弦.(5)平行弦夹的弧相等.⑥同心圆与等圆(1)同心圆:圆心相同,半径不相等的两个圆叫做同心圆。

如图一,半径为r1与半径为r2的⊙O叫做同心圆。

(图一)(2)等圆:圆心不同,半径相等的两个圆叫做等圆。

初三-圆有关的性质含答案

初三-圆有关的性质含答案
由垂径定理,得AE= AB=3,CF= CD=4,
设OE=x,则OF=x-1,
在Rt△OAE中,OA2=AE2+OE2,
在Rt△OCF中,OC2=CF2+OF2,
∵OA=OC,∴32+x2=42+(x-1)2,解得x=4,∴半径OA= =5,∴直径MN=2OA=10(分米).故选C.
答案:C
方法总结有关弦长、弦心距与半径的计算,常作垂直于弦的直径,利用垂径定理和解直角三角形来达到求解的目的.
A.116° B.32°
C.58° D.64°
解析:根据圆周角定理求得,∠AOD=2∠ABD=116°(同弧所对的圆周角是所对的圆心角的一半),∠BOD=2∠BCD(同弧所对的圆周角是所对的圆心角的一半);根据平角是180°知∠BOD=180°-∠AOD.还有一种解法,即利用直径所对的圆周角等于90°,可得∠ADB=90°,则∠DAB=90°-∠ABD=32°,∵∠DAB=∠DCB,∴∠DCB=32°.
【经典考题】
A.CM=DMB. C.∠ACD=∠ADCD.OM=MD
3.如图,△ABC是⊙O的内接三角形,AC是⊙O的直径,∠C=50°,∠ABC的平分线BD交⊙O于点D,则∠BAD的度数是( )
(第3题图)
A.45° B.85° C.90° D.95°
4.工程上常用钢珠来测量零件上小圆孔的宽口,假设钢珠的直径是10 mm,测得钢珠顶端离零件表面的距离为8 mm,如图所示,则这个小圆孔的宽口AB的长度为__________ mm.
A.2.5cmB.2.5cm或6.5cm
C.6.5cmD.5cm或13cm
4.如图,半圆O的直径AB=7,两弦AC、BD相交于点E,弦CD= ,且BD=5,则DE等于( )
A.2 B.4 C. D.

垂径定理九年级数学知识点

垂径定理九年级数学知识点

垂径定理九年级数学知识点垂径定理是九年级数学中的一个重要知识点,它涉及到平面几何的基本概念和性质。

在学习垂径定理之前,我们先来了解一下什么是垂径。

一、垂径的定义和性质垂径是在平面上与一条直线垂直相交的线段。

根据垂径的定义,我们可以得到以下性质:1. 一个点到直线的垂径只有一个。

2. 直径的两个垂径互相垂直。

3. 如果两条直径互相垂直,那么它们一定相交于圆的圆心上。

了解了垂径的定义和性质,我们就可以进一步探讨垂径定理了。

二、垂径定理的表述垂径定理是指:如果一条直径和一条垂径相交于圆上的一个点,那么这条垂径所对的弧就是直径所对的弧的一半。

换句话说,直径和垂径所对的弧互为一半。

三、垂径定理的证明垂径定理的证明可以通过利用圆的基本性质和几何知识来完成。

下面我们通过具体的例子来进行证明。

假设在圆O中,AB是直径,CD是与AB垂直相交于点E的垂径。

我们要证明的是:弧CD是弧AB的一半。

首先,连接OA和OB。

根据垂径的性质,我们知道OA和CD互相垂直,所以OA和CD构成一对垂直线段。

同样地,OB和CD也构成一对垂直线段。

由于OA和OB是圆的直径,所以它们穿过圆心O,并且与圆相交于圆上的两个点A和B。

根据圆的性质,直径的两条垂径与圆相交的弧互为一半。

因此,我们可以得出结论:弧CA等于弧CB的一半。

根据弧度的性质,我们知道弧度等于圆心角的度数。

所以弧度CA等于角CBA的度数。

同理,弧度CB等于角CAB的度数。

既然我们已经知道角CBA和角CAB是互补角,而且它们的两条弧互为一半。

所以我们可以得出结论:弧CD等于弧AB的一半。

四、垂径定理的应用垂径定理的应用非常广泛,不仅在九年级的几何学中常常被使用,而且在实际生活中也可以见到它的应用。

例如,在建筑设计中,我们经常会使用垂径定理来确定建筑物的位置和相对位置。

通过利用垂径定理,我们可以确定建筑物的中心位置,从而达到平衡和美观的效果。

此外,在航空和导航领域,垂径定理也被广泛运用。

九年级圆的垂径定理知识点

九年级圆的垂径定理知识点

九年级圆的垂径定理知识点在九年级的数学学习中,圆的垂径定理是一个非常重要的概念,也是学习圆形的几何性质的关键之一。

在这篇文章中,我们将深入探讨圆的垂径定理的知识点,了解其背后的原理和应用。

一、圆的定义和性质首先,我们需要回顾一下圆的定义和基本性质。

在数学中,圆是由平面上所有到一个固定点的距离相等的点的集合组成。

而这个固定点被称为圆心,半径则是圆心到圆上任意一点的距离。

圆具有很多重要性质,例如任意两点到圆心的距离相等,直径是圆的特殊弦,且它的长度是半径的两倍,而弧则是圆上的一段曲线,它与圆心对应的角叫做圆心角。

二、垂径定理的表述圆的垂径定理是指,如果一个直径和一个弦垂直相交,那么它就是弦的垂径,且它把弦分为两个相等的部分。

或者反过来说,如果一个弦被圆心角所分为两个相等的部分,那么它就与直径垂直相交。

这个定理的表述可能有点晦涩难懂,但是我们可以通过几何图形来直观地理解。

三、垂径定理的证明圆的垂径定理是可以通过简单的几何推导证明的。

假设有一个圆,圆心为O,直径为AB,弦为CD垂直于直径AB于点E。

我们需要证明CE = DE。

首先,连接AC和BD,并假设它们交于点F。

由于CD垂直于AB,所以CDE是一个直角三角形。

而由于圆心角的性质,角COD的度数是弦CD对应的角,即∠COE。

由于COE和COD是同位角,所以它们的度数相等,即∠COE = ∠COD。

而∠COD是一个直角,所以∠COE也是一个直角。

因此,我们可以得出结论,CE与DE相等,即CE = DE,证明了定理。

四、垂径定理的应用垂径定理在实际学习和应用中非常有用。

例如,在解决证明问题时,我们可以利用垂径定理来简化问题和推导证明过程。

此外,垂径定理还与圆的切线有着密切的关系。

当一个直径与一个切线相交时,由于切线与半径垂直,我们可以通过垂径定理得出切线与直径相交的两点的性质。

最后,垂径定理也与三角形的性质相关。

当我们在一个三角形内有一个圆时,利用垂径定理可以推导得出一些重要的三角形性质,如内切圆和外接圆的性质等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

垂径定理九年级知识点
垂径定理,也称为垂径长定理,是几何中一个重要的定理,用
来描述圆内任意两条互相垂直的直径和其所对应的弦的关系。


面将详细介绍有关垂径定理的九年级知识点。

1. 垂径定理的表述
垂径定理指出,一个圆的直径与其所对应的弦垂直相交,具
体表述为:"在一个圆内,如果一条弦垂直于直径,那么这条弦将
被切成两段,而且这两段的乘积等于每个一段的长度与直径的乘积,即 d1×d2=2×r×a"。

其中,d1和d2分别代表切割弦的两段,r
代表圆的半径,a代表这两段与直径的距离。

2. 垂径定理的证明
垂径定理的证明可以通过数学推理和几何推导来完成。

首先,假设圆的直径AB与弦CD互相垂直相交于点O,以及切割弦CD
的两段为CE和ED。

根据垂径定理的表述,我们可以得出以下几
个等式:
AE×EB = CE×ED (1)
AO×OB = CO×OD (2)
由于AO = CO, OB = OD,将式(2)代入式(1),我们可以得到:
AE×EB = AO×OB = r×r = r²
因此,垂径定理得证。

3. 垂径定理的应用
垂径定理在几何证明和问题求解中经常被应用。

下面介绍几个常见的应用场景:
a. 证明两条直线垂直相交
当需要证明两条直线垂直相交时,可以利用垂径定理。

首先,通过画圆和连接弦的方式将直线和圆相交,然后利用垂径定理得出圆内两条互相垂直的直径和它们对应的弦的关系,进而推断出直线的垂直关系。

b. 求解弦长
已知圆的半径和一个垂直切线与弦的交点坐标,可以利用垂径定理求解弦的长度。

根据垂径定理的表述,我们可以通过已知的半径和切线坐标计算出弦的长度,从而得到所需的结果。

c. 求解直径长
已知圆的半径和两条互相垂直的弦的长度,可以利用垂径
定理求解直径的长度。

根据垂径定理的表述,我们可以通过已知
的弦长和半径计算出直径的长度,进而得到所需的结果。

4. 垂径定理与其他定理的关系
垂径定理与其他几何定理存在一定的关联性,它们相互补充、相互支持。

例如,垂径定理与弦切角定理、圆心角定理以及圆周
角定理等都有密切的联系,可以通过对它们的综合运用来解决更
为复杂的几何问题。

5. 注意事项
在应用垂径定理时,需要注意以下几个问题:
a. 垂径定理只适用于圆内的相关直径和弦,对于圆外的线段
不适用。

b. 在使用垂径定理求解问题时,需要注意所给出的条件和待
求解的量之间的关联,灵活运用定理的表述。

c. 在证明和求解问题时,需要合理组织步骤,清晰明了地阐述推理过程,以确保准确性和逻辑性。

综上所述,垂径定理是九年级几何知识中的重要内容。

通过学习和应用垂径定理,可以更好地理解和掌握圆内直径和弦的关系,进而解决相关的几何问题。

相关文档
最新文档